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Abstract

Many popular ontology languages are based on (subsets
of) first-order predicate logic, where classes are modeled
as unary predicates and properties as binary predicates.
Specifically, the ontology language OWL DL is based on the
Description LogicSHOIQ. F-Logic is an ontology lan-
guage which is also based on first-order logic, but classes
and properties are modeled as terms, rather than predi-
cates. In this paper we define a translation from predicate-
based ontologies to F-Logic ontologies and show that this
translation preserves entailments for large classes of on-
tologies, including most of OWL DL. We define the class
of equality-safe (E-safe) formulas, show that the Descrip-
tion LogicSHIQ is E-safe, and show that the translation
preserves validity ofE-safe formulas. Finally, we use these
results to close the open problems of layering F-Logic pro-
gramming on top of Description Logic Programs and lan-
guage layering in WSML.

1. Introduction

There have been several proposals for using F-Logic as
the basis for an ontology language for the Semantic Web
[17, 10, 2, 6]. In F-Logic, classes and properties are in-
terpreted as objects. This may hamper inter-operation with
Description Logic-based ontology languages (e.g. OWL DL
[12]), in which classes and properties are interpreted as
unary and binary predicates, respectively. We will call the
way of modeling ontologies in F-Logic “frame-based on-
tology modeling” and the way of modeling ontologies in
Description Logics “predicate-based ontology modeling”.

More specifically, WRL [2] and WSML [10] claim
that an F-Logic based variant of the language (WRL-
resp. WSML-Flight) is an extension of a Description Logic
(Programming) based variant of the language (WRL- resp.
WSML-Core). It is an open problem whether the F-Logic

based variants are proper extensions of the Description
Logic based variant.

We define a straightforward translation from predicate-
based ontologies to F-Logic. We show that when consid-
ering sorted F-Logic, the translation preserves entailment
for arbitrary first-order theories. We then show that this is
not the case in general when translating the ontology to an
unsorted F-Logic language. However, for certain classes
of first-order formulas, namely thecardinal formulas [7],
the translation preserves validity. Our translation preserves
function-freeness, i.e., if no function symbol of arity> 0
was used in the original ontology, no function symbol of
arity> 0 will occur in the translated ontology.

We define the novel class of equality-safe (E-safe) for-
mulas, show that the Description LogicSHIQ is E-safe,
and show thatE-safe formulas are cardinal. Finally,E-safe
formulas are closed under negation, and thus entailment of
E-safe formulas can be reduced to checking validity. Us-
ing these results, we can show that the translation preserves
entailment for large classes of ontology languages which
include equality, such asSHIQ.

We use these results to close the open problem of F-
Logic extensions of Description Logic Programs (DLP)
[14] and the problem of language layering in WSML (and
thus also WRL). We show that the WSML variants are in-
deed semantically layered as suggested in [10]. Specifically,
we show that the language layering preserves (ground) en-
tailment.

Structure of the paper In Section 2 we review predicate-
and frame-based ontology modeling languages. In Section
3, we show that the translation of any predicate-based ontol-
ogy to sorted F-Logic is faithful and that the translation of
cardinal formulas to unsorted F-Logic is faithful; we iden-
tify the class ofE-safe formulas and demonstrate cardinal-
ity. We use this translation to show that the straightforward
F-Logic extension of DLP preserves ground entailment, in
Section 4. We then use the translation to show that the
WSML language variant are properly layered, in Section



5. Finally, we review related work and present conclusions
in the Sections 6 and 7.

2. Preliminaries

Predicate-based ontology languagesA predicate-based
ontology language is a first-order language in which unary
predicates represent classes of objects and binary predi-
cates represent properties (relations between objects). De-
scription Logics [3] are such predicate-based ontology lan-
guages. Of special interest isSHOIQ, which is the lan-
guage underlying the Semantic Web ontology language
OWL DL. We present the syntax and semantics ofSHOIQ
through a mapping to first-order logic with equality. The de-
scriptions are presented in Table 1; the axioms are presented
in Table 2. In the tables,A is a named class,C,D are de-
scriptions,Q,R are roles, anda, b, o1, ..., on are individu-
als. Additionally, we have that in thenumber restrictions
> nR.C and6 nR.C, R has to besimple, i.e.,R and its
sub-roles may not be transitive (with transitivity indicated
by Trans(R)).

The Description LogicSHIQ corresponds toSHOIQ
without the enumeration ({o1, ..., on}) and has-value
(∃R.{o}) descriptions. In the remainder of the paper, when
referring toSHOIQ (resp.SHIQ) axioms, we refer to the
FOL version of these axioms. We now formally describe the
syntax and semantics of first-order logic.

DL syntax FOL syntax
πy(A, X) A(X)
πy(⊤, X) X = X

πy(⊥, X) ¬(X = X)
πy(C1 ⊓ . . . ⊓ Cn, X)

V

πy(Ci, X)
πy(C1 ⊔ . . . ⊔ Cn, X)

W

πy(Ci, X)
πy(¬C, X) ¬πy(C, X)
πy({o1 . . . on}, X)

W

X = oi

πy(∃R.C, X) ∃y(R(X, y) ∧ πx(C, y))
πy(∀R.C, X) ∀y(R(X, y) ⊃ πx(C, y))
πy(∃R.{o}, X) R(X, o)

πy(> nR.C, X)
∃y1, . . . , yn(

V

R(X, yi)∧
V

πx(C, yi) ∧
V

¬yi = yj)

πy(6 nR.C, X)
∀y1, . . . , yn+1((

V

R(X, yi)∧
V

πx(C, yi)) ⊃
W

yi = yj)
πx is defined asπy by substitutingx andxi for y andyi, respec-
tively

Table 1. SHOIQ Descriptions

In the signature of a predicate-based ontology language,
we distinguish between concept (unary predicate) symbols,
role (binary predicate) symbols, and predicate symbols of
other arities. A first-order signatureΣ has the formΣ =
〈A, C,R,P〉, whereA is the set of function symbols, each
with an associated arityn, C is a set of concept (unary
predicate) symbols,R is a set of role (binary predicate)
symbols, andP is a set ofn-ary predicate symbols, with
n = 0 or n ≥ 3. A, C,R, andP are disjoint.

DL syntax FOL syntax
Class Axioms

C ⊑ D ∀x(πy(C, x) ⊃ πy(D, x))
C ≡ D ∀x(πy(C, x) ⊃ πy(D, x))∧

∀x(πy(D, x) ⊃ πy(C, x))
Property Axioms

Q ⊑ R ∀x, y(Q(x, y) ⊃ R(x, y))
R ≡ Q− ∀x, y(R(x, y) ⊃ Q(y, x))∧

∀x, y(Q(y, x) ⊃ R(x, y))
Trans(R) ∀x, y, z(R(x, y) ∧ R(y, z) ⊃ R(x, z))

Individual Axioms
a ∈ A A(a)
〈a, b〉 ∈ R R(a, b)
a = b a = b

a 6= b ¬(a = b)

Table 2. SHOIQ Axioms

Given a signatureΣ and a set of variable symbolsV ,
terms are either variables or constructed terms of the form
f(t1, ..., tn) with f ∈ A ann-ary function symbol (n ≥ 0)
and t1, ..., tn terms. Atomic formulas are expressions of
the formp(t1, ..., tn) with p ∈ C ∪ R ∪ P ann-ary pred-
icate symbol (n ≥ 0) and t1, ..., tn terms. Formulas of
a first-order languageLP are constructed as usual: every
atomic formula is a formula inLP ; compound formulas are
constructed using atomic formulas, the logical connectives
¬,∧,∨,⊃, the quantifiers∃, ∀, and the auxiliary symbols
), (.

An interpretation of a languageLP is a tupleI =
〈∆, ·I〉, where∆ is a nonempty set (calleddomain) and·I

is a mapping which assigns: a functionfI : ∆n → ∆ to ev-
eryn-ary function symbolf ∈ A, and a relationpI ⊆ ∆n,
to everyn-ary predicate symbolp ∈ C ∪ R ∪ P . A vari-
able assignmentB is a mapping which assigns an element
xB ∈ ∆ to every variable symbolx. A variable assign-
mentB′ is anx-variant ofB if yB = yB′

for every variable
y ∈ V for y 6= x.

Given an interpretationI = 〈∆I , ·I〉, a variable assign-
mentB, and a termt of LP , tI,B is defined as:xI,B =
xB for variable symbolx and tI,B = fI(tI,B

1 , ..., tI,B
n )

for t of the formf(t1, ..., tn). I satisfiesan atomic for-
mulap(t1, ..., tn), given a variable assignmentB, denoted
I, B |= p(t1, ..., tn), if (tI,B

1 , ..., tI,B
n ) ∈ pI . I, B |= t1 =

t2 iff tI,B
1 = t

I,B
2 . This is extended to arbitrary formulas as

usual:I, B |= φ1∧φ2 (resp.I, B |= φ1∨φ2, I, B |= ¬φ1)
iff I, B |= φ1 andI, B |= φ2 (resp.I, B |= φ1 or I, B |=
φ2, I, B 2 φ1); I, B |= ∀x(φ1) (resp.I, B |= ∃x(φ1)) iff
for every (resp. for some)B′ which is anx-variant ofB,
I, B′ |= φ1.

An interpretationI is a modelof φ, denotedI |= φ, if
I, B |= φ for all variable assignmentsB; φ is satisfiable
if it has a model (unsatisfiable otherwise);φ is valid if ev-
ery interpretationI is a model ofφ. These definitions are
straightforwardly extended to the case of first-order theories
Φ ⊆ LP .



A theoryΦ ⊆ LP entailsa formulaφ ∈ LP , denoted
Φ |= φ, iff for all interpretationsI in LP such thatI |= Φ,
I |= φ.

Frame-based ontology languagesFrame Logic [17, 18]
(F-Logic) is an extension of first-order logic which adds
explicit support for object-oriented modeling. It is pos-
sible to explicitly specify methods, as well as generaliza-
tion/specialization and instantiation relationships. The syn-
tax of F-Logic has some seemingly higher-order features,
namely, the same identifier can be used for a class, an in-
stance, and a method. However, the semantics of F-Logic is
strictly first-order. To simplify matters, we do not consider
parameterized methods, functional (single-valued) meth-
ods, inheritable methods, and compound molecules.

The signature of an F-Logic languageLF is of the form
Σ = 〈F ,P〉 with F a set of function symbols andP a set of
predicate symbols, each with an associated arityn ≥ 0. Let
V be a set of variable symbols. Terms and atomic formulas
are constructed as in first-order logic:x ∈ V is a term and
f(t1, ..., tn) is a term, withf ∈ F ann-ary function symbol
andt1, ..., tn terms.

A molecule in F-Logic is one of the following state-
ments: (i) anis-aassertion of the formC :D, (ii) a subclass-
of assertion of the formC ::D, or (iii) a data molecule of the
formC[D→→E], withC,D,E terms. An F-Logic molecule
is groundif it does not contain variables.

Formulas of an F-languageLF are either atomic for-
mulas, molecules, or compound formulas which are con-
structed in the usual way from atomic formulas, molecules,
and the logical connectives¬,∧,∨,⊃, the quantifiers∃, ∀
and the auxiliary symbols), (. We denote universal closure
with (∀).

F-Logic Horn formulas are of the form(∀)B1∧...∧Bn ⊃
H , with B1, ..., Bn, H atomic formulas or molecules. F-
Logic Datalog formulas are F-Logic Horn formulas without
function symbols such that every variable inH occurs in
B1, ..., Bn.

Interpretations in F-Logic are calledF-structures. An F-
structure is a tupleI = 〈U,≺U ,∈U , IF , IP , I→→〉. Here,
≺U is an irreflexive partial order on the domainU and∈U

is a binary relation overU . We writea �U b whena ≺U b

or a = b, for a, b ∈ U . For each F-structure holds that if
a ∈U b andb �U c thena ∈U c. Thus, if b �U c, then
{k | k ∈U b, k ∈ U} ⊆ {k | k ∈U c, k ∈ U}.

An n-ary function symbolf ∈ F is interpreted as a
function over the domainU : IF (f) : Un → U . An
n-ary predicate symbolp ∈ P is interpreted as a rela-
tion over the domainU : IP (p) ⊆ Un. I→→ associates
a partial functionU → P(U)1 with each element ofU :

1P(U) denotes the power-set ofU .

I→→ : U −→ U → P(U). Variable assignments are as in
first-order logic.

Given an interpretationI, a variable assignmentB, and
a termt of LF , tI,B is defined as:xI,B = xB for variable
symbolx andtI,B = IF (f)(tI,B1 , ..., tI,Bn ) for t of the form
f(t1, ..., tn).

F-satisfactionof φ in I, given the variable assignmentB,
denotedI, B |=f φ, is defined as:

– I, B |=f p(t1, ..., tn) iff (tI,B1 , ..., tI,Bn ) ∈ IP (p),
– I, B |=f t1 : t2 iff tI,B1 ∈U t

I,B
2 ,

– I, B |=f t1 :: t2 iff tI,B1 �U t
I,B
2 ,

– I, B |=f t1[t2→→t3] iff I→→(tI,B
2

)(tI,B
1

) is defined and
t
I,B
3 ∈ I→→(tI,B2 )(tI,B1 ), and

– I, B |=f t1 = t2 iff tI,B1 = t
I,B
2 .

Extension to satisfaction of compound formulas is as in
first-order logic.

The notions of a model and of validity are defined anal-
ogous to first-order logic. A theoryΦ ⊆ LF F-entailsa
formulaφ ∈ LF , denotedΦ |=f φ, iff for all F-structuresI
such thatI |=f Φ, I |=f φ.

With F-Logic Programmingwe denote the Horn sub-
set of F-Logic interpreted under the usual minimal Her-
brand model semantics (HerbrandF-structuresand mini-
mality are defined analogously to Herbrand interpretations
and minimality for predicate logic) or one of its extensions
(e.g. [22, 13]).

Sorted F-Logic In predicate-based ontology lan-
guages, the sets of symbols used for concepts, roles and
individuals are disjoint. This is not the case in F-Logic.
This disjointness can be regained by using asortedF-Logic
language.

We consider a sorted F-Logic language with three sorts:
individuals, concepts and roles. A sorted F-Logic language
has a sorted signatureΣ = 〈A, C,R,P〉, whereA is a set
of function symbols,C is a set of concept (nullary function)
symbols,R is a set of role (nullary function) symbols, and
P is a set ofn-ary predicate symbols, withn ≥ 0. A, C,R,
andP are disjoint. The usual restrictions to the use of sym-
bols in formulas applies, namely only molecules of the form
a : c, c ::d, a[r→→b] are allowed, witha, b terms constructed
from symbols inA∪V , c, d ∈ C∪V , andr ∈ R∪V . Quan-
tifiers need to be qualified withi, c, r to indicate over which
domain (individual, concept, role) the variable quantifies.

A sorted F-structure has three disjoint domains:
Ui, Uc, Ur for the individuals, concepts, and roles, respec-
tively; ≺U is an irreflexive partial order overUc; ∈U is a
relation betweenUi andUc: ∈U : Ui × Uc. IF interprets
symbols inA as functions overUi, symbols inC as ele-
ments inUc, and symbols ofR as elements inUr. IP inter-
prets symbols inP asn-ary relations overUn

i . Finally,I→→



Entity Predicate style Frame style
Class δ(A(X)) X :A
Property δ(R(X,Y )) X [R→→Y ]
Equality δ(X = Y ) X = Y

n-ary predicate δ(P ( ~X)) P ( ~X)
Universal δ(∀~x.C) ∀~x(δ(C))
Existential δ(∃~x.C) ∃~x(δ(C))
Conjunction δ(C ∧D) (δ(C) ∧ δ(D))
Disjunction δ(C ∨D) (δ(C) ∨ δ(D))
Implication δ(C ⊃ D) (δ(C) ⊃ δ(D))
Negation δ(¬C) ¬(δ(C))

Table 3. Translating predicate-based to
frame-based modeling

associates a partial mappingUi → P(Ui) to each element
of Ur.

3. Translating Predicate-Based Ontologies to
F-Logic

Table 3 defines a mapping from the predicate style of
ontology modeling to the frame style. In the table,A,B are
unary predicate symbols,C,D are formulas,R is a binary
predicate symbol,P is ann-ary relation symbol, withn = 0
or n ≥ 3, x is a variable symbol, andX,Y are terms. The
mappingδ extends to sets of formulas in the natural way.

Definition 1. Given a predicate-based ontology language
LP with the signatureΣLP = 〈A, C,R,P〉. LetLF be the
F-Logic language which has the signatureΣLF = 〈F ,P〉,
withF = A ∪ C ∪R, thenLF corresponds toLP .

Given a first-order theoryΦ ⊆ LP , thenδ(Φ) ⊆ LF is
thecorrespondingF-Logic theory.

In the remainder of this section, we will first show that
the translation in Definition 1 is faithful (i.e. preserves en-
tailment) when considering a sorted F-Logic language. We
will then show that for a certain class of formulas, the class
of cardinalformulas (see [7]), the translation is also faithful
when considering an unsorted language. Besides the classes
of cardinal formulas identified in [7], we identify the class
of E-safe formulas, show that reasoning inSHIQ can be
reduced to checking validity ofE-safe formulas, and show
thatE-safe formulas are cardinal.

3.1. Translating to Sorted F-Logic

We first investigate a translation to sorted F-Logic. We
augment the translation in Table 3 to ensure that variables
are only quantified over the domain of individualsUi, by
replacing each universal quantifier∀ in Table 3 with∀i and

each existential quantifier∃ with ∃i. We denote the thus
obtained translation function withδs.

We now show equi-satisfiability of formulas inLP , and
their F-Logic counterparts. IfLP is a predicate-based on-
tology language with signatureΣL = 〈A, C,R,P〉, then
the corresponding sorted F-Logic languageLF is the sorted
F-Logic language obtained from the signatureΣL.

Lemma 1. Letφ be formula inLP and letLF be the cor-
responding sorted F-Logic language, thenφ is satisfied in
some interpretation ofLP if and only ifδs(φ) is satisfied in
some sorted F-structure ofLF .

Proof. (Sketch)From any interpretationI of LP such that
I |= φ one can easily construct a corresponding sorted F-
structureI such thatI |=f δ

s(φ), and vice versa.

Using the lemma we can now show correspondence with
respect to entailment.

Theorem 1. LetΦ be a set of formulas inLP , δs(Φ) ⊆ LF

be the corresponding F-Logic theory, and letφ ∈ LP be an
arbitrary formula, then

Φ |= φ iff δ(Φ) |=f δ(φ).

Proof. Follows immediately from Lemma 1 and the fact
that checking the entailmentΦ |= φ can be reduced to
checking unsatisfiability of(

∧
Φ) ∧ ¬φ.

3.2. Translating Cardinal Formulas

We now consider the translation functionδ of Table 3 in
its original form and we consider unsorted F-structures of
the formI = 〈U,�U ,∈U , IF , IP , I→→〉.

It turns out that we lose the correspondence of models in
the general case with this augmented definition. Consider,
for example, the formula

φ = (∀x, y(x = y)) ⊃ (q(a) ↔ r(a)). (1)

The formulaφ is trivially satisfied in any interpretation
with more than one element in the domain, since the an-
tecedent will be trivially false in such an interpretation.If
we consider an interpretation with only one element, then
the antecedent is true, but the consequent is not necessarily
true, becauseq andr may be interpreted differently. Thus,
φ is not valid in FOL. Now consider the corresponding F-
Logic formula

δ(φ) = (∀x, y(x = y)) ⊃ (a : q ↔ a :r).

As we have seen, the original formulaφ is not valid in
LP . However,δ(φ) is valid in LF , sinceq andr must be
interpreted as the same class in every F-structure which has
exactly one element.



From the example we can see that the translationδ is not
faithful for arbitrary predicate-based ontology languages.
There is, however, a class of formulas for which the cor-
respondence does hold with the augmented definition. This
is the class of formulas for which entailment can be reduced
to checking validity of acardinal formula [7].

Definition 2. Letφ be a formula inLP and letγ denote the
number of symbols inLP . An interpretationI = 〈∆I , ·I〉
is cardinal if |∆I | ≥ γ. φ is cardinalif the following holds:

If φ is true in every cardinal interpretation ofLP ,
thenφ is true in every interpretation ofLP .

Definition 2 extends naturally to sets of formulas.
Note that this condition does not hold for the formula

φ in (1), becauseφ is true in every interpretation with a
domain of at least 3 elements, but it is not true in every
interpretation ofLP . The following definition of cardinality
is equivalent to Definition 2.

Proposition 1. Letφ be a formula inLP , thenφ is cardinal
if and only if

if φ is true in an interpretation ofLP , thenφ is
true in a cardinal interpretation ofLP .

Proof. Assumeφ is true in some interpretationI of LP ,
i.e.,I |= φ. This is equivalent toI 6|= ¬φ, thus, by contra-
position of Definition 2, there is a cardinal interpretationI ′

such thatI ′ 6|= ¬φ. This is equivalent toI ′ |= φ.

We can now strengthen Lemma 1 and Theorem 1 to the
case of unsorted F-Logic:

Lemma 2. Letφ be a formula inLP . Then

• if δ(φ) is satisfied in some F-structure ofLF , then
there is an interpretation ofLP which satisfiesφ, and

• if φ is cardinal and is satisfied in some interpretation of
LP , then there is an F-structure ofLF which satisfies
δ(φ).

Proof. Given a cardinal interpretationI = 〈∆I , ·I〉 of LP .
Since |∆I | ≥ |C| + |R|, we may assume that for each
q ∈ C ∪ R there is a unique individualkq ∈ ∆I . I =
(I)FL = 〈U,�U ,∈U , IF , IP , I→→〉 is the corresponding F-
Logic structure, which is defined as follows: (i)U = ∆I ,
(ii) ∀ f ∈ A: IF (f) = fI , (iii) ∀ c ∈ C: IF (c) = kc, (iv)
∀ r ∈ R: IF (r) = kr, (v) ∀ c ∈ C and every individual
k ∈ ∆I , if k ∈ cI thenk ∈U IF (c), (vi) ∀ c1, c2 ∈ C:
if cI1 ⊆ cI2 then IF (c1) �U IF (c2), (vii) ∀ r ∈ R and
∀ k1, k2 ∈ ∆I , if 〈k1, k2〉 ∈ rI thenk2 ∈ I→→(IF (r))(k1),
and (viii) ∀ p ∈ P : IP (p) = pI .

Given an F-structureI = 〈U,�U ,∈U , IF , IP , I→→〉 for
the languageLF , the corresponding FOL interpretationI =

(I)FOL = 〈∆I , ·I〉 for LP is defined as follows: (i)∆I =
U , (ii) ∀ f ∈ A: fI = IF (f), (iii) ∀ c ∈ C: cI = {k | k ∈U

IF (c) is true fork ∈ U}, (iv) ∀ r ∈ R: rI = {〈k1, k2〉 |
k2 ∈ I→→(IF (r))(k1), for k1, k2 ∈ U}, and (v)∀ p ∈ P :
pI = IP (p).

We now proceed to prove the lemma:
(1) AssumeI |=f δ(φ) for some F-structureI, then it is easy
to verify thatI = (I)FOL satisfiesφ.

(2) AssumeI |= φ for some interpretationI and cardinal
formulaφ. By Proposition 1, there is a cardinal interpreta-
tion I ′ which is a model ofφ.

AssumeI ′, B |= φ for some variable assignmentB.
SinceI ′ is cardinal,I = (I ′)FL is defined. To prove the
lemma, it is sufficient to show thatI, B |=f δ(φ) (we may
use the same variable assignment, becauseU = ∆I ). We
proceed by induction over the structure of the formulaφ.

Considerφ = C(X). I ′, B |= φ iff tI
′,B ∈ CI′

iff
tI,B ∈U IF (C). The ‘only if’ direction follows from (v)
in the translation above. The ‘if’ direction follows from
the fact thatIF (C) 6= k for any k = IF (D), with D 6=
C a concept identifier. Similar for formulas of the form
R(X,Y ).

Considerφ = (t1 = t2). I ′, B |= φ iff tI
′,B

1 = t
I′,B
2

iff tI,B1 = t
I,B
2 . The last ‘iff’ follows trivially from the

construction ofI.
Considerφ = ∀x(ψ). I ′, B |= φ iff for every x-variant

B′ ofB, I ′, B′ |= ψ iff I, B′ |= δ(ψ). The last ‘iff’ follows
by induction and from the observation that the domains of
I ′ andI are the same. Similar forφ = ∃x(ψ). This can
be trivially extended to formulas of the forms¬ψ, ψ1 ∧ ψ2,
andψ1 ∨ ψ2.

Theorem 2. LetΦ ⊆ LP be a set of formulas andφ ∈ LP

be a formula,

if Φ |= φ then δ(Φ) |=f δ(φ).

If ¬(
∧

Φ) ∨ φ is cardinal, then also

Φ |= φ iff δ(Φ) |=f δ(φ).

Proof. Follows from Lemma 2 and the observation that
checking entailment can be reduced to checking validity of
¬(

∧
Φ) ∨ φ.

Results on cardinal formulas from [7] can be applied di-
rectly to our case. From [7] we know that equality-free sen-
tences, as well as negation of Horn clauses with no equal-
ity in the antecedent are cardinal. This is, however, not
sufficient for many ontology languages. Description Log-
ics such asSHIQ allow explicit assertion of equality be-
tween individuals and the introduction of equality state-
ments through maximal number restrictions (see Table 1).



We define the class ofE-safe formulas (E stands for
“equality”) which allow onlysafeuses of equality. With
“safe” we mean that the use of the equality does not restrict
the size of the domains of the models. The structure ofE-
safe formulas is similar to the structure ofguardedformulas
[1]. The major distinctions are the restrictions on the use of
the equality symbol inE-safe formulas and the fact that the
guard in anE-safe formula may be a conjunction of atoms,
whereas in the guarded fragment, the guard always consists
of a single atom.

We first define the class oflimited E-safe (lE-safe) for-
mulas, denotedlESF ,

lESF ::= A | ¬A | φ1 ∧ φ2 | φ1 ∨ φ2 |
∀~x(χ ⊃ φ) | ∃~x(χ ∧ φ)

whereA is an atomic formula either of the formp(~t) or
t1 = t2 with t1, t2 either both ground or non-ground terms;
φ, φ1, φ2 arelE-safe formulas, andχ is either an atom of the
form p(~t) or a conjunction of atoms of the formp(~t) such
that the variable graph of the atoms with free variables inχ

is connected.2 Finally, every free variable inφ must appear
in χ. We now define the class ofE-safe formulas, denoted
ESF ,

ESF ::= ϕ | ∀x(φ) | ∃x(φ) | ψ1 ∧ ψ2 | ψ1 ∨ ψ2

with ψ1, ψ2 E-safe formulas,φ, ϕ lE-safe formulas, andx
the only free variable inφ. As usual, anE-safe sentence is
anE-safe formula without free variables.

We consider formulas of the forms∀x(x = x ⊃ φ) and
∃x(x = x ∧ φ), with φ an lE-safe formula with one free
variablex, E-safe, because they are equivalent to∀x(φ) and
∃x(φ), respectively. As is usual in guarded logics, we thus
assume that formulas∀x(φ), ∃x(φ) are guarded byx = x.

Notice that the negation of anE-safe formula isE-safe
as well.

Example 1. The following formulas areE-safe:
∀x(p(x) ⊃ q(x))
∀x(s(x, y) ⊃ p(x))
∃x, y(p(x) ∧ r(x, y) ∧ x = y)
∀x(r(x))

The following formulas are notE-safe:
∀x, y(x = y)
∀x, y(a(x) ∧ a(y) ⊃ x = y)
∀x, y(x = y ⊃ p(x, y))

Many expressive Description Logic languages areE-
safe, includingSHIQ.

Proposition 2. Any (negation of a)SHIQ axiomφ can be
rewritten to anE-safe formulaφ′ such thatφ and φ′ are
equivalent, i.e., share the same models.

2A variable graph of a set of atoms is an undirected graph wherenodes
correspond to atoms and two nodes are connected through an edge if the
corresponding atoms share a variable.

Proof. Assumeφ is the first-order version of aSHIQ ax-
iom (translation ofSHIQ axioms to FOL formulas can be
done according to Table 2). In caseφ is a property or indi-
vidual axiom, it is triviallyE-safe andφ′ = φ.

Say,φ is a class axiom of the form∀x(φ1 ⊃ φ0). Given
the form ofφ and the translation in Table 2, one can trans-
form φ1 ⊃ φ0 to a conjunctionψ of lE-safe formulas, e.g.,
removing disjunction from the antecedent induces a split-
ting of the original formula in a conjunction of formulas,
such thatφ′ ≡ ∀x(ψ) is anE-safe formula that is equiva-
lent toφ.

As the negation of anE-safe formula is again anE-safe
formula we have that the negation of aSHIQ axiom isE-
safe as well.

Note thatSHOIQ formulas are notE-safe in general,
because of the possibility of using nominals. Consider, for
example, theSHOIQ knowledge base{⊤ ⊑ {a}}. This
is equivalent to the first-order sentence∀x(x = a), which
is notE-safe. Every model of this knowledge base has ex-
actly one element in its domain. This generalizes to any
Description Logic with unrestricted use of nominals.

The class ofE-safe formulas is highly expressive. In fact,
it is easy to see, with a slight modification of Proposition 2,
thatSHIQ knowledge bases extended with Horn formulas
can be equivalently translated to sets ofE-safe formulas.
As entailment in this combined formalism is undecidable in
general [19], entailment ofE-safe formulas is undecidable
in general as well.

We now formulate our main result with respect to cardi-
nal formulas.

Lemma 3. The following classes of first-order formulas are
cardinal.

1. Sets of equality-free sentences,

2. formulas of the form¬S, whereS is a conjunction of
Horn clauses without equality in the head, and

3. the class ofE-safe sentences.

Proof. Cardinality of the first and second class is shown
in [7]. We proceed with the proof of cardinality ofE-safe
formulas.

There are five types ofE-safe sentences: (1)lESF sen-
tences, (2) universal and (3) existentialE-safe sentences,
and (4) conjunctions and (5) disjunctions ofE-safe sen-
tences. AnylESF sentenceφ can be equivalently written
as a universal sentence∀x(φ). We now proceed to prove
cardinality of sentences of the forms (2,3,4,5).

We need the following auxiliary notion. Given an in-
terpretationI = 〈∆, ·I〉, k ∈ ∆ is unusedin I if: (a)
k does not occur in the domain or the range of a function
fI : ∆n → ∆ for f ∈ A, and (b)k does not occur in a
relationpI : ∆n for p ∈ C ∪R ∪ P .



(2) We proceed by induction. AssumeI≥γ |= ∀x(φ) for
every cardinal interpretationI≥γ . We will show that if
Ii+1 |= ∀x(φ) for every interpretationIi+1 of cardinality
i + 1, thenIi |= φ for every interpretationIi of cardinal-
ity i, with i ≥ 1. By induction, this guarantees that every
interpretation is a model of∀x(φ), and thus the formula is
cardinal. LetIi be an interpretation of cardinalityi, and let

Ii+1 be the interpretation obtained fromIi by adding one
unused individual to the domain. By the induction hypoth-
esis,Ii+1 |= ∀x(φ). Thus, for every variable assignmentB

of Ii+1, Ii+1, B |= φ. Since the domain ofIi is a subset
of the domain ofIi+1, every variable assignment ofIi is
a variable assignment ofIi+1. Thus, for every variable as-
signmentB′ of Ii, Ii+1, B′ |= φ. We now show by induc-
tion over the length of the formulaφ that if Ii+1, B′ |= φ,
thenIi, B′ |= φ.

If Ii+1, B′ |= (t1 = t2), then tI
i+1,B′

1 = t
Ii+1,B′

2 ;

clearly, tI
i,B′

1 = t
Ii+1,B′

1 andtI
i,B′

2 = t
Ii+1,B′

2 , and thus

t
Ii,B′

1 = t
Ii,B′

2 andIi, B′ |= (t1 = t2).
If Ii+1, B′ |= p(t1, ..., tn), then

〈tI
i+1,B′

1
, ..., tI

i+1,B′

n 〉 ∈ pI
i+1

, and also inpI
i

, and
thusIi, B′ |= φ.

If Ii+1, B′ |= ¬(t1 = t2) then tI
i+1,B′

1 6= t
Ii+1,B′

2 ,
and by the same argument as above,Ii, B′ |= ¬(t1 = t2).
Similar forIi+1, B′ |= ¬p(t1, ..., tn).

If Ii+1, B′ |= ψ1 ∧ ψ2, Ii, B′ |= ψ1 andIi, B′ |= ψ2,
then, clearly,Ii, B′ |= ψ1 ∧ ψ2. Similar forψ1 ∨ ψ2.

If Ii+1, B′ |= ∃~x(χ ∧ φ), then there is an~x-variantB′′

of B′ such thatIi+1, B′′ |= χ ∧ φ. AssumeB′′ assigns
a free variable inχ to an unused individual inIi+1, then,
clearly,Ii+1, B′′

2 χ. Therefore, we may assume thatB′′

is an~x-variant ofB′ which does not assign any variable to
an unused individual, andIi+1, B′′ |= χ ∧ φ. By induction
we have,Ii, B′′ |= χ andIi, B′′ |= φ, and thusIi, B′ |=
∃~x(χ ∧ φ).

If Ii+1, B′ |= ∀~x(χ ⊃ φ), thenIi+1, B′′ |= χ ⊃ ψ for
every~x-variantB′′ ofB′ of Ii (by the same argument as the
outer induction). Clearly, ifIi+1, B′′

2 χ, thenIi, B′′
2 χ,

sinceχ is a conjunction of atomic formulas. By induction
we have that ifIi+1, B′′ |= φ, thenIi, B′′ |= φ, and thus
Ii+1, B′ |= ∀~x(χ ⊃ φ).

(3) If I |= ∃x(φ), then there is a variable assignmentB

such thatI, B |= φ. Let Ic be a cardinal interpretation
obtained fromI by adding a sufficient number of unused
individuals to the domain. It is easy to verify using induc-
tion over the length of the formula, similar to the induction
in (2), that if I, B |= φ, thenIc, B |= φ for φ an lESF
formula (note thatB is a variable assignment ofIc, be-
cause the domain ofIc is a superset of that ofI). Thus, by
Proposition 1,∃x(φ) is cardinal.

(4) Assumeψ1, ψ2 are cardinal. Now, if every cardinal in-
terpretationI is a model ofψ1 ∧ ψ2, then every cardinal
interpretation is a model ofψ1 andψ2, and, by cardinal-
ity of ψ1, ψ2, every interpretation is a model ofψ1 andψ2.
Therefore, every interpretation is a model ofψ1 ∧ ψ2 and
thusψ1 ∧ ψ2 is cardinal.

(5) Assumeψ1, ψ2 are cardinal. IfI |= ψ1 ∨ ψ2 thenI |=
ψ1 or I |= ψ2. SayI |= ψ1, then, by cardinality ofψ1

and Proposition 1, there is a cardinal interpretationI ′ such
that I ′ |= ψ1; similar for ψ2. Thus, there is a cardinal
interpretationI ′ such thatI ′ |= ψ1 ∨ ψ2 and thusψ1 ∨ ψ2

is cardinal.

The following corollary follows immediately from The-
orem 2, Proposition 2 and Lemma 3:

Corollary 1. LetΦ be a set of (FOL)SHIQ axioms andφ
a (FOL)SHIQ axiom, then

Φ |= φ iff δ(Φ) |=f δ(φ).

We conclude this section with the observation that the
results of Lemma 3 immediately apply to HiLog, since
our definition of cardinality coincides with the definition of
cardinality in [7]. The following Corollary follows from
Lemma 3 and the results in [7].

Corollary 2. Letφ be anE-safe sentence, thenφ is valid in
HiLog if and only ifφ is valid in first-order logic.

4. F-Logic DLP

Description Logic Programs (DLP) [14] can be seen as
the expressive intersection of Description logics and logic
programming. The Description LogicDHL is the Horn
logic subset of an expressive Description Logic. We follow
here the definition ofDHL given in [11], since it includes a
slightly larger subset ofSHOIN (the language underlying
OWL DL) than the original definition in [14]. A Descrip-
tion Logic Program (DLP)ΠO is obtained from aDHL
ontologyO by rewriting the axioms in the ontology to Horn
formulas and interpreting the formulas using the standard
minimal Herbrand semantics (see e.g. [20]). By the stan-
dard results in Logic Programming, we know thatO and
ΠO agree on ground entailment.

DHL descriptions are of the following form, whereA
is an atomic concept,C,D are general descriptions, and
CL, DL (resp.CR, DR) are descriptions which are allowed
on the left-hand (resp. right-hand) side of the inclusion
symbol⊑,R,S are atomic roles,o is an individual symbol.



C,D −→ A | C ⊓D | ∃R.{o}

CL, DL −→ C | CL ⊔DL | ∃R.CL |> 1RL |
{o1, . . . , on}

CR, DR −→ C | ∀R.CR

A DHL ontology consists of axioms of the following
forms.

CL ⊑ DR | C ≡ D | R ⊑ S | R ≡ S | R ≡ S− |
Trans(R) | ⊤ ⊑ ∀R−.CR | ⊤ ⊑ ∀R.CR | a ∈ A |
〈a, b〉 ∈ R

There are several proposals for layering F-Logic pro-
gramming on top ofDHL (e.g. [17, 10, 2, 6]. The following
proposition shows that this layering is justified.

Proposition 3. LetO be aDHL ontology and letπ(O) be
the FOL equivalent, withπ as defined in Table 2, then, for
the F-Logic theoryδ(π(O)), with δ as in Table 3,

O |= α iff δ(π(O)) |=f δ(α)

with α an equality-free ground atomic formula.

Proof. Equivalence (with respect to entailment, modulo the
transformationδ) betweenπ(O) andδ(π(O)) follows from
Theorem 2, Lemma 3 and the fact thatπ(O) is equivalent
to a set of Horn formulas without equality in the head.

5. WSML Layering

Figure 1(a) shows the different variants of the Web Ser-
vice Modeling Language (WSML) and the relationships be-
tween them. These variants differ in logical expressiveness
and in the underlying language paradigms.
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Figure 1. WSML Variants and Layering

WSML-Core is based on by the intersection of the De-
scription LogicSHIQ and Horn Logic, based on De-
scription Logic Programs [14].

WSML-DL captures the Description LogicSHIQ(D).

WSML-Flight is based on the Datalog subset of F-Logic
programming, extended with inequality and (locally)
stratified negation under the perfect model semantics
[22].

WSML-Rule is based on F-Logic programming, extended
with inequality and negation under the Well-Founded
semantics [13].

WSML-Full unifies WSML-DL and WSML-Rule under a
First-Order umbrella with nonmonotonic extensions.
The semantics of WSML-Full is ongoing research.

As shown in Figure 1(b), WSML has two alternative
layerings, namely, WSML-Core⇒ WSML-DL ⇒ WSML-
Full and WSML-Core⇒ WSML-Flight⇒ WSML-Rule⇒
WSML-Full. For both layerings, WSML-Core and WSML-
Full mark the least and most expressive layers, respectively.
The two layerings are to a certain extent disjoint in the
sense that inter-operation in WSML between the Descrip-
tion Logic variant (WSML-DL) on the one hand and the
Logic Programming variants (WSML-Flight and WSML-
Rule) on the other, is only possible through a common
core (WSML-Core) or through a very expressive superset
(WSML-Full).

The original WSML specification [9] did not show any
semantic properties of this layering. We will demonstrate
the layering WSML-Core⇒ WSML-DL ⇒ WSML-Full
with respect to entailment, and the layering WSML-Core
⇒ WSML-Flight ⇒ WSML-Rule with respect to ground
entailment. We cannot demonstrate the layering WSML-
Rule ⇒ WSML-Full, because WSML-Full has not been
fully specified yet.

For reasons of convenience, clarity and space, we do not
consider the WSML syntax in this section, but rather the
FOL and F-Logic equivalents, as defined in [9, Chapter 8].

WSML-Core ⇒ WSML-DL A WSML-Core ontology
Ocore consists of the first-order equivalent of a set ofDHL
axioms without nominals.Ocore Core-entails a WSML-
Core formulaφ, denotedOcore |=core φ, iff for every first-
order modelI of Ocore, I |= φ.

A WSML-DL ontology Odl consists of the first-order
equivalent of a set ofSHIQ axioms.Odl DL-entails a for-
mulaφ, denotedOdl |=dl φ, iff for every first-order model
I of Odl, I |= φ.

Theorem 3. Given a WSML-Core ontologyOcore, and a
WSML-Core formulaφ,

Ocore |=core φ iff Ocore |=dl φ.

Proof. Follows from the observation that every WSML-
Core ontology is a WSML-DL ontology.



WSML-DL ⇒ WSML-Full We consider, for now, the
first-order logic subset of WSML-Full, which we will de-
note with WSML-FOL.

A WSML-FOL ontologyOfol consists of a set of closed
F-Logic formulas, as defined in Section 2. We say that a
WSML-FOL ontologyOfol FOL-entails a formulaφ, de-
notedOfol |=fol φ, iff for every F-structureI which is a
model ofOfol, I |=f φ.

Theorem 4. Given a WSML-DL ontologyOdl, and a
WSML-DL formulaφ,

Odl |=dl φ iff {δ(ψ) | ψ ∈ Odl} |=fol δ(φ).

Proof. Follows immediately from Corollary 1.

WSML-Core ⇒ WSML-Flight A WSML-Flight ontol-
ogy Oflight consists of a setOR

flight of F-Logic Datalog
rules, extended with locally stratified negation under the
perfect model semantics [22] (cf. [18]), and a set of integrity
constraintsOC

flight, which are rules without a head.
Oflight is consistent if the perfect modelM of OR

flight

does not violate any of the integrity constraints inOC
flight.

An integrity constraintc ∈ OC
flight is violated inM if the

body ofc is true inM for some variable substitutionθ.
A consistent WSML-Flight ontology Oflight

Flight-entails a ground atomic formulaα, denoted
Oflight |=flight α, iff for every perfect modelM of
Oflight,M |= α.

Theorem 5. Given a WSML-Core ontologyOcore, and an
atomic WSML-Core formulaα,

Ocore |=core α iff {δ(ψ) | ψ ∈ Ocore} |=flight δ(α).

Proof. Follows immediately from Proposition 3.

WSML-Flight ⇒ WSML-Rule A WSML-Rule ontol-
ogyOrule consists of a setOR

rule of F-Logic Horn rules, ex-
tended with (un-stratified) negation under the well-founded
semantics [13] (c.f. [23]), and a set of integrity constraints
OC

rule, which are rules without a head.
Orule is consistent if the well-founded modelM of

OR
rule does not violate any of the integrity constraints in

OC
rule. An integrity constraintc ∈ OC

rule is violated inM if
the body ofc is true inM for some variable substitutionθ.

We say that a consistent WSML-Rule ontology
Orule Rule-entails a ground atomic formulaα, denoted
Orule |=rule α, iff M |= α.

Theorem 6. Given a WSML-Flight ontologyOflight, and
an atomic WSML-Flight formulaα,

Oflight |=flight α iff Oflight |=rule α.

Proof. Follows from the fact thatOflight is a locally strat-
ified logic program and that for locally stratified logic pro-
grams the single (total) well-founded model is also the per-
fect model of the program [13]. It is easy to see thatOflight

is a consistent WSML-Flight ontology iffOflight is a con-
sistent WSML-Rule ontology.

Layering in WRL The Web Rule Language WRL [2]
is a proposal for a rule language for the Web, based on
WSML. To be more precise, WRL-Core, WRL-Flight, and
WRL-Full correspond to WSML-Core, WSML-Flight, and
WSML-Rule, respectively. Thus, the layering results ob-
tained in this paper apply immediately to WRL.

6. Related Work

Balaban [4] proposes to use F-Logic as an underlying
framework for description logics and uses the flexibility of
F-Logic to extend description logics. DFL [5] uses F-Logic
to reason about ontologies and rules. The major differ-
ences between the approach of Balaban and our approach
are: (a) we do not need function symbols if the original
language does not use function symbols; (b) we allow ar-
bitrary predicate-based ontology languages, whereas Bala-
ban’s translation restricted to Description Logics; and (c)
Balaban uses a sorted F-Logic, whereas we do not need
sorts for a large class of formulas.

F-OWL [25] uses FLORA [24], an F-Logic program-
ming implementation, to reason over OWL. The authors
capture the semantics of OWL using entailment rules over
RDF triples. It is not clear exactly which part of the seman-
tics of OWL is captured in F-OWL.

Two proposals for extending OWL DL with meta-
modeling support are presented in [21]. The proposals are
based on the contextual predicate calculus and HiLog [7].
It was not discussed in [21] whether HiLog-SHOIQ is a
proper extension ofSHOIQ in the sense that aSHOIQ
knowledge baseΦ entails an axiomφ if and only if Φ
HiLog-entailsφ. We conjecture that by Corollary 2 and the
fact that the semantics of HiLog-SHOIQ is very close to
HiLog, HiLog-SHIQ is a proper extension ofSHIQ, but
HiLog-SHOIQ is not a proper extension ofSHOIQ; it
might be the case thatΦ HiLog-entailsφ, butΦ 2 φ.

7. Conclusions

In predicate-based ontology representation languages
(e.g. Description Logics), classes are modeled as unary
predicates and properties as binary predicates, which are
interpreted as sets and as binary relations, respectively.In
F-Logic, classes and properties are both first interpreted as
objects and then related to sets and relations, respectively.



In this paper we have introduced a translation from
predicate-based ontologies to ontologies in F-Logic. We
have shown that this translation preserves entailment for
large classes of predicate-based ontology languages, includ-
ing the class ofcardinal formulas. Intuitively, cardinal for-
mulas do not restrict the size of the domains of the models.
We have defined the class ofE-safe formulas and shown
thatE-safe formulas are cardinal. Finally, we have shown
that the class ofE-safe formulas is a very expressive class
of formulas which includes the description logicSHIQ.

We have used the translation to close the open problems
of the F-Logic extension of Description Logic Programs
[14] and WSML language layering [10].

The results obtained in this paper can be used for, for
example, F-Logic based reasoning with, and extension of,
classes of predicate-based ontology languages. Another ap-
plication of the results is the use of F-Logic as a vehicle for
the extension of RDF, similar to the first-order extensions of
RDF described in [8]. This encoding of RDF(S) in F-Logic
is future work.
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