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Abstract based variants are proper extensions of the Description
Logic based variant.

Many popular ontology languages are based on (subsets  \We define a straightforward translation from predicate-
of) first-order predicate logic, where classes are modeled phased ontologies to F-Logic. We show that when consid-
as unary predicates and properties as binary predicates. ering sorted F-Logic, the translation preserves entaitmen
Specifically, the ontology language OWL DL is based on thefor arbitrary first-order theories. We then show that this is
Description LogicSHOZQ. F-Logic is an ontology lan-  not the case in general when translating the ontology to an
guage which is also based on first-order logic, but classes unsorted F-Logic language. However, for certain classes
and properties are modeled as terms, rather than predi- of first-order formulas, namely theardinal formulas [7],
cates. In this paper we define a translation from predicate- the translation preserves validity. Our translation prese
based ontologies to F-LOgiC ontologies and show that this function-freeness, i.e., if no function Symbo| of ar'wy 0
translation preserves entailments for large classes of on-was used in the original ontology, no function symbol of
tologies, including most of OWL DL. We define the class arity > 0 will occur in the translated ontology.
of equality-safe §-safe) formulas, show that the Descrip-
tion LogicSHZQ is £-safe, and show that the translation
preserves validity of -safe formulas. Finally, we use these
results to close the open problems of layering F-Logic pro-
gramming on top of Description Logic Programs and lan-
guage layering in WSML.

We define the novel class of equality-safeqafe) for-
mulas, show that the Description LogitHZ Q is £-safe,
and show thaf-safe formulas are cardinal. Finally;safe
formulas are closed under negation, and thus entailment of
&-safe formulas can be reduced to checking validity. Us-
ing these results, we can show that the translation preserve
entailment for large classes of ontology languages which
include equality, such aSHZ Q.

1. Introduction We use these results to close the open problem of F-
Logic extensions of Description Logic Programs (DLP)
[14] and the problem of language layering in WSML (and
There have been several proposals for using F-Logic asthys also WRL). We show that the WSML variants are in-
the basis for an ontology language for the Semantic Web geed semantically layered as suggestedih [10]. Specficall

[14,[10,[2,[6]. In F-Logic, classes and properties are in- e show that the language layering preserves (ground) en-
terpreted as objects. This may hamper inter-operation withzjjment.

Description Logic-based ontology languages (e.g. OWL DL

[12]), in which classes and properties are interpreted asstructure of the paper In Sectiorl2 we review predicate-
unary and binary predicates, respectively. We will call the and frame-based ontology modeling languages. In Section
way of modeling ontologies in F-Logic “frame-based on- [ we show that the translation of any predicate-based-ontol
tology modeling” and the way of modeling ontologies in  ogy to sorted F-Logic is faithful and that the translation of
Description Logics “predicate-based ontology modeling”.  cardinal formulas to unsorted F-Logic is faithful; we iden-
More specifically, WRL [[2] and WSML[[10] claim tify the class of€-safe formulas and demonstrate cardinal-
that an F-Logic based variant of the language (WRL- ity. We use this translation to show that the straightfodvar
resp. WSML-Flight) is an extension of a Description Logic F-Logic extension of DLP preserves ground entailment, in
(Programming) based variant of the language (WRL- resp.Section[¥}. We then use the translation to show that the
WSML-Core). It is an open problem whether the F-Logic WSML language variant are properly layered, in Section



B. Finally, we review related work and present conclusions

in the SectionEl6 arld 7.

2. Preliminaries

Predicate-based ontology languagesA predicate-based

ontology language is a first-order language in which unary
predicates represent classes of objects and binary predi-

cates represent properties (relations between objects). D
scription Logicsl[8] are such predicate-based ontology lan
guages. Of special interest&HOZQ, which is the lan-

guage underlying the Semantic Web ontology language

OWL DL. We present the syntax and semantic§ 5fOZ Q
through a mapping to first-order logic with equality. The de-

scriptions are presented in Table 1; the axioms are prasente

in Table[2. In the tables4 is a named class;, D are de-
scriptions,@, R are roles, and, b, o1, ..., 0,, are individu-
als. Additionally, we have that in theumber restrictions
> nR.C' and< nR.C, R has to besimple i.e., R and its
sub-roles may not be transitive (with transitivity indiedt
by Trans(R)).

The Description Logi6SHZ Q corresponds t6 HOZQ
without the enumeration {¢i,...,0,}) and has-value
(3R.{0}) descriptions. In the remainder of the paper, when
referring toSHOZQ (respSHZ Q) axioms, we refer to the
FOL version of these axioms. We now formally describe the
syntax and semantics of first-order logic.

DL syntax FOL syntax

7y (A4, X) ACX)

(T, X) X=X

(L, X) S(X = X)

7ry(C1|_\...V_|Cn,X) Awy(Ci,X)

my(C1U...UCh, X) | Vmy(Ci, X)

my(=C, X) -y (C, X)

my({o1...0n}, X) VX=o

my(3R.C, X) Fy(R(X,y) A mz(C,y))

my(VR.C, X) Vy(R(X,y) D mz(C,y))

my(3R.{o}, X) REI(X7 0) N
Y1, Yn , Yi )N\

7ry(> nR.C,X) V/\ 7_(_1(07 yi) /\((//\\_éy(ZX: yj))
Y1,y Yn+1 7yi/\

(S i GX) Ame(Coyi) OV i = ;)

mz is defined asry, by substitutingz andx; for y andy;, respec-
tively

Table 1. SHOZIQ Descriptions

DL syntax | FOL syntax
Class Axioms
CCD Va(my (C, ) D my(D, x))
C=D Va(my (C,z) D my(D, xz))A
Va(my (D, z) D 7y (C, x))
Property Axioms
QCR Vo, y(Q(z,y) D R(z,y))
R=Q™ | Vz,y(R(z,y) D Qy,z))A
vz, y(Qy, =) D R(z,y))
Trans(R) | Vz,y,z(R(z,y) A R(y, z) D R(z, z))
Individual Axioms
a€ A A(a)
(a,b) € R | R(a,b)
a=>b a=>b
a#b —(a=0)

Table 2. SHOZQ Axioms

Given a signature: and a set of variable symbolg,
terms are either variables or constructed terms of the form
ft1, ..., tn) with f € A ann-ary function symbol«{ > 0)
andty, ..., t, terms. Atomic formulas are expressions of
the formp(t4, ..., t,) with p € C U R U P ann-ary pred-
icate symbol ¢ > 0) andt4,...,t, terms. Formulas of
a first-order languag€” are constructed as usual: every
atomic formula is a formula i£”; compound formulas are
constructed using atomic formulas, the logical connestive
-, A\, V, D, the quantifiers,V, and the auxiliary symbols
). .

An interpretation of a languagel” is a tupleZ =
(A, 1), whereA is a nonempty set (calledomair) and-Z
is a mapping which assigns: a functigh : A™ — A to ev-
eryn-ary function symbolf € A, and a relatiop? C A",
to everyn-ary predicate symbagl € CU R U P. A vari-
able assignmenB is a mapping which assigns an element
xB € A to every variable symbat. A variable assign-
mentB’ is anz-variant of B if yB = yB’ for every variable
y € Vfory # x.

Given an interpretatiod = (A7, -T), a variable assign-
ment B, and a term: of £F, t7:8 is defined asz?? =
2B for variable symbok: and %8 = fZ(t1P . L.B)
for ¢ of the form f (¢4, ...,¢,). Z satisfiesan atomic for-
mulap(ty,...,t,), given a variable assignment, denoted
T,B = p(ty,..tn), if (075, 2B) e pr. I,B =t =
ty iff t7°7 = ¢2'7. This is extended to arbitrary formulas as
usual:Z, B = ¢1 Ao (respZ, B = ¢1 Vo, I, B |E —¢1)
iff Z, Bl ¢1andZ, B = ¢9 (resp.Z,B = ¢1 orZ, B =

In the signature of a predicate-based ontology languageps, Z, B ¥ ¢1); Z, B |= Va(¢1) (respZ, B = 3x(¢y)) iff
we distinguish between concept (unary predicate) symbols for every (resp. for somep’ which is anz-variant of B,
role (binary predicate) symbols, and predicate symbols of Z, B’ = ¢.

other arities. A first-order signatude has the formz =
(A,C, R, P), whereA is the set of function symbols, each
with an associated arity, C is a set of concept (unary
predicate) symbolsR is a set of role (binary predicate)
symbols, andP is a set ofn-ary predicate symbols, with
n=0orn > 3. A,C,R,andP are disjoint.

An interpretatiorZ is amodelof ¢, denotedZ E ¢, if
Z,B E ¢ for all variable assignmentB; ¢ is satisfiable
if it has a model (unsatisfiable otherwise)js valid if ev-
ery interpretatior? is a model of¢. These definitions are
straightforwardly extended to the case of first-order thesor
o C P,



A theory® C LF entailsa formulag € £F, denoted 1., :U — U — P(U). Variable assignments are as in
® = ¢, iff for all interpretationsZ in £7 such thatZ = @, first-order logic.
TE¢. Given an interpretatiolf, a variable assignmei®, and
atermt of £F, t1B is defined asz™? = zP for variable

1,B _ LB 1,B
Frame-based ontology languages Frame Logic[[1l| 18] symbolz andt™* = Ir(f)(tr", ..., tz") for ¢ of the form

(F-Logic) is an extension of first-order logic which adds Flt1, s tn)-

explicit support for object-oriented modeling. It is pos-  F-satisfactiorof ¢in, giventhe variable assignmefi
sible to explicitly specify methods, as well as generaliza- denoted, B =¢ ¢, is defined as:
tion/specialization and instantiation relationshipse Biyn- -1, B Efp(t1, ..., tn) iff (t{’B, o thB) € Ip(p),

tax of F-Logic has some seemingly higher-order features,— I, B (= ¢, : t, iff t"” ey 37,

namely, the same identifier can be used for a class, an in—1, B = ¢, ::t, iff 1'% < 157,

stance, and a method. However, the semantics of F-Logicis_1 p = £ [ta—ts) iff T (t25)(t55) is defined and
strictly first-order. To simplify matters, we do not congide LB (tI,B)(tI,B) and

parameterized methods, functional (single-valued) meth- _? 2 s

s —1, Bty = to iff 117 =115,
ods, inheritable methods, and compound molecules. ’ '%f 1= T _ _
Extension to satisfaction of compound formulas is as in

The signature of an F-Logic languagé is of the form first-order logic.
¥ = (F,P) with F a set of function symbols arfd a set of The notions of a model and of validity are defined anal-
predicate symbols, each with an associated arity 0. Let ogous to first-order logic. A theorp C L£F F-entailsa
V be a set of variable symbols. Terms and atomic formulasformula¢ € £, denotedd |=¢ ¢, iff for all F-structuresl
are constructed as in first-order logic:€ V is a term and such thafl ¢ @, 1 = ¢.

f(t1, ..., tn) isaterm, withf € F ann-ary function symbol With F-Logic Programmingwe denote the Horn sub-
andty, ..., t, terms. set of F-Logic interpreted under the usual minimal Her-
A molecule in F-Logic is one of the following state- brand model semantics (Herbrafestructuresand mini-
ments: (i) anis-aassertion of the forrd”: D, (ii) asubclass-  mality are defined analogously to Herbrand interpretations
of assertion of the forna’:: D, or (iii) a data molecule of the  and minimality for predicate logic) or one of its extensions
formC[D—E], with C, D, E terms. An F-Logic molecule  (e.g. [22[18]).
is groundif it does not contain variables.
Formulas of an F-languagé” are either atomic for-
mulas, molecules, or compound formulas which are con- Sorted F-Logic In predicate-based ontology lan-
structed in the usual way from atomic formulas, molecules, guages, the sets of symbols used for concepts, roles and

and the logical connectives, A, Vv, D, the quantifiers, v individuals are disjoint. This is not the case in F-Logic.
and the auxiliary symbolg (. We denote universal closure This disjointness can be regained by usirspeaedF-Logic
with (). language.

F-Logic Horn formulas are of the forv) By A...AB,, D We consider a sorted F-Logic language with three sorts:

H, with By, ..., B,, H atomic formulas or molecules. F- individuals, concepts and roles. A sorted F-Logic language
Logic Datalog formulas are F-Logic Horn formulas without has a sorted signatute = (A,C, R, P), whereA is a set
function symbols such that every variable ih occurs in  of function symbols¢ is a set of concept (nullary function)

By, ..., By. symbols,R is a set of role (nullary function) symbols, and

Interpretations in F-Logic are calld@structures AnF- P iS @ set ofn-ary predicate symbols, with > 0. A,C, R,
structureis a tuplel = (U, <y, €y, 1p,1p,1_.). Here andP are disjoint. The usual restrictions to the use of sym-
<y is an irreflexive partial order on the domdihande, bols in formulas applies, namely _onIy molecules of the form
is a binary relation ovel/. We writea <;; b whena < b a:c,c:d,alr—-b] are allowed, withz, b terms constructed

ora = b, fora,b € U. For each F-structure holds that if fromsymbolsinAuY, ¢,d ¢ CUV, andr € RUV. Quan-
a €y bandb <y cthena €y c. Thus, ifb <y ¢, then tifiers need to be qualified with ¢, r to indicate over which

{k|keybkeUlC{k|keyckeUl domain (individual, concept, role) the variable quantifies
An n-ary function symbolf € F is interpreted as a A sorted F-structure has three disjoint domains:
function over the domaiV: Ip(f) : U™ — U. An U;, U., U, for the individuals, concepts, and roles, respec-

n-ary predicate symbop € P is interpreted as a rela- tively; <y is an irreflexive partial order ovéy.; <y is a
tion over the domairi/: Ip(ﬁ C U™, 1., associates relation betweerl/; andU,.: €y: U; x U.. I interprets

a partial function — P(U M with each element of/: ~ Symbols in.4 as functions ovel/;, symbols inC as ele-
ments inU,., and symbols oRR as elements itv,.. Ip inter-

P (U) denotes the power-set bf. prets symbols irP asn-ary relations ovet/*. Finally,I_,




Entity Predicate style | Frame style each existential quantifiet with 3;. We denote the thus
Class 0(A(X)) X:A obtained translation function witf¥.
Property §(R(X,Y)) X[R—-Y] We now show equi-satisfiability of formulas i, and
Equality (X =Y) X=Y their F-Logic counterparts. IE” is a predicate-based on-
n-ary predicate| 6(P(X)) P(X) tology language with signature, = (A,C,R,P), then
Universal 5(vz.C) vZ(6(C)) the corresponding sorted F-Logic languatféis the sorted
Existential 6(32.0) 37(6(C)) F-Logic language obtained from the signatbirg.
Conjunction | o(C'A D) (0(C) A o(D)) Lemma 1. Let¢ be formulain? and let£ be the cor-
Disjunction 0(C v D) (6(C)Vv (D)) ; . : P
o responding sorted F-Logic language, thens satisfied in
Implication 0(C > D) (06(C) 2 §(D)) . i P . . P
: some interpretation of " if and only if6°(¢) is satisfied in
Negation 0(=C) =(6(C)) g
some sorted F-structure af".

Table 3. Translating predicate-based to

Proof. (SketchfFrom any interpretatioff of £ such that
frame-based modeling ( F y P

T = ¢ one can easily construct a corresponding sorted F-
structurel such thafl = 6%(¢), and vice versa. O

Using the lemma we can now show correspondence with

associates a partial mappi P(U;) to each element .
P ppibg — P(Ui) respect to entailment.

of U,.
Theorem 1. Let® be a set of formulas id”, §¢(®) C £F
be the corresponding F-Logic theory, anddet £ be an
arbitrary formula, then

D g iff 6(®) = 6(0)-

Proof. Follows immediately from LemmBl 1 and the fact
that checking the entailmeri® = ¢ can be reduced to
checking unsatisfiability of A\ ®) A —¢. O

3. Translating Predicate-Based Ontologies to
F-Logic

Table[3 defines a mapping from the predicate style of
ontology modeling to the frame style. In the table,B are
unary predicate symbols;, D are formulasR is a binary
predicate symbolP is ann-ary relation symbol, witlh = 0
orn > 3, z is a variable symbol, and’, Y are terms. The

mappings extends to sets of formulas in the natural way. g o Translating Cardinal Formulas

Definition 1. Given a predicate-based ontology language
LF with the signaturez;» = (A,C, R, P). LetL! be the
F-Logic language which has the signatdte. » = (F,P),
with F = AUC U R, thenL? corresponds td”.

Given a first-order theorgp C L, thend(®) C LI is
thecorrespondingr-Logic theory.

We now consider the translation functiémf Table[3 in
its original form and we consider unsorted F-structures of
the formI = (U, <y, €y, 1p,Ip,1,).

It turns out that we lose the correspondence of models in
the general case with this augmented definition. Consider,

for example, the formula
In the remainder of this section, we will first show that

the translation in De_finiti_oE]l is faithful (i.e. preserves e ¢ = (Vz,y(x =) D (q(a) « r(a)). (1)
tailment) when considering a sorted F-Logic language. We L o . .

will then show that for a certain class of formulas, the class . The formulag is trivially sat_|sf|ed n any_lnte_rpretatlon

of cardinalformulas (se€[]7]), the translation is also faithful With more than one element in the domain, since the an-

when considering an unsorted language. Besides the classé€cedent will be trivially false in such an interpretatidh.
of cardinal formulas identified ifi[7], we identify the class W& consider an interpretation with only one element, then

of &-safe formulas, show that reasoningdZQ can be the antecedent is true, but the consequent is not necgssaril

reduced to checking validity &-safe formulas, and show true, because andr may be interpreted differently. Thus,
that&-safe formulas are cardinal. ¢ is not valid in FOL. Now consider the corresponding F-

Logic formula
3.1. Translating to Sorted F-Logic
5 5 5(6) = (Yo, y(x = 9)) > (aiq = a:r)
We first investigate a translation to sorted F-Logic. We  As we have seen, the original formuleis not valid in
augment the translation in Tadlk 3 to ensure that variablesC”. However,é(¢) is valid in £, sinceq andr must be
are only quantified over the domain of individudls, by interpreted as the same class in every F-structure which has
replacing each universal quantifi¢in Table[3 withv; and exactly one element.



From the example we can see that the translatismot
faithful for arbitrary predicate-based ontology langumage
There is, however, a class of formulas for which the cor-

(D)FOL = (AT .T) for LT is defined as follows: (iN =
U,(i)VfeA fF=1p(f) (iVceC: t ={k|key
Ip(c)istruefork € U}, (V) Vr € R: 1T = {{k1,k2) |

respondence does hold with the augmented definition. Thiske € I_,(Ir(r))(k1), fork,, k2 € U}, and (V)V p € P:

is the class of formulas for which entailment can be reduced
to checking validity of acardinal formula [4].

Definition 2. Let¢ be aformula inC” and lety denote the
number of symbols id?. An interpretationZ = (AZ,.%)
is cardinal if A% | > . ¢ is cardinalif the following holds:

If ¢ is true in every cardinal interpretation af”,
then¢ is true in every interpretation of”.

Definition@ extends naturally to sets of formulas.

Note that this condition does not hold for the formula
¢ in (@), because) is true in every interpretation with a
domain of at least 3 elements, but it is not true in every
interpretation of£”. The following definition of cardinality
is equivalent to DefinitioRl2.

Proposition 1. Let¢ be a formula inC”, theng is cardinal
if and only if

if ¢ is true in an interpretation oL”, then¢ is
true in a cardinal interpretation of*.

Proof. Assume¢ is true in some interpretatiof of £7,
i.e.,Z E ¢. Thisis equivalent t@ £ —¢, thus, by contra-
position of Definitio R, there is a cardinal interpretatitn
such thafZ’ £ —¢. This is equivalentt@’ = ¢. O

We can now strengthen Lemria 1 and Theokeém 1 to the
case of unsorted F-Logic:

Lemma 2. Let¢ be a formula inC”. Then

e if (¢) is satisfied in some F-structure ", then
there is an interpretation of” which satisfies), and

e if ¢ is cardinal and is satisfied in some interpretation of
LF, then there is an F-structure af®” which satisfies

6(¢)-

Proof. Given a cardinal interpretatidgh = (AZ,.Z) of £F.
Since |AZ] > |C| + |R|, we may assume that for each
q € C U R there is a unique individuat, € AZ. T =
(D)FL = (U, =y, €v,Ir,Ip,1_.) is the corresponding F-
Logic structure, which is defined as follows: i) = AZ,
(i) V f € A Ip(f) = fZ, (iii) Vc € C: Ip(c) = ke, (V)
Vr e R Ip(r) =k, (V)Vc € C and every individual
ke AT if k € ¢ thenk €y Ip(c), (Vi) V c1,c0 € C:
if C% - C% thenIF(cl) <u IF(CQ), (VII) Vr € R and
Vki,ko € AI, if <k1, k2> ert thenkg S I_,_)(IF(T))(kl),
and (viii) vV p € P: Ip(p) = p~.

Given an F-structuré = (U, <y, €v,Ir,Ip,1,) for
the languag& ™, the corresponding FOL interpretatiGn=

p" =1p(p).
We now proceed to prove the lemma:

(1) Assumd |=¢ 6(¢) for some F-structurg, then it is easy
to verify thatZ = (I)7°7 satisfies.

(2) AssumeZ |= ¢ for some interpretatio and cardinal
formulag. By PropositiorL, there is a cardinal interpreta-
tion Z’ which is a model of.

AssumeZ’, B = ¢ for some variable assignmei.
SinceZ’ is cardinal,I = (Z')'" is defined. To prove the
lemma, it is sufficient to show thdt B |=¢ d(¢) (we may
use the same variable assignment, becélse A%). We
proceed by induction over the structure of the formtila

Considergp = C(X). 7,B E ¢ iff tZ°B e CT' iff
tLB ey Ix(C). The ‘only if’ direction follows from (v)
in the translation above. The ‘if’ direction follows from
the fact thatlx(C) # k foranyk = Ip(D), with D #

C a concept identifier. Similar for formulas of the form
R(X,Y).

Considerg = (t; = t). T, B |= ¢ iff 77 = ¢Z'F
iff 117 = 7P, The last ‘iff’ follows trivially from the
construction ofl.

Considerp = Vz(¢). I/, B [ ¢ iff for every z-variant
B'of B,T',B' = ¢ iff I, B' = 6(¢). The last ‘iff’ follows
by induction and from the observation that the domains of
7’ andI are the same. Similar faf = Jx(v). This can
be trivially extended to formulas of the forms), 11 A 1,
and’l/)l vV 1/)2. O

Theorem 2. Let® C £F be a set of formulas ang € £F
be a formula,

if ®p¢ then §(®) k¢ d(o).

If =(A\ @) V ¢ is cardinal, then also

Bl i S(®) b 8().

Proof. Follows from Lemmd2 and the observation that
checking entailment can be reduced to checking validity of

~(A®)V . O

Results on cardinal formulas froml[7] can be applied di-
rectly to our case. From][7] we know that equality-free sen-
tences, as well as negation of Horn clauses with no equal-
ity in the antecedent are cardinal. This is, however, not
sufficient for many ontology languages. Description Log-
ics such asSHZQ allow explicit assertion of equality be-
tween individuals and the introduction of equality state-
ments through maximal number restrictions (see Tdble 1).



We define the class of-safe formulas § stands for
“equality”) which allow only safeuses of equality. With

Proof. Assumey is the first-order version of 8HZ Q ax-
iom (translation ofSHZ Q axioms to FOL formulas can be

“safe” we mean that the use of the equality does not restrictdone according to Tablg 2). In cagds a property or indi-

the size of the domains of the models. The structurg&-of
safe formulas is similar to the structuregpfardedformulas
[A]. The major distinctions are the restrictions on the use o
the equality symbol irf-safe formulas and the fact that the
guard in arg-safe formula may be a conjunction of atoms,

vidual axiom, it is trivially£-safe andy’ = ¢.

Say,¢ is a class axiom of the foriviz(¢; D ¢g). Given
the form of¢ and the translation in Tabl& 2, one can trans-
form ¢1 D ¢¢ to a conjunction) of [£-safe formulas, e.g.,
removing disjunction from the antecedent induces a split-

whereas in the guarded fragment, the guard always consistsing of the original formula in a conjunction of formulas,

of a single atom.
We first define the class dimited £-safe (£-safe) for-
mulas, denoted€ S F,

IESF u= A|-A|¢1 Ao |1V |
VZ(x 2 ¢) | 3Z(x A ¢)

where A is an atomic formula either of the form(t) or

t; = to with ¢4, t5 either both ground or non-ground terms;
o, P1, P2 arelE-safe formulas, ang is either an atom of the
form p() or a conjunction of atoms of the forp(Z) such
that the variable graph of the atoms with free variableg in
is connectefl. Finally, every free variable ip must appear
in x. We now define the class éFsafe formulas, denoted
ESF,

ESF u= ¢ |Va(d) | Fz(d) | Y1 A | Y1 V 2

with ¢, 9o E-safe formulasg, ¢ [E-safe formulas, and
the only free variable im. As usual, ar€-safe sentence is
an¢&-safe formula without free variables.

We consider formulas of the formv&(z = = > ¢) and
Jz(z = = A ¢), with ¢ ani&-safe formula with one free
variablez, £-safe, because they are equivalentide) and
Jz(¢), respectively. As is usual in guarded logics, we thus
assume that formulage(¢), 3z(¢) are guarded by = «.

Notice that the negation of afsafe formula is£-safe
as well.

Example 1. The following formulas aré-safe:
Va(p(z) O q(z))
Va(s(z,y) D p(x))
ny(@ﬁAdwy)
Va(r(z))

The following formulas are ndt-safe:
vz, y(a(I) Naly) Dz =y)
Va,y(z =y D p(z,y))
Many expressive Description Logic languages &re
safe, includingSHZ Q.

Proposition 2. Any (negation of apHZ Q axiome can be
rewritten to an&-safe formula¢’ such thaty and ¢’ are
equivalent, i.e., share the same models.

Y)

2A variable graph of a set of atoms is an undirected graph whedes
correspond to atoms and two nodes are connected throughgarifatie
corresponding atoms share a variable.

such thaty! = Vz(v) is an&-safe formula that is equiva-
lent to .

As the negation of af-safe formula is again afi-safe
formula we have that the negation o8&(Z Q axiom is&-
safe as well. O

Note thatSHOZQ formulas are no€-safe in general,
because of the possibility of using nominals. Consider, for
example, theSHOZQ knowledge bas¢T C {a}}. This
is equivalent to the first-order senteri¢e(x = a), which
is not&-safe. Every model of this knowledge base has ex-
actly one element in its domain. This generalizes to any
Description Logic with unrestricted use of nominals.

The class of-safe formulas is highly expressive. In fact,
it is easy to see, with a slight modification of Proposifibn 2,
thatSHZ Q knowledge bases extended with Horn formulas
can be equivalently translated to setséfafe formulas.
As entailment in this combined formalism is undecidable in
general[[1B], entailment of-safe formulas is undecidable
in general as well.

We now formulate our main result with respect to cardi-
nal formulas.

Lemma 3. The following classes of first-order formulas are
cardinal.

1. Sets of equality-free sentences,

2. formulas of the formnS, whereS is a conjunction of
Horn clauses without equality in the head, and

3. the class of-safe sentences.

Proof. Cardinality of the first and second class is shown
in [IZ]. We proceed with the proof of cardinality éFsafe
formulas.

There are five types df-safe sentences: (1JSF sen-
tences, (2) universal and (3) existenttalsafe sentences,
and (4) conjunctions and (5) disjunctions &fsafe sen-
tences. AnyIESF sentencey can be equivalently written
as a universal sentent&:(¢). We now proceed to prove
cardinality of sentences of the forms (2,3,4,5).

We need the following auxiliary notion. Given an in-
terpretationZ = (A,-7), k € A is unusedin Z if: (a)

k does not occur in the domain or the range of a function
ff . A" — Afor f € A, and (b)k does not occur in a
relationp” : A»forp e CURUP.



(2) We proceed by induction. Assunie” = Va(¢) for
every cardinal interpretatiod=". We will show that if
It = V() for every interpretatio**! of cardinality
i+ 1, thenZ® |= ¢ for every interpretatio® of cardinal-
ity 4, with ¢ > 1. By induction, this guarantees that every
interpretation is a model 6fz(¢), and thus the formula is
cardinal. LetZ’ be an interpretation of cardinalityand let

Z'*1 be the interpretation obtained frafi by adding one
unused individual to the domain. By the induction hypoth-
esis,Z**t! = Va(¢). Thus, for every variable assignmet

of Zi+1, 771 B |= ¢. Since the domain df’ is a subset
of the domain ofZ?*!, every variable assignment &t is

a variable assignment @ *!. Thus, for every variable as-
signmentB’ of Z¢, Z!*! B’ = ¢. We now show by induc-
tion over the length of the formula that if Z:+!, B’ |= ¢,
thenZ’, B’ = ¢.

. i+1 ’ 141 ’
If 1, B’ = (t; = ty), thentt P = 42 P,
7 / i4+1 / i / i4+1 /
clearly,t?"% = 7" % andi ¥ =" P and thus

98 4P and T, B' = (1 = to).

I_f+1 7+, B F plti,..ty),  then
@B Y e pT ) and also inp?', and
thusZ!, B’ |= ¢.

If T+, B' | ~(t; = to) thent? B 2 (708
and by the same argument as abde B’ |= —(t; = t).
Similar forZ*1, B = —p(t1, ..., tn)-

If T+, B’ |= by Ao, T8, B' |= ¢y andT?, B/ = v,
then, clearlyZ?, B’ = 11 A o. Similar fori; V 1s.

If Z0+1 B’ = 3%(x A ¢), then there is ag-variant B”
of B’ such thatZi*!, B” = x A ¢. AssumeB” assigns
a free variable iny to an unused individual iT**!, then,
clearly,7:*!, B" ¥ x. Therefore, we may assume that
is anz-variant of B’ which does not assign any variable to
an unused individual, arf# !, B” |= x A ¢. By induction
we haveZ’, B” = y andZ®, B” |= ¢, and thusZ?, B’ |=
3Z(x A 8).

If 701 B’ = VE(x D ¢), thenZ*t! B” = x D o for
everyz-variantB” of B’ of Z* (by the same argument as the
outer induction). Clearly, it*+!, B” ¥ y, thenZ®, B" ¥ ¥,
sincey is a conjunction of atomic formulas. By induction
we have that itZ**!, B” |= ¢, thenZ?, B” |= ¢, and thus
T B = VE(x O ¢).

(3) If T | Jxz(¢), then there is a variable assignméeht
such thatZ, B = ¢. LetZ° be a cardinal interpretation
obtained fromZ by adding a sufficient number of unused
individuals to the domain. It is easy to verify using induc-
tion over the length of the formula, similar to the induction
in (2), thatifZ, B E ¢, thenZ®, B | ¢ for ¢ anlESF
formula (note thatB is a variable assignment af, be-
cause the domain G is a superset of that af). Thus, by
PropositiodL 3z(¢) is cardinal.

(4) Assumey), 1o are cardinal. Now, if every cardinal in-
terpretationZ is a model ofi; A 15, then every cardinal
interpretation is a model of; and, and, by cardinal-
ity of 11,99, every interpretation is a model @f, ands.
Therefore, every interpretation is a modelf A 2 and
thusyy A 1) is cardinal.

(5) Assumey, 15 are cardinal. IfZ = ¢ V ¢9 thenZ =
Y1 0rZ | 1. SayZ [ 11, then, by cardinality of);
and Propositiofil1, there is a cardinal interpretafiésuch
thatZ’ = 4; similar for ¢»s. Thus, there is a cardinal
interpretatiorZ’ such thaZ’ = ¢ V ¢ and thusp; V s
is cardinal. O

The following corollary follows immediately from The-
orem2, Propositiofil2 and Lemiah 3:

Corollary 1. Let® be a set of (FOLSHZQ axioms andp
a (FOL) SHZ Q axiom, then

BEo it 5(®) = d(0).

We conclude this section with the observation that the
results of Lemmdl3 immediately apply to HiLog, since
our definition of cardinality coincides with the definitioh o
cardinality in [i]. The following Corollary follows from
Lemmd® and the results inl[7].

Corollary 2. Let¢ be anf-safe sentence, thenis valid in
HiLog if and only if¢ is valid in first-order logic.

4. F-Logic DLP

Description Logic Programs (DLP)[114] can be seen as
the expressive intersection of Description logics anddogi
programming. The Description LogiDHL is the Horn
logic subset of an expressive Description Logic. We follow
here the definition oDH L given in [11], since it includes a
slightly larger subset o HOZN (the language underlying
OWL DL) than the original definition in([14]. A Descrip-
tion Logic Program (DLP)Io is obtained from @&DHL
ontologyO by rewriting the axioms in the ontology to Horn
formulas and interpreting the formulas using the standard
minimal Herbrand semantics (see elg.1[20]). By the stan-
dard results in Logic Programming, we know ti@atand
IIp agree on ground entailment.

DHL descriptions are of the following form, wheré
is an atomic concept;, D are general descriptions, and
CL, Dy, (resp.Cgr, Dg) are descriptions which are allowed
on the left-hand (resp. right-hand) side of the inclusion
symbolC, R, S are atomic roles; is an individual symbol.



C,D — A|CnD|3RA{o}

Cr,D;, — C | CruUDy | dR.Cy, |> 1Ry, |
{o1,...,0n}

CRaDR —_— C|VRCR

A DHL ontology consists of axioms of the following
forms.

CLCDgr|C=D|RES|R=S|R=S5"|
Trans(R) | TEVR .Cr | TCVR.Cr|a€ A|
(a,b) € R

There are several proposals for layering F-Logic pro-
gramming on top oDH L (e.g. [LT[ 10 E.16]. The following
proposition shows that this layering is justified.

Proposition 3. Let O be aDH L ontology and letr(O) be
the FOL equivalent, witlr as defined in Tabld 2, then, for
the F-Logic theory (7(0)), with ¢ as in TabldB,

OFa ifft §(x(0)) [ d(a)
with « an equality-free ground atomic formula.

Proof. Equivalence (with respect to entailment, modulo the
transformationy) betweenr(O) andé(7(O)) follows from
Theorenl®, LemmBl3 and the fact thdO) is equivalent

to a set of Horn formulas without equality in the head.]

5. WSML Layering

Figure[I(d) shows the different variants of the Web Ser-
vice Modeling Language (WSML) and the relationships be-
tween them. These variants differ in logical expressivenes
and in the underlying language paradigms.

! First-Order Logic

| (with nonmonotonic extensions) @
! L nonmonotonic exiensions)

|

WSML-Full | ‘

WSML-DL

| WSML-Rule |

ouojouoLILOU Yw)

o
01607 JopIQ-isiiy

WSML-Flight 1| |

Description Logics

1suaia

WSML-Core| !

i First-Order Logic

[
Logic Frogramming | |

Logic Programming — -
(with nonmonotonic negation) Description Logics

(a) Language variants (b) Layering

Figure 1. WSML Variants and Layering

WSML-Core is based on by the intersection of the De-
scription LogicSHZ Q and Horn Logic, based on De-
scription Logic Program$ [14].

WSML-DL captures the Description Log&HZ Q (D).

WSML-Flight is based on the Datalog subset of F-Logic
programming, extended with inequality and (locally)
stratified negation under the perfect model semantics
22].

WSML-Rule is based on F-Logic programming, extended
with inequality and negation under the Well-Founded
semantics[13].

WSML-Full unifies WSML-DL and WSML-Rule under a
First-Order umbrella with nonmonotonic extensions.
The semantics of WSML-Full is ongoing research.

As shown in Figurd_I{p), WSML has two alternative
layerings, namely, WSML-Core- WSML-DL = WSML-
Fulland WSML-Core= WSML-Flight= WSML-Rule=
WSML-Full. For both layerings, WSML-Core and WSML-
Full mark the least and most expressive layers, respegtivel
The two layerings are to a certain extent disjoint in the
sense that inter-operation in WSML between the Descrip-
tion Logic variant (WSML-DL) on the one hand and the
Logic Programming variants (WSML-Flight and WSML-
Rule) on the other, is only possible through a common
core (WSML-Core) or through a very expressive superset
(WSML-Full).

The original WSML specificatior ][9] did not show any
semantic properties of this layering. We will demonstrate
the layering WSML-Core= WSML-DL = WSML-Full
with respect to entailment, and the layering WSML-Core
= WSML-Flight == WSML-Rule with respect to ground
entailment. We cannot demonstrate the layering WSML-
Rule = WSML-Full, because WSML-Full has not been
fully specified yet.

For reasons of convenience, clarity and space, we do not
consider the WSML syntax in this section, but rather the
FOL and F-Logic equivalents, as definedlih [9, Chapter 8].

WSML-Core = WSML-DL A WSML-Core ontology
O.ore CONsists of the first-order equivalent of a sefWf( L
axioms without nominals.O.,.,.. Core-entails a WSML-
Core formulag, denoted..ore Ecore ¢, iff fOr every first-
order modell of O.ore, Z = ¢.

A WSML-DL ontology Oy consists of the first-order
equivalent of a set af HZ Q axioms.Oy4 DL-entails a for-
mula¢, denotedDy; Ea ¢, iff for every first-order model
7 of Oa,T ': (b

Theorem 3. Given a WSML-Core ontolog9.,,., and a
WSML-Core formula,

Ocore ):core (b iff Ocore ):dl ¢

Proof. Follows from the observation that every WSML-
Core ontology is a WSML-DL ontology. O



WSML-DL = WSML-Full We consider, for now, the
first-order logic subset of WSML-Full, which we will de-
note with WSML-FOL.

A WSML-FOL ontologyOy,; consists of a set of closed

Proof. Follows from the fact thaf ¢4 is a locally strat-
ified logic program and that for locally stratified logic pro-
grams the single (total) well-founded model is also the per-
fect model of the program.[13]. Itis easy to see that; n¢

F-Logic formulas, as defined in Sectibh 2. We say that a is a consistent WSML-Flight ontology ifD ;4. is a con-

WSML-FOL ontologyO ,; FOL-entails a formulap, de-
noted Oy, =01 ¢, iff for every F-structurel which is a
model ofOyo, I =5 ¢.

Theorem 4. Given a WSML-DL ontology),, and a
WSML-DL formulap,

Oa Far ¢ iff {0(¢) | € Oar} Eyor 0().

Proof. Follows immediately from Corollarfy 1. O

WSML-Core = WSML-Flight A WSML-Flight ontol-
ogy Oyignt coONsists of a sett)f}light of F-Logic Datalog
rules, extended with locally stratified negation under the
perfect model semantids [22] (df.[18]), and a set of intgygri
constraintsD%;, .., which are rules without a head.

Oy1igne IS consistent if the perfect modél of Oﬁlight
does not violate any of the integrity constraintsﬂﬁlight.
An integrity constraint: € 0%, . is violated inM if the
body ofc is true inM for some variable substitutich

A consistent WSML-Flight ontology Oignt
Flight-entails a ground atomic formulay, denoted
Oylight Eriignt oo, Iff for every perfect modelM of
Oflight, M |: (o8

Theorem 5. Given a WSML-Core ontology.,., and an
atomic WSML-Core formula,

Ocore ':core a iff {5(¢) | w S Ocore} ':flight (S(Oé)

Proof. Follows immediately from Propositidn 3. O

WSML-Flight = WSML-Rule A WSML-Rule ontol-
0ogy O, CONsists of a se(t)ful6 of F-Logic Horn rules, ex-
tended with (un-stratified) negation under the well-fowhde
semantics([13] (c.f[123]), and a set of integrity consttsin
0¢, ., Which are rules without a head.

O, 1S consistent if the well-founded modéll of
OZL ,. does not violate any of the integrity constraints in
0¢ .- An integrity constraint € O, is violated in)M if
the body ofc is true in M for some variable substitutich

We say that a consistent WSML-Rule ontology
O, Rule-entails a ground atomic formula, denoted

O'r‘ule ':7‘ule «, iff M ': .

Theorem 6. Given a WSML-Flight ontolog® f;i4n:, and
an atomic WSML-Flight formula,

O tight Eriight @ It Ofright =rule .

sistent WSML-Rule ontology. O

Layering in WRL The Web Rule Language WRILI[2]

is a proposal for a rule language for the Web, based on
WSML. To be more precise, WRL-Core, WRL-Flight, and
WRL-Full correspond to WSML-Core, WSML-Flight, and
WSML-Rule, respectively. Thus, the layering results ob-
tained in this paper apply immediately to WRL.

6. Related Work

Balaban [4] proposes to use F-Logic as an underlying
framework for description logics and uses the flexibility of
F-Logic to extend description logics. DFL [5] uses F-Logic
to reason about ontologies and rules. The major differ-
ences between the approach of Balaban and our approach
are: (a) we do not need function symbols if the original
language does not use function symbols; (b) we allow ar-
bitrary predicate-based ontology languages, whereas Bala
ban’s translation restricted to Description Logics; angd (c
Balaban uses a sorted F-Logic, whereas we do not need
sorts for a large class of formulas.

F-OWL [25] uses FLORAI[24], an F-Logic program-
ming implementation, to reason over OWL. The authors
capture the semantics of OWL using entailment rules over
RDF triples. It is not clear exactly which part of the seman-
tics of OWL is captured in F-OWL.

Two proposals for extending OWL DL with meta-
modeling support are presented(inl[21]. The proposals are
based on the contextual predicate calculus and HiLbg [7].
It was not discussed in_[21] whether HIL&HOZQ is a
proper extension afHOZQ in the sense that 8HOZQ
knowledge baseb entails an axiomy if and only if ®
HiLog-entails¢. We conjecture that by Corollafy 2 and the
fact that the semantics of HiLo§HOZQ is very close to
HiLog, HiLog-SHZ Q is a proper extension #HZ Q, but
HiLog-SHOZQ is not a proper extension FHOZQ; it
might be the case th&t HiLog-entailsy, but® # ¢.

7. Conclusions

In predicate-based ontology representation languages
(e.g. Description Logics), classes are modeled as unary
predicates and properties as binary predicates, which are
interpreted as sets and as binary relations, respectilely.
F-Logic, classes and properties are both first interpretsed a
objects and then related to sets and relations, respactivel
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