Integrating Ontology Languages and Answer Set Programming

S. Heymans

D. Vermeir

Dept. of Computer Science
Vrije Universiteit Brussel, VUB
{sheymans,dvermeir} @vub.ac.be

Abstract

We integrate ontology languages and logic programming
(LP) by extending disjunctive logic programs (DLPs) and
their semantics in order to support inverses and an infinite
universe, without introducing function symbols. We show
that this extension is still decidable, and can be used to
simulate, on the one hand, answer set programming with
a finite universe, and on the other hand, several expressive
description logics (DLs), which can be seen as ontology lan-
guages. The integration leads to a “best of both worlds”:
from the LP side it inherits a flexible and intuitive repre-
sentation of knowledge, whereas the DLs side provides the
possibility to represent infinite knowledge.

1. Introduction

Ontologies and the languages used to represent them are
becoming increasingly more important in knowledge rep-
resentation areas such as the “Semantic Web” [4] where
they provide an agreed and shared understanding [15] of
certain domains. The formal semantics of those languages
can be given by DLs [2], which can also provide the pro-
cedures necessary to reason with the ontological knowl-
edge. Another knowledge representation formalism that has
been around for a while are the several logic programming
paradigms, of which we consider answer set programming
[7, 13].

In this paper we attempt to integrate both representation
formalisms, by allowing inverses and infinite domains in
the answer set programming semantics, without introducing
function symbols. However, just extending the semantics,
and allowing for arbitrary infinity, leads to undecidable
reasoning procedures. We therefore restrict DLPs to free
tree DLPs, which basically are DLPs where the rules have
a tree structure. These free tree DLPs prove to be highly
flexible, and can express diverse knowledge in a natural
way. Assume for example that students that get high scores
are either smart or work hard and have a smart friend

that wants to help. The corresponding program would
consequently consist of the two rules:highScore(X) <
worksHrd(X), friend(X,Y),wantsHelp(X,Y), smart(Y)
and highScore(X) <« smart(X). Compare this with
a possible translation to a DL axiom: highScore =
smart U (worksHrd M 3(friend NwantsHelp).smart).
Not only is this less appealing and less intuitive to most
software engineers than the free tree DLP but it also
assumes the existence of role intersection, a feature absent
in most DLs.

We show that certain DLs can be simulated with free tree
DLPs. The attempt to simulate DLs in a logic programming
formalism is not new. In [1] the DL ALC QT is success-
fully translated into a DLP. However, to take into account
infinite interpretations [1] presumes, for technical reasons,
the existence of function symbols. Our approach does not
make such assumptions; the ability for reasoning with infi-
nite knowledge is built into the semantics of free tree DLPs.
In fact our approach is more general and actually subsumes
the one in [1]. Whereas we extend answer set program-
ming to take into account infinity, and thus are able to sim-
ulate very expressive DLs, in [8] DLs are restricted to make
a translation possible into (and from) definite equality-free
Datalog logic programs (def-LPs). For example, disjunc-
tion can only appear on the left-hand side of DLs axioms,
so as to make the translation into def-LP possible. Whereas
this approach has the advantage that reasoning in DLs can
be achieved through simple Datalog, it has the disadvantage
that one loses the expressive possibilities of DLs.

In [6] the main focus is not on the simulation of DLs with
LP paradigms, but on a coexistence of DLs with, mostly,
Datalog. The idea behind these hybrid systems is to allow
for the two different knowledge representation formalisms
to retain their own strong points, while taking profit of the
benefits of the other one. We pursue a total and “real” in-
tegration (not just a “living apart together” integration), by
defining an extension of answer set programming, in which
particular DLs can be simulated.

The remainder of this paper is organized as follows: Sec-
tion 2 extends the answer set programming semantics to

take into account infinite domains. Section 3 restricts the
programs to DLPs with a tree structure in order to enforce
decidability. A simulation of a particular DL and a discus-
sion of the expressiveness of free tree DLPs can be found in
Sect. 4. Finally, Sect. 5 contains conclusions and directions
for further research. All proofs can be found in [9].

2. Answer Set Programming with Infinity

We give some basic definitions about disjunctive logic
programs (DLPs) and answer sets [7, 13], and extend them
to take into account infinite domains and inverses. Both ex-
tensions are inspired by DLs, and, more generally, the need
to represent and reason with possibly infinite knowledge.

We call individual names constants and write them as
lowercase letters, variables will be denoted with uppercase
letters. Variables and constants are terms. Atoms are defined
as being of the form py (t1), p2(t1,t2), p2~ (t1,t2), with py
a unary predicate, and py a binary predicate, ¢; and ¢, are
terms. Indeed, we restrict to unary and binary predicates;
inverting atoms does not seem to make sense for predicates
of greater arity.

A literal is an atom or an atom preceded by —, i.e. [is
a literal if [= @ or [= —a for an atom a. An extended
literal is a literal | or something of the form not(l), with
[a literal. Literals, or atoms, not containing variables are
ground. For a set X of literals, - X = {=l |l € X}, where
we define ——a as a. A set of ground literals X is consistent
if X N =X = (. For a set X of extended literals, we define
X~ = {l|not(l) € X}, i.e. the set of underlying literals.
Furthermore, we assume the existence of a binary predicate
#, with the usual interpretation.

A disjunctive logic program (DLP) is a finite set of rules
a + [where a and 3 are finite sets of extended literals.
We call programs where for each rule 3~ U a™ = 0, pro-
grams without negation as failure (naf). Programs without
naf such that for all rules 3 contains at most one element,
i.e. no disjunction in the head, are called simple programs.

Programs that do not contain variables are ground. For a
program P and a (possibly infinite) non-empty set of con-
stants 7, such that every constant appearing in P is in H,
we call Py the grounded program obtained from P by sub-
stituting every variable in P by every possible constant in
‘H. Note that Py may contain an infinite number of rules
(if H is infinite). An infinite DLP must be a grounded ver-
sion of a finite one.

The universe of a grounded program Py is the (pos-
sibly infinite) non-empty set of constants H p,, appearing
in Py. The base of a grounded program Py, is the (pos-
sibly infinite) set Bp,, of ground atoms that can be con-
structed using the predicates in P, and their inverses, with
the constants in H. An interpretation I of a grounded
DLP P is any consistent set of literals that is a subset of

Bp U =Bp. An interpretation I of a grounded DLP P
without naf sarisfies a rule @ « B if a NI # () when-
ever # C I. Or, intuitively, if the conjunction of literals
in the body of a rule is true, the disjunction of the literals
in the head must be true. An interpretation [is a model of
a grounded DLP P without naf if it satisfies every rule in
P and p(t1,t2) € I <= p (t2,t1) € I for all literals
p(t1,t2) in Bp U =Bp. Furthermore, it is a minimal model
if there is no model J C I of P.

For a grounded DLP P and an interpretation I, the
Gelfond-Lifschitz transformation [13], is the program pT
obtained by deleting in P each rule that has not(l) in its
body with [€ I, each rule that has not(l) in its head with
I ¢ I, and all not(l) in the bodies and heads of the remain-
ing rules. An interpretation of a DLP P (not grounded)
is a tuple (I, Hy), such that I is an interpretation of the
grounded Py;,. An interpretation (I, H) of a DLP P is an
answer set of P if I is a minimal model of P7{lz'

A DLP P is consistent if P has an answer set. For a
unary p (p possibly negated), appearing in P, we say that p
is satisfiable w.r.t. P if there exists an answer set (I,)
of P such that p(a) € I for an a € Hy; if Hj is finite
we call p finitely satisfiable. Checking this satisfiability for
a (possibly negated) unary predicate is called satisfiability
checking.

Take for example the program youngBricoleur(X) «+
child(X), make(X,T),toy(T), play(X,T) which expresses
that young bricoleurs are children that make and play
with their own toys. Note that answer sets containing
the knowledge young bricoleur(albert) about a par-
ticular individual, should also contain the knowledge
child(albert),toy(some toy),make(albert,some toy), and
play(albert,some toy), by the minimality of answer sets.
However the rule itself does not contain information about
individuals, or does not presuppose a finite domain; there
may be infinitely many bricoleurs, and for all of them the
right conclusions will be derived.

3. Free Tree DLPs

Answer set programming with infinity is powerful, in
fact it is too powerful. One can show that satisfiability
checking is undecidable in such a general context. Indeed,
we would be able to simulate an extension of the DL SHZ Q
[12], where the roles in number restrictions are not simple
(i.e. roles may be transitive or have transitive subroles). In
[12] it was shown that in such a DL satisfiability checking
is undecidable.

We propose free tree DLPs as a trade-off between ex-
pressiveness and decidability of satisfiability checking. To
clarify our choice, consider a scenario where we want to
ask a monitoring system if there were discovered new un-
known errors. Such errors are discovered if previously there

were no errors detected but now the monitored system is not
running anymore, which means that a previously unidenti-
fied error has occurred and crashed the system (we assume
that known errors are being dealt with in a clean manner).
The monitoring system discovers no new problems, if pre-
viously everything was going fine and at present the system
is still up and running. The corresponding DLP could be
something like the following:

newErr(X) «+ —-run(X), yest(X,Y), =Prob(Y) (1)
=Prob(X) « run(X),yest(X,Y), not(Prob(Y)) 2)
Prob(X) < not(—Prob(X)) 3)

—yest” (X,Y1),yest” (X,Y2),Y1 #Y> 4)
yest(X,Y) V not(yest(X,Y)) < ®)

run(X) V not(run(X)) < (6)

—run(X) V not(-run(X)) « 7

with the literal yest(X,Y) expressing that if X is today,
then Y is yesterday; rule (4) assures that there are no two
different yesterdays for one today. We call rules of this type
functional rules. Rules (5), (6), and (7) imply that answer
sets are free to contain the corresponding predicates or not,
thus we call them free rules. Rules like (1), (2), and (3)
are tree rules, i.e. they can be syntactically viewed as trees.
Before defining free tree DLPs we define (finite) trees.
A (finite) tree T is a (finite) subset of Nj (Ny = N\ {0})
such thatif x - ¢ € T for x € Nj and ¢ € Ny, we have that
z € T'. More formally we define free tree DLPs as follows.

Definition 1 A free tree DLP is a DLP that does not contain
constants and such that every rule is of one of the following

types:

e free rule a V not(a) <+ with a a literal.

e constraint + f(X,Y),b(Y),not(g(X,Y)),not(d(Y))
with literals f(X,Y),b(Y),9(X,Y) and d(Y). Not all
literals have to appear in the body, but if not(g(X,Y"))
ornot(d(Y)) is present, f(X,Y") has to be too.

o constraints a(X)+ f(X,Y1),f(X,Y2),Y1 # Ys with
f(X, Y1) and f(X,Y53) literals, and the head possibly
empty. If the head is empty we call f functional.

e binary rules f(X,Y) + a1(X), , am(X),
not(b1 (X)), ..., not(b,(X)), fi(X)Y) ...,
fo(X,Y), ai(Y), ..., ¢Y), not(di(Y)), ...,
not(dq,(Y)) with at least one fi(X,Y) in the body.

o tree rules a(X) < 8 with a(X) a literal and B a finite
set of extended literals with the following restrictions:

— there exists a finite tree T' such that there is a
bijection ¢ : T — Vars, with Vars the variables
in a(X) « B, such that y is a successor of x in
T iff there exists a literal f(p(x), d(y)) in B,

— “not” appears only in front of unary literals, i.e.
all literals in B~ are unary.

The monitoring system example is a free tree DLP, and,
furthermore, new Err is satisfiable, but not finitely satisfi-
able. Indeed (M, {ag,a1,...}) with M ={newErr(ag),
yest(ag,a1), —run(ag), yest(a1,a9), Prob(aog),
—Prob(a;), wyest(ai,as), run(ar), yest (as,ai),
—Prob(as), yest(as,as), run(az), yest (as,az),...}
is an infinite answer set of the program and there is no
answer set that is finite and satisfies newErr. Intuitively,
this answer set says that at time ag there has occurred a
totally new error, since at all earlier times no problems
were detected. This result could not have been attained
with traditional finite answer set programming.

To show that satisfiability checking in free tree DLPs is
decidable, (this is why we restricted the DLPs in the first
place) we use techniques similar to the ones used for u-
calculus with backward modalities [18], and already suc-
cessfully applied to several DLs [5]. Those techniques in-
volve the reduction of satisfiability checking to checking
non-emptiness of a two-way alternating automaton (2ATA)
[18], which is decidable. 2ATA are automata on infinite
trees, such that it comes as no surprise that the decidability
of free tree DLPs, as is the case for the p-calculus and re-
lated modal logics, comes down to the tree-model property
[17]. This property claims that if a predicate is satisfiable it
is satisfiable by a model that has a tree structure. Free tree
DLPs have the tree-model property and mainly owe this to
the syntactic tree-structure of tree rules.

Theorem 1 Satisfiability checking w.r.t. a free tree DLP is
decidable.

Free tree DLPs are still general enough to simulate sev-
eral DLs, as we will show in the next section, but can also
simulate finite answer set programming for programs with-
out disjunction in the head (we omit the ’disjunctive” qual-
ifier and call them logic programs), and possibly predicates
of greater arity.

Theorem 2 M is an answer set of a logic program P
iff (M',{a}) is an answer set of the free tree DLP P',
with some constant a , M' = {l(a)|l € M} and P' =
{r(X)|r € P} }, with r(X) defined such that every lit-
eral lin r is replaced by (X).

This theorem implies that whatever DL is simulated by
means of finite answer set programming, it can be simulated
by a free tree DLP.

4. Simulating Description Logics

Description logics play an important role in the evolution
of ontology languages such as DAML+OIL [3] and more re-
cently OWL [16], as they can be used to express the formal
semantics of those languages. The DL SHZQ corresponds
for example to the ontology language OIL [10].

In this section we consider the slightly less expressive
DL SHZF [11], and instead of transitive roles we allow for
transitive closure of roles. We denote this particular DL as
SHIF*. SHIF™ can be easily simulated by an intuitive
and elegant free tree DLP translation.

We define the syntax of SHZF™ concept expressions as
follows.

D1,Dy — A|—|D1|D1 1 D2|D1 (] D2|3RD1|VRD1|(S 1Q)

and Qisa Pora P~, Ris (Q or @* with A a concept name

and P a role name. We take (> 2Q)) to be a shorthand for
—(< 1Q). The semantics of a SHZF™ concept expression
is given by an interpretation Z = (AZ,.T) which consists
of a non-empty (possibly infinite) domain A”, and an inter-
pretation function -Z defined as follows.

AT C AT for concept names A

PT C AT x AT for role names P

Pt = {(y,)|(x,y) € P} for role names P
(—|D1)I = AI \ _DlI
(D1 D2)I =DInD}
(D1 u D)t =DFfuD?
(3R.D1)* = {z|3y: (z,y) € R* Ay € D7}
(VR.D1)* = {z|Vy: (z,y) € R* = y € DI}
(<1Q)" = {zl#{yl(z,y) € Q"} < 1}

(R*)Y = R i.e. the reflexive transitive closure of RZ

A terminological axiom is of the form C; C Cs, with C}
and C> arbitrary concept expressions. An interpretation 7
satisfies a terminological axiom C; C Cs if Cf C CZ. A
role axiom is of the form Ry C Ry, with R, and R5 roles
(possibly inverted or transitively closed). An interpretation
T satisfies a role axiom Ry C Ry if R C R%. A knowl-
edge base X is a set of terminological and role axioms. An
interpretation Z is a model of X if 7 satisfies every axiom in
Y. A SHIF* concept expression C is satisfiable w.rt. X
if there exists a model Z of ¥ such that C' has a non-empty
interpretation, i.e. C% # .

We define the closure clos(C, X.) of a concept expression
C and the SHZF* knowledge base X, as follows.

e for every concept expression D in {C} U X we have
D € clos(C, %),
e forevery D in clos(C, X), we have

1. if D = =D, then Dy € clos(C, X),

2. if D = D, U D, then {Dl,DQ} - ClOS(C, E),

3. if D = Dy N D, then {Dl,DQ} - ClOS(C, E),

4. if D = 3R.D; then {R, D} C clos(C, %),

5.if D = VR.D;, then {Dl,ER._!Dl} C
clos(C, %),

6. if D =< 1Q, then {Q, (> 2Q)} C clos(C, %),

7. for all R* € clos(C,X), then R € clos(C,),

8. forall D € clos(C, %), D € clos(C, ¥).

It is straightforward to simulate satisfiability checking in
SHIF* with free tree DLPs. We define ®(C, X) to be the
free tree DLP, obtained from ¥ and C as in Table 1.

Table 1. SHZF* simulation
®(C, %)

Pa(X) V not(Pa(X)) «
Pp(X,Y) Vnot(Pp(X,Y)) <
—Pp(X,Y)Vnot(-Pp(X,Y))
Pp—(a,b) < Pp~(a,b)
—~Pp-(a,b) < —~Pp~ (a,b)
expressions D |mPp(X) + not(Pp(X))

D =-F P—.E(X)(—ﬁPE(X)

D=FENF PEnF(X)(—PE(X),PF(X)

D=FUF PEuF(X)(—PE(X)
PEuF(X) (—PF(X)

clos(C,X)
concepts A
role names P

roles P~

D:HQE PQQ_E(X)(—PQ(X,Y),PE(Y)
D =3Q*.E |Pag-.»(X) + Pu(X)
Pag+ 5(X) Po(X,Y), Po(Y)
D =VR.E PVR_E(X)<——|PER__.E(X)
D =<1Q [P<1q(X) ¢ not(P>2q(X))
PZQQ(X) «— PQ(X:YI)aPQ(XaYQ)’Yl 7é Y,
CiC Cr€X K Pc,(X),not(Pc, (X))

RiC Ry €X K Pr,(X,Y),not(Pry(X,Y))

Take for example a SHZF™ knowledge base consisting
of the single axiom ProbChild C Iparent.ProbChild.
expressing that problem children tend to have parents that
were themselves problem children. Translating this to free
tree DLP gives us the rules that simulate explicit DLs be-
havior:

Ppropchita(x) V 10t (Pprobchitd(x))

_‘PProbChild(X) — nOt(PProbChild(X))

Pparent(X,Y) \ nOt(Pparent(X,Y)) —

_'Pparent(X,Y) \ nOt(ﬁ parent(X,Y)) —
Paparent.Provchitd(X) <= Pparent(X,Y), Pprovcnitd(Y)

and of course the translation of the axiom itself

< Pprobonitd(X), not(Paparent. Probchita(X))

The obtained ®(C,¥) is indeed a free tree DLP and
furthermore we can check that satisfiability checking in
SHIF™ is equivalent to satisfiability checking in this free
tree DLP.

Theorem 3 A SHIF™ concept expression C is satisfiable
w.rt. a SHIF* knowledge base X iff Po(X) is satisfiable
w.rt. ®(C, X).

A more interesting example is, is for example to check
the satisfiability of -C M IF~.(C N (< 1 F)) N
VEF~".(3F~.(CN (L 1 F))). Asnoted in [12], each of the
models that make this concept expression satisfiable have

an infinite domain (in [12], transitivity is used instead of
transitive closure). By Theorem 3 the corresponding pred-
icate is satisfiable. In correspondence with the DLs case it
can be checked that all answer sets that make the predicate
satisfiable are infinite.

Another example expresses a specification of a “leads”
predicate, i.e. a person ‘“rules” something if he is
a president and he leads a country: rules(X,Y) <«
president(X),leads(X,Y), country(Y).

It is possible to express in SHZF ™ that, if x rules y then
z leads y, and = must be a president, y a country. However,
the other way around, “if x leads y and y is a country, x is a
president then z rules y” is inexpressible in SHZF*.

While the argument that free tree DLPs are more intu-
itive than DLs is a rather subjective one, this simple ex-
ample shows that free tree DLPs are more expressive than
SHIF*, as well as some aspects of the more expressive DL
SHOZQ(D), which is the DL corresponding to the ontol-
ogy language DAML+OIL [8].

5. Conclusions and Directions for Further Re-
search

We have extended answer set programming with infin-
ity, and provided a decidable restriction of disjunctive logic
programs, by enforcing a tree structure on the rules. Not
only is this extension more intuitive than DLs, it can also
simulate a large class of DLs, and is more expressive than
most of them. The extension effectively integrates ontol-
ogy languages with answer set programming, and allows for
representing and reasoning with knowledge in an intuitive,
expressive and unified way.

Interesting directions for further research are to extend
free tree DLP such that it allows the simulation of more
expressive DLs. Similar to [14] we could extend answer
set programming with constraint rules that enforce a cer-
tain cardinality, this would allow to simulate DLs with ex-
pressive number restrictions (not just functional ones). Al-
lowing constants to appear in the free tree DLPs would
make the simulation possible of DLs with individuals as
SHOZQ(D), which is the description logic corresponding
to DAML+OIL. Since we are able to express infinite knowl-
edge, it would be interesting to see how well free tree DLPs
scale for temporal reasoning or other reasoning paradigms
explicitly depending on a notion of infinity.

References

[1] G. Alsac and C. Baral. Reasoning in description logics using
declarative logic proramming. http://www.public.
asu.edu/ guray/dlreasoning.pdf, 2002.

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
P. Patel-Schneider. The Description Logic Handbook. Cam-
bridge University Press, 2003.

S. Bechhofer, C. Goble, and I. Horrocks. DAML+OIL is not
enough. In Proceedings of the First Semantic Web Working
Symposium (SWWS’01), pages 151-159. CEUR, 2001.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. Scientific American, pages 34—43, May 2001.

D. Calvanese, G. D. Giacomo, and M. Lenzerini. 2ATAs
make DLs easy. In Proc. of the 2002 Description Logic
Workshop (DL’02), 2002.

F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-
log: integrating datalog and description logics. J. of Intel-
ligent and Cooperative Information Systems, 10:227-252,

1998.

M. Gelfond and V. Lifschitz. The stable model semantics for
logic programming. In R. A. Kowalski and K. Bowen, ed-
itors, Proceedings of the Fifth International Conference on
Logic Programming, pages 1070-1080, Cambridge, Mas-
sachusetts, 1988. The MIT Press.

B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. De-
scription Logic Programs: Combining Logic Programs with
Description Logic. In Proceedings of Twelfth International
World Wide Web Conference (WWW 2003), 2003. To appear.
S. Heymans and D. Vermeir. Integrating ontology languages
and answer set programming. Technical report, Vrije Uni-
versiteit Brussel, Dept. of Computer Science, 2003.

I. Horrocks. A denotational semantics for Standard OIL and
Instance OIL. http://www.ontoknowledge.org/
0il/downl/semantics.pdf,2000.

L. Horrocks and U. Sattler. A description logic with transitive
and converse roles and role hierarchies. LTCS-Report 98-
05, LuFg Theoretical Computer Science, RWTH Aachen,
Germany, 1998.

I. Horrocks, U. Sattler, and S. Tobies. Practical reason-
ing for expressive description logics. In H. Ganzinger,
D. McAllester, and A. Voronkov, editors, Proceedings of the
6th International Conference on Logic for Programming and
Automated Reasoning (LPAR’99), number 1705, pages 161—
180. Springer-Verlag, 1999.

V. Lifschitz. Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39-54, 2002.

P. Simons. Extending the stable model semantics with
more expressive rules. In M. Gelfond, N. Leone, and
G. Pfeifer, editors, Proceedings of the Fifth International
Conference on Logic Programming and Nonmonotonic Rea-
soning, pages 305-316. Springer-Verlag, 1999.

M. Uschold and M. Griininger. Ontologies: principles,
methods, and applications. Knowledge Engineering Review,
11(2):93-155, 1996.

F. van Harmelen, J. Hendler, I. Horrocks, and L. A. S.
D. L. McGuinness, P. F. Patel-Schneider. Web Ontology
Language (OWL) Reference Version 1.0. W3C Working
Draft - http://www.w3.0rg/TR/owl-ref/, Febru-
ary 2003.

M. Y. Vardi. Why is modal logic so robustly decidable?
Technical Report TR97-274, Rice University, Apr. 12, 1997.
M. Y. Vardi. Reasoning about the past with two-way au-
tomata. In Proc. of the 25th Int. Coll. on Automata, Lan-
guages and Programming, pages 628—-641. Springer, 1998.

