Ranking Services using Fuzzy HEX Programs*

Stijn Heymans'+? and Ioan Toma3

! Knowledge-Based Systems Group, Institute of Information Systems, Vienna University of
Technology, Austria
heymans@kr.tuwien.ac.at
2 Computational Web Intelligence, Department of Applied Mathematics and Computer
Science, Ghent University, Belgium
3 Semantic Technology Institute (STI) Innsbruck, University of Innsbruck, Austria
ican.toma@sti-innsbruck.at

Abstract. The need to reason with knowledge expressed in both Logic Program-
ming (LP) and Description Logics (DLs) paradigms on the Semantic Web lead to
several integrating formalisms, e.g., Description Logic programs (dl-programs)
allow a logic program to retrieve results from and feed results to a DL knowledge
base. Two functional extensions of dl-programs are HEX programs and fuzzy
dl-programs. The former abstract away from DLs, allowing for general exter-
nal queries, the latter deal with the uncertain, vague, and inconsistent nature of
knowledge on the Web by means of fuzzy logic mechanisms. In this paper, we
generalize both HEX programs and fuzzy dl-programs to fuzzy HEX programs: a
LP-based paradigm, supporting both fuzziness as well as reasoning with exter-
nal sources. We define basic syntax and semantics and analyze the framework
semantically, e.g., by investigating the complexity. Additionally, we provide a
translation from fuzzy HEX programs to HEX programs, enabling an implementa-
tion via the dlvhex reasoner. Finally, we illustrate the use of fuzzy HEX programs
for ranking services by using them to model non-functional properties of services
and user preferences.

1 Introduction

Logic Programming (LP) [2] and Description Logics (DLs) [1] are two of the main
underlying knowledge representation and reasoning paradigms of the Semantic Web, a
machine-understandable instead of just machine-readable Web [4]. Logic Programming
underlies, for example, several variants of the Web Service Modeling Language WSML
[6] and Description Logics form the basis of the ontology language OWL-DL [3].

As the Semantic Web is about understanding knowledge and automatizing infer-
ences from this knowledge, it is not surprising that there is a lot of interest in the in-
tegration of these paradigms (see, e.g., [S] for an overview). One of these integrating
approaches are Description Logic Programs, dubbed dl-programs [11], that take a LP

* Stijn Heymans is partially supported by the Austrian Science Fund (FWF) under project
P20305-N18 and the Fund for Scientific Research Flanders (FWO Vlaanderen) under project
3G010107. Ioan Toma is supported by the EU FP7 IST project 27867, SOA4ALL - Service
Oriented Architectures For All.

view on a DL knowledge base: logic programs are able to query DL knowledge bases
via dl-atoms. Moreover, dl-atoms can stream knowledge from the logic program to the
DL knowledge base, where it can be used to make additional DL inferences (which can
then in turn be used in the LP deduction process). In effect, there is a bi-directional
stream of information between the logic program and the DL knowledge base.

In [10], dl-programs were generalized to HEX programs. HEX programs combine
higher-order reasoning - naively put, they allow for variables to appear in the predicate
position, enabling thus meta-reasoning over concepts - and external atoms. The latter
generalize dl-atoms as they do not just access DL knowledge bases but are associated
with any external function - one can use them, e.g., to query RDF repositories or SQL
databases.

Another extension to dl-programs was inspired by the uncertainty, vagueness, and
inconsistency of the (Semantic) Web. As anyone can produce knowledge on the Web,
it is impossible to ensure that all knowledge on the Web is logically true. Moreover,
often there is a need (as there is in real-life) to express vague concepts, such as very,
beautiful, or old/young; a need that is not met by traditional two-valued logics like LP or
DLs. And finally, the Web is inconsistent: source A might have another (contradicting)
opinion than source B on a topic. Together with the need for integrating approaches,
this lead to so-called fuzzy dl-programs [14, 12]. Fuzzy dl-programs extend dl-programs
by allowing to query fuzzy DLs [17] and by using fuzzy dl-rules on the LP side.

Intuitively, fuzzy dl-rules use combination strategies instead of the usual conjunc-
tion, disjunction, and negation in normal LP rules. Those combination strategies do
nothing else than computing a resulting truth value based on two (or one, in the case
of the negation strategy) input truth values, where truth values, in contrast with two-
valued logics, range over the interval [0, 1]. For example, in normal LP, a rule fail —
not study, smart where study is false (or 0) and smart is true, results in a truth value
of 1 for fail. A fuzzy variant could be fail g, notg, study ®g smart > 0.5
where ®¢ is the Godel conjunction (which takes the minimum of two values) and S,
is the Lukasiewizc negation (which takes the complement of a value w.r.t. 1). If study
has a fuzzy value of 0.4 and smart of 0.9, we would have that notg, study has a
value of 0.6. The value 0.5 indicates to what extent the rule should be satisfied. Using
®¢ we would have that the value of the body (the part to the right of <) has to be
0.5 ®¢ 0.6 ®¢ 0.9 = 0.5 and that the value of fail should be at least this value (0.5)
in order to make the fuzzy rule satisfied. Note that the value 0.5 that indicates to which
degree a rule should be satisfied is used to calculate the value of the body.

In this paper, we generalize both extensions - from dl-programs to HEX programs
and from dl-programs to fuzzy dl-programs - to fuzzy HEX programs. Fuzzy HEX pro-
grams thus support higher-order reasoning, reasoning with external sources like DL
knowledge bases or in general with external functions (e.g., sum, max), and fuzzy rea-
soning. We establish the basic syntax and semantics of such programs and show that the
complexity of disjunction-free fuzzy HEX programs, under equal conditions for the ex-
ternal predicates and appropriately behaving fuzzy combination strategies, is the same
as for disjunction-free HEX programs, namely NEXPTIME-complete.

We furthermore establish a translation from fuzzy HEX programs to HEX programs,
basically writing the combination strategies as external predicates that can be com-

puted by external functions. This enables reasoning with fuzzy HEX programs using the
DLVHEX [9] reasoner for HEX programs.

To show the applicability of fuzzy HEX programs, we use them to describe non-
functional properties of Web services, enabling better ranking of services. A service is
a provision of value to a client [15], e.g., the delivery of a package with some speci-
fied constraints. Service ranking is then the process which generates an ordered list of
services out of the candidate services set according to user’s preferences. As ranking
criteria, specified by the user, various aspects of a service description can be used. We
differentiate between (1) functional, (2) behavioral, and (3) non-functional. The func-
tional description contains the formal specification of what exactly the service can do.
The behavioral description is about how the functionality of the service can be achieved
in terms of interaction with the service as well as in terms of functionality required from
other services. Finally, the non-functional description captures constraints over the pre-
vious two [7]. For example, in case of a shipping service, invoking its functionality
(shipping a package) might be constrained by paying a certain amount (price as non-
functional property).

As part of our previous work [18], we have proposed an approach for the service
ranking problem based on the evaluation of non-functional properties such as price,
response time, liability, etc. Rules encoding conditions and constraints over multiple
non-functional properties are used to model both users and service provides perspec-
tives. Although this modeling approach is useful for modeling some of the multitude of
non-functional properties such as liability/contractual obligations, for properties, like
price or delivery time, a more natural choice to express requests and preferences re-
quires a formalism for handling vagueness and imprecision, e.g., imagine a provider
advertising “’the cheapest service”. Another issue is that service descriptions, besides
fuzzy information, often need to refer to external libraries and data sources. Fuzzy HEX
programs address exactly these requirements.

The remainder of the paper starts with an introduction to HEX programs in Section 2.
Section 3 defines fuzzy HEX programs with its basic properties. In Section 4, we show
that fuzzy HEX programs generalize both HEX programs and fuzzy dl-programs, and
Section 5 gives complexity results for fuzzy HEX programs as well as a translation from
fuzzy HEX programs to HEX programs, allowing an implementation using DLVHEX.
Section 6 contains an application of fuzzy HEX programs to the problem of ranking
services and we give directions for further research in Section 7. Proofs of the key
results can be found at http://www.kr.tuwien.ac.at/staff/heymans/fuzzy-hex-proofs.pdf.

2 Preliminaries: HEX Programs

We introduce HEX programs as in [10]. Assume the existence of 3 mutually disjoint sets
C, X, and G, consisting of constants, variables, and external predicates respectively. A
term is either a constant a € C or a variable X € X, denoted with symbols starting
with lower-case or upper-case letters respectively. A higher-order atom is of the form
to(t1,...,t,) for terms ¢;, 0 < i < n. If ¢y is a constant, we call to(t1,...,t,) an
ordinary atom. An external predicate from G starts with the symbol #, e.g., #g or
#sqrt, where each external predicate has an associated input and output arity. An ex-

ternal atom is of the form #g[t1, ..., t,](s1,. .., Sm) where ty, ..., ¢, is the input list
of terms for the input arity n of #g¢ and sy, ..., Sy, is the output list of terms for the
output arity m of #g.

A rule r is of the form:

a;V...Vag<—by,...,bp,not byyys,...,not by, (D

where a1, ..., a; are higher-order atoms, and by, ..., b,, are higher-order or external
atoms. The head of r is head(r) = {ai,...,ar}, and the body of r is body(r) =
body ™ (r)Ubody ™ (r) withbody ™ (r) = {b1,...,b,} andbody ™ (r) = {byi1,.-.,bm}.
A rule is ordinary if it only contains ordinary atoms. If k£ = 1 we call the rule disjunction-
free. A (disjunction-free) HEX program is a finite set P of (disjunction-free) rules.

An atom (higher-order or external), rule, or program, is ground if no variables ap-
pear in it. A grounding of a program P is a ground program gr(P) that contains all
possible ground rules resulting from replacing the variables in those rules with all pos-
sible constants from C. The Herbrand Base of P, denoted Bp, is the set of all possible
ground versions of atoms (higher-order or external) occuring in P using constants of
C. Note that the Herbrand Base only contains ordinary atoms and external atoms. If C,
X, or G are not explicitly given, we assume they are implicitly given by the program P
under consideration.

An interpretation I of a program P is a set I C Bp of ordinary atoms (i.e., no
external atoms). We say that [is a model of a ground ordinary atom «a, denoted I = a,
ifael.

We associate with every external predicate symbol #g¢g € G, an (n + m + 1)-ary
function f,, that assigns a tuple (I, y1, - .., Yn, Z1,- - - , Ty to 0 or 1, with n the input
arity of #¢g and m the output arity of #g¢, I an interpretation, and y;, x; constants. [
is then a model of a ground external atom a = #g¢[y1,...,yn)(z1,...,Zm), denoted
I = a,ifand only if fuy(I,¥1,...,Yn,Z1,...,Zm) = 1. For a ground atom (possibly
external) a, we have I |= not a iff I [~ a. This definition extends for sets containing
ground ordinary and ground external atoms as usual.

We say that a ground rule r is satisfied by I, denoted I = r, if, whenever I |
body ™ (r) U not body ™ (r), we have that there is a a;, 1 < i < k, such that I |= a;. For
a HEX program P, I is a model of P, denoted I |= P, iff I = r for each r € gr(P). We
define the FLP-reduct P! of a program w.r.t an interpretation I as all rules r € gr(P)
such that I |= body™ (r) U not body ™ (r). An interpretation I of P is an answer set of
P iff I is a minimal model of P.

3 Fuzzy HEX Programs

We use the definition of fuzzy dl-rules from [14, 12] as an inspiration to extend HEX
programs to fuzzy HEX programs, and we start by identifying different combination
strategies:

— The negation strategy © : [0, 1] — [0, 1], where we call ©v, v € [0, 1], the negation
of v. The negation strategy has to be antitonic, i.e., if vi < vo, then Sv; > Svs.
Furthermore, we have that ©1 = 0 and ©0 = 1. Particular negation strategies

([17]) are, for example, the Lukasiewizc negation Sy, defined by 52 =1 — z, or
the Godel negation S¢, defined by 60 = 1 and ©x = 0if x > 0.

— The conjunction strategy ® : [0, 1] x [0, 1] — [0, 1], where we call v1 ® v, v1,v2 €
[0, 1], the conjunction of v; and vo. The conjunction strategy has to be commutative,
associative, and monotone (if v1 < v} and vy < v}, then v1 ® vy < V] ® vh).
Furthermore, we need to have that v ® 1 = v and v ® 0 = 0. Particular conjunction
strategies (also called #-norms [17]) are, for example, the Lukasiewizc conjunction
®p, defined by x ®, y = max (z + y — 1,0), the Gddel conjunction ®, defined
by z®¢y = min (x, y), and the product conjunction ® p, defined by zQ@py = z.y.

— The disjunction strategy & : [0, 1] x [0, 1] — [0, 1], where we call v1 & vq, v1,v2 €
[0, 1], the disjunction of v; and v,. The disjunction strategy has to be commutative,
associative, and monotone (if v1 < v} and vy < v}, then v1 B vy < V] B vh).
Furthermore, we need to have that v & 1 = 1 and v & 0 = v. Particular disjunction
strategies (also called s-norms [17]) are, for example, the Lukasiewizc disjunction
@y, defined by @, y = min (x + y, 1), the Godel disjunction ®¢, defined by
z ¢ y = max (z,y), and the product disjunction ®p, defined by x Gp y =
r+y—1x.y.

Definition 1. A fuzzy rule r is of the form

a1 D1 ... Pp—1 0k —g, b1 ®1...@p_1by
®nnote,, ,; buy1 ng1 ... Q1 notg,, by > v (2)

where ay, . .. ,ay are higher-order atoms, by, . .. , by, are higher-order, external atoms,
or elements from [0, 1], and v € [0,1]. The head and body of r is defined as before. A
(disjunction-free) fuzzy HEX program is a finite set P of (disjunction-free) fuzzy rules.

Note that a fuzzy rule can contain different negation strategies; the order of evalua-
tion of such strategies will be left-to-right.

Ground atoms, rules, programs, as well as a grounding are defined similarly as for
HEX programs.

A fuzzy interpretation of a fuzzy HEX program is a mapping [: Op C Bp — [0, 1]
where Op are the ordinary atoms in Bp. Define I C J for fuzzy interpretations I and
Jof P,if I(a) < J(a) for each a € Op. We call I minimal if there is no interpretation
J # I such that J C I. The fuzzy value vy of a ground ordinary atom a w.r.t. an
interpretation I is v;(a) = I(a).

We associate with every external predicate symbol #g¢g € G, an (n + m + 1)-ary
function fu,, that assigns a tuple (I, y1,...,Yn, Z1,...,Zy) to [0, 1], with n the input
arity of #g and m the output arity of #g, I a fuzzy interpretation, and y;, x; constants.
The fuzzy value vy of a ground external atom a = #gly1, ..., yn](z1, ..., Ty) WLt an
interpretation I is vr(a) = fuq(L, Y1, .., Yn, 21, ..., Tm). We complete the definition
of vy by defining it for values v from [0, 1] as vy (v) = v.

A fuzzy interpretation [satisfies a ground fuzzy rule (2) iff

vr(ar) @1 ... Br—1 vr(ar) > v®ovr(bi) @1 ... On—1vr(by)
®n®n+1vI(bn+1) Qnt1 -+ Om-1 @mvl(bm) . (3

A fuzzy interpretation [is a fuzzy model* of a fuzzy HEX program P if it satisfies every
rule in gr(P).

The FLP-reduct P! of a fuzzy HEX program w.r.t a fuzzy interpretation I are all
rules r € gr(P) of the form (2) where

v ®0 v1(b1) ®1 ... On—1 V1 (bn)®nOn+101(bnt1) Ont1 - - - Om—1 Smvr(bm) >0 .

We can then define fuzzy answer sets as follows:

Definition 2. Let P be a fuzzy HEX program. A fuzzy interpretation I of P is a fuzzy
answer set of P iff I is a minimal fuzzy model of P'.

Example 1. Take P with rules a«g,nots, b > 1 and b«—g nots, a > 1. One can
check that a fuzzy interpretation I; with I;(a) = 0.8 and I (b) = 0 is not a model of P
and thus not a fuzzy answer set. On the other hand, I5 with I3(a) = 0.6 and I5(b) = 0.4
is a fuzzy answer set.

Example 2. Take the program P with rule a«—g,nots, a > 1. Although the normal
program a < not a has no answer sets, the fuzzy version of this program has a fuzzy
answer set I where I(a) = % i.e., if one is equally unsure about a as about not a, the
contradicting rule is no longer relevant.

A positive fuzzy HEX program is a program without negation strategies.
We have that for positive programs the FLP-reduct has no influence on the fuzzy
answer sets:

Proposition 1. Let P be a positive fuzzy HEX program. Then, M is a fuzzy answer set
of P iff M is a minimal fuzzy model of P.

Proposition 1 does not necessarily hold if P is not positive as one can see from the
fuzzy program a<—g, nots a > 1 where we define © as follows: ©z = 1 forxz < 0.1
and x = 0 for x > 0.1.

4 Fuzzy HEX Programs Generalize HEX Programs and Fuzzy
dl-programs

To show that HEX programs are properly embedded in fuzzy HEX programs we intro-
duce a crisp conjunction t @,y = lifx = 1 Ay = 1 and 0 else, a crisp disjunction
r®.y=1ifx =1Vy=1andO0 else, and a crisp negation S.x = 0if x = 1 and 1
else.

Proposition 2. The crisp conjunction (disjunction, negation) is a well-defined conjunc-
tion (disjunction, negation) strategy.

For a HEX program P we define its fuzzy version P/ as follows:

* We will omit the modifier fuzzy if it is clear from the context.

Definition 3. Let P be a HEX program. Then, P' consists of the rules
a1 @ ... Deay, g, b] O...0.bl@mote, bl @ ... @cnote, bl, >1 (@)

for every rule of the form (1) in P, where b{, 1 < ¢ < m, is defined such that
b{ = b; when b; is not external, and, if b; = #g[t1,...,tn](51,...,8m) then b{ =
#g [t1, ... tal(s1,. .., 5m) where #g7 is associated with the external function Jagr
that assigns, for any fuzzy interpretation I, the tuple (I, y1,...,Yn,Z1,...,Tm) to the
value fug(I',y1,. .. Yn, T1,...,&m) where a € I' iff I(a) =1, a € Op.

Proposition 3. Let P be a HEX program. Then, M is an answer set of P iff M is a
fuzzy answer set of Pf where M7 : Op — [0,1] is such that M ' (a) = 1 ifa € M and
M7 (a) = 0 otherwise.

Proposition 3 shows that fuzzy HEX programs are layered on HEX programs.

Description Logic Programs (dl-programs for short) [11] is a formalism that allows
to combine DL knowledge bases with logic programs. Roughly, in a dl-program the
logic program can query the DL knowledge base, while possibly feeding deductions
from the logic program as input to it. As dl-programs can be embedded in HEX pro-
grams [10], and the fuzzy rules we consider are syntactically and semantically similar
in spirit as the fuzzy rules used in [12], it comes as no surprise that the so-called fuzzy
dl-programs from [12] can be embedded in fuzzy HEX programs.

We briefly introduce fuzzy dl-programs and refer the reader for more details to [12].
A fuzzy dl-program (L, P) consists of a fuzzy description logic knowledge base L and
a finite set of ground fuzzy rules P. We again refer to [12] for more details on fuzzy
DLs, and retain from [12] that L comes associated with a models operator |= such that
one can express statements L = C(t) > v for a concept C' and a term ¢ and statements
L | R(ti,ts) > v for arole R and terms ¢, and to; v is a value from some [0, 1]°.
Intuitively, one can deduce statements from L that indicate to what fuzzy degree v, the
term ¢ belongs to the concept C (or (¢1,t2) belongs to R).

Fuzzy dl-rules in P are of the form (2) with the following modifications:

— no non-ordinary higher-order or external atoms appear in P,

— atoms may also be dl-atoms DL[S1Upy, . .., SpUpn; Q](d), where S; are concepts
or roles, p; are unary or binary predicates (unary if S; is a concept, binary if S; is a
role), and d are either a concept and a term or a role and a pair of terms. .

For a fuzzy interpretation I of P, the value v;(a) of a ground dl-atom @ = DL[S; U
Dis--vySn Upp; Q](d) wrt. L is defined as the maximum value v € [0, 1] such that
LUUS, AdD) E Q) > v with A(I) = {Si(e)) > I(pi(er)) | I(pi(er)) > 0}
where e; is a constant or a pair of constants depending on the arity of p;. Intuitively, we
query the DL knowledge base L where the fuzzy degrees of the concepts/roles S; are
augmented with what we know from P (i.e., via the p; predicates) to find out what the
fuzzy degree v is of membership of d in ().

> Note that [12] restricts itself to a set T'V,, = {0, %, ..., 1}. We will later restrict ourselves also
to this set instead of considering [0, 1], but for showing that fuzzy dl-programs are embedded
in fuzzy HEX programs we can safely take the more general interval [0, 1].

A fuzzy answer set of such a fuzzy dl-program is then defined analogous to our
fuzzy answer sets where dl-atoms a have the value v;(a) w.r.t. L as defined above.

Similar as in [10], we can replace dl-atoms a = DL[S1 Upy, ..., S, Upy; Q](d) by
external atoms #ay[](d) such that the associated external function fu,, (I,d) = v iff
LUUi~, A(I) E Q(d) > v. For a fuzzy dl-program (L, P), let P# be the program
obtained from P by replacing all dl-atoms a = DL[S; U p1,...,S, U py; Q](d) by
their external version #ay,[](d).

Proposition 4. Ler (L, P) be a fuzzy dl-program. Then, M is a fuzzy answer set of
(L, P) iff M is a fuzzy answer set of P¥.

5 Complexity and Reasoning

We restrict ourselves in the following to the fixed set T'V,, = {0, %, %, ..., 1} instead
of the interval [0, 1], and we assume, similar as in [13], that the combination strategies
are closed in T'V,,. Note that the Lukasiewizc and Godel combination strategies are
all closed, but, for example, the production conjunction is not: on 7'V3 we have that
+ ®p 2 = 2 ¢ TV;. Additionally, we assume that external functions f g, associated
with external predicates # g, are defined as functions fu, : TV, — T'V,,.

For combination strategies ® and ©, we assume the existence of external atoms
#®[X,Y](Z) and #5[X](Z), with associated external functions to {0,1} defined
as follows for a fuzzy interpretation I: fue(I,X,Y,Z) = 1iff X ® Y = Z and
fea(, X, Z)=1iff6X = Z.

Additionally, we define a #maz[X](Y) atom such that fu,,., (I, X,Y) = 1if
Y = max{v | X(v) € I'}, i.e., Y is the maximum value that the argument of an X-
atom can take.

We transform a disjunction-free fuzzy HEX program P in a HEX program P":

Definition 4. Let P be a disjunction-free fuzzy HEX program. We take C = T'V,,. Then
P" consists of rules
oq(T) — (5)

for each non-external atom a € gr(P)® where x = a if a € TV,, and x = 0 otherwise,
rules

0ol X) — #0"[Y1s s Yn) @1y Ty X) (6)
for each external atom a = #gly1, ..., yn](@1, ..., Tm) € gr(P), where
f#gh(Ih,yl,...,ymml,...,xm,x) =1iff fug(L,y1, s Un, T1y o Tim) =,
for any interpretation I" of P and I its fuzzy variant defined such that, for a non-
external atom a, I(a) = max {y | o,(y) € I"}, and for each rule with non-empty body
of the form (2) in gr(P), rules
0a(Un) —
o, (X1), #mazop,] (X1),- ..,
Ob,y, (YM)’ #max[aan(YM)a #@m[ym](xm)a #®0[Um—17 U](Um)’
#@1[X1, Xo)(Uh), #@2[U1, X3](U2), . .., #@n-1[Unm—2, X (Upm—1)

® Grounding w.r.t. the original C of P, i.e., not w.r.t. the new C = T'V;,

)

Sor rules with empty body, we introduce c4,(Up,) < #®0[1,v](Uy,), and finally rules
1
0a(r — =) «— 04(2) (®)
n

for all non-external atoms a € gr(P) and for all x # 0 € TV,,.

Intuitively, the rules (5) make sure that the initial fuzzy value of a non-external
atom a is equal to its fuzzy value if a € T'V,, or 0 otherwise, where the value of an
atom a is encoded using the binary predicate o,. Note that atoms from P are treated as
constants in P” (that are, however, not used to ground the transformed program, see the
defintion of C for P"). Similarly, the rules in (6) ensure that the values of the external
atoms are correctly set. The rules in (7) compute the value of the head atom a based on
the maximum values of its body atom, i.e., we assume implicitly that the actual fuzzy
value of an atom is the maximum value that is present in the interpretation for that atom
(using again the o-encoding for values). We use the external atoms that correspond to
the combination strategies to compute the value of the body and impose that the value
of the body is equal to the value of the head, namely U,,. Note that for satisfaction of
fuzzy rules the value of the head just needs to be greater than or equal the value of the
body; we impose equality to ensure minimality of the fuzzy interpretation. The case
where the value of an a is actually bigger than U,, is covered by the rules in (8) that
also introduce any lower values for a value x.

Note that this is a different reduction than the one in [13] from fuzzy dl-programs to
dl-programs, where additionally to the closedness restrictions, all combination strate-
gies have to be the ones from Zadeh’s logic (i.e., ® = min,® = max, and © =
complement). Our reduction is more general in this sense as it only requires closed-
ness. However, the reduction in [13] allows for disjunctive program, which we do not
handle.

We can compute fuzzy answer sets of a fuzzy HEX program by computing the an-
swer sets of the corresponding HEX program:

Proposition 5. Let P be a disjunction-free fuzzy HEX program with closed combination
strategies. Then, M is a fuzzy answer set of P iff M" = {o(a,z) | M(a) = y,0 <
x < y} is an answer set of P". Vice versa, M" is an answer set of P" iff M is a fuzzy
answer set of P where M is defined such that M (a) = max {y | o,(y) € M"}.

Using the DLVHEX [9] reasoner for reasoning with HEX programs, this proposition
thus gives us a method to reason with fuzzy HEX programs as well, in particular by
translating them first to HEX programs. Some provisos we have to make in this respect
are that the original external functions have to be computable, as well as the external
functions associated with the combination strategies. Moreover, the sets of constants,
variables, and external predicates under consideration should be finite in order to ensure
a finite P" (note that P itself is by definition finite).

Using the complexity results for HEX programs in [10] and the reduction of HEX
programs to fuzzy HEX programs in Proposition 3 we get the following hardness results
for different classes of fuzzy HEX programs.

Proposition 6. Deciding whether a fuzzy HEX program without external atoms has
a fuzzy answer set is NEXPTIME™" -hard and NEXPTIME-hard if the program is

disjunction-free.

For programs with external atoms #g¢, we can deduce the same hardness results if
the corresponding function f, is decidable in exponential time in |C|.

Proposition 7. Deciding whether a fuzzy HEX program, where for every #g € G
the function fy, is decidable in exponential time in |C|, has a fuzzy answer set is

NEXPTIME"F -hard and NEXPTIME-hard if the program is disjunction-free.

From the complexity perspective, we even introduce in the absence of external
atoms in a fuzzy HEX program P external atoms in the translation P" to compute the
combination strategies as well as the maximum value of an atom. The #maz external
function is not introducing extra complexity as the maximum can be calculated in linear
time in the size of gr(P). However, the combination strategies can add extra complex-
ity, or lead to undecidability of checking whether there exists a fuzzy answer set in case
they are undecidable - note, however, they do not depend on the program at hand. We
restrict ourselves thus to combination-computable combination strategies:

Definition 5. A combination strategy ® (B,6) on T'V,, is combination-computable if it
is closed and its corresponding external function fug (fse, f4c) is decidable in poly-
nomial time. We call a fuzzy HEX program combination-computable if its combination
strategies are combination-computable.

Note that for all the combination strategies we treated in this paper the correspond-
ing functions are decidable in polynomial time, assuming the numbers are encoded in
unary format.

Proposition 8. Deciding whether a combination-computable disjunction-free fuzzy HEX
program without external atoms has a fuzzy answer set is in NEXPTIME.

Proof. The size of the program P" is linear in the size of gr(P), such that, since the size
of gr(P) is in general exponential in the size of P and C, the size of P" is exponential
in the size of P and C. Since we assume that 7'V}, is fixed, we get that the size of gr(P")
is polynomial in the size of P", and thus, the size of gr(P") is exponential in the size
of P and C.

Using Proposition 5, checking whether there is a fuzzy answer set of a fuzzy HEX
program P, amounts to checking whether there is an answer set of gr(P"), the latter
can be done by a non-deterministic Turing machine in time that is polynomial in the
size of gr(P") (see, e.g., [10] and [8]). Since the size of gr(P") is exponential in the
size of P and C, we have that checking whether there is an answer set of gr(P") can be
done by a non-deterministic Turing machine in time that is exponential in the size of P

and C, i.e., in NEXPTIME. O

Using Propositions 6 and 8, we have the following:

Corollary 1. Deciding whether a combination-computable disjunction-free fuzzy HEX
program without external atoms has a fuzzy answer set, is NEXPTIME-complete.

External atoms in the fuzzy HEX program can introduce complexity, or even unde-
cidability. For fuzzy HEX programs where each external predicate #g¢ corresponds to
a function fy, that is decidable in a complexity class C' in the size of C, we have the
following results, again using Proposition 5 and [10]:

Proposition 9. Deciding whether a combination-computable disjunction-free fuzzy HEX
program where each external predicate # g corresponds to a function fu4 that is decid-

able in a complexity class C in the size of C has a fuzzy answer set is in NEXPTIME® .

If we restrict ourselves to functions decidable in exponential time, we get, similar
as in [10], that the exponential grounding covers for the complexity of the functions:

Proposition 10. Deciding whether a combination-computable disjunction-free fuzzy
HEX program where each external predicate #g corresponds to a function fu4 that is
decidable in exponential time in the size of C has a fuzzy answer set is in NEXPTIME.

Using Propositions 7 and 10, we then have the following:

Corollary 2. Deciding whether a combination-computable disjunction-free fuzzy HEX
program where each external predicate # g corresponds to a function f44 that is decid-
able in exponential time in the size of C has a fuzzy answer set is NEXPTIME-complete.

6 Applications: Service Ranking

In this section, we illustrate the use of fuzzy HEX programs to rank services. We model
non-functional properties of services and user preferences as fuzzy HEX programs. For
each fuzzy HEX program containing both service description and user preferences rep-
resented as rules, the ranking mechanism finds the fuzzy answer sets and their degree
of fuzzy match. Based on these degrees, as a final step, the ranked list of corresponding
services is constructed.

Assume a user wants to ship a package from Innsbruck to Vienna. The object to be
shipped has a value of around 1000 euro according to user’s estimation. The weight of
the package is 3 Kg and the dimensions are 10/20/10 cm. Furthermore, the user has
the following preferences: (1) he wants to pay at most around 70 euro for the service,
(2) he wants to pay cash, (3) he wants the package to be ensured in case lost or damage,
and (4) he expects the package to be delivered in at most around 36 hours.

Additionally, we have two shipping services Muller and Runner that potentially
could satisfy the user’s request. The delivery price for each of the two services depends
on the weight, dimension of the package, the distance and delivery time requested by
the client. The Muller provider presents the following conditions: (1) if the value of the
package is at least around 1200 euro and the client payment method is cash the client
gets at most 3% discount or free damage insurance, (2) the client has to buy both lost
and damage insurances, (3) if the delivery time requested by the user is at least around
40 hours, the user gets a 2% discount from the delivery price. The Runner provider
presents the following ones: (1) if the value of the package is at least around 1100 euro
and the client payment method is cash the client gets at most 4% discount, (2) the client
has to buy at least the damage insurance.

The following set of rules represent the background, shared knowledge:

distance(vienna, innsbruck, 485)
hasWeight(pack, 8) >1
hasDimension(pack, 10, 20, 10) L >1
hasValue(pack) —g, around1000(pack) > 1
)
)
)

QL 21

—®L

—®
hasInsurance(package, lost, 5) «—g, > 0.8
“—®r Z 0.8

—®

hasInsurance(package, damage, 5
hasInsurance(X, full, A L
hasInsurance(X, lost, B)®p
hasInsurance(X, damage, C)®r
#sum[B,C](A) > 1
paymentCash «—g, >1
paymentCreditcard «—g, >1
hasPayment(X , paymentCash)

@rhasPayment(X, paymentCreditcard) —g, >1

where around1000 = Tri(900, 1000, 1100), and Tri is the triangle function speci-
fied in [14]. Note that the rules defining the insurance values in case of lost or damage
package have a degree of truth of 0.8. This because, e.g., the exact insurance values are
provided by third parties, such as external insurance companies, and service providers
have an imprecise knowledge about these values.

The user request and preferences can be encoded as follows:

query(X) «—g, package(X) ®r hasDeliveryPrice(X, Pp)®r,
leqgAbout70(Pp) ® 1 hasInsurance(X, full, Ir)®1
hasDeliveryTime(X, Tp) @1, leqgAbout36(Tp)
hasPayment(X, paymentCash) > 1

In the previous program, we again use a function defined in [14], namely the L-
function: leqAbout36 = L(36,43) and leqAbout70 = L(70,75) to specify that the
expected delivery time to be at most around 36 hours and the expected delivery price
to be at most around 70 euro. The predicate guery collects all packages that fulfill the
constraints mentioned above.

The Muller service provider restrictions and preferences are encoded as follows:

discountV (X, 8)@®rhasInsurance(X, damage, 0) «—g, around1200(X)®
hasPayment(X, paymentCash) > 1

discountT (X, 2) «—g, notg, legAbout{0(Tp)®r
hasDeliveryTime(X, Tp) > 1
totalDiscount(X, D) «—g, discountV (X, B) ®y discountT (X, C)®L
#sum[B,C](D) > 1
price(X, P) «—g, hasWeight(X, W) ®r hasDimension(X, Dr, Dw, Dg)®1
distance(Start, End, Dist) ® hasDeliveryTime(X, Tp)®r
#deliveryP[W, Dr, Dw, D, Dist, Tp, fu](Pp)®L
#disc[Pp, D](P;) ®r hasInsurance(X , damage, P2)®1,
hasInsurance(X, lost, Ps) @, #sum[P;, P2, Ps](P) > 1

The first rule contains a disjunction in the head used to specify that either a 3% discount
for shipping or a free damage insurance is offered. The delivery price computation is
done by an external predicate # deliveryP[w, dimy, dim.,, dimy,, dis, time),o}, f1(P),
where w is the weight of the package, [dim;,dim,,,dim},] is the dimension of the pack-
age, dis is the distance from source to destination, time,’] is the delivery time requested
by the client, f is the formula that defines the price computation and P is the computed
delivery price for the package. External predicate # disc computes a discounted price
given an initial price and a discount. fj; is the formula used by service Muller to define
how the delivery price should be computed. around1200(X) is defined similarly as the
other around predicates, i.e., around1200(X) = Tri(1000, 1200, 1300).

Note that the used combination strategies used so far are Lukasiewizc strategies.
However, in our example, one could have used different combination strategies, yielding
different results though. The Runner service conditions can be encoded similarly as the
Muller descriptions.

We assume that prior to the service ranking process a discovery process is per-
formed. The discovery process identifies relevant services given a user request by con-
sidering semantic descriptions of functional and non-functional aspects of both services
and requests. The actual ranking process is presented in Algorithm 1.

First, a fuzzy HEX program containing the background knowledge and a service
non-functional property description is created for each service and each of its non-
functional properties requested by the user (line 6). In the next step (line 7), the query
representing user preferences is evaluated given each program created before. The atoms
representing non-functional properties of service are grounded as a result of the previ-
ous step and a degree of truth is associated with each of them. Quadruples of form
[service,nfp,nfpvalue, degree] are generated. If the non-functional property is not
present in the service description the generated quadruple is of form [service, n fp, 0, 1]
- the degree of truth is 1 since we know for sure that the value of the NFP is O for the
given service. The final part of the algorithm (line 15 - line 17) computes an aggregated
score for each services, performing first a normalization of the NFPs values and incor-
porating the degree of truth of every ground atom (line 7). The results are collected in a
set of tuples, where each tuple contains the service id and the service score (line 18). Fi-
nally, service scores are sorted and the final ranked list of services is returned (line 19).

The problems of service ranking and selection has been addressed in numerous ap-
proaches. Many of them have pointed out the need of fuzzy logic in modeling service

Algorithm 1: Fuzzy Ranking

N A AR W N

11

12
13
14
15
16
17

18

19

Data: Set of services Sser, User request (), Background knowledge K, represented

all as fuzzy HEX programs.

Result: Order list of services Lse..
begin

end

2 «— (), where (2 is a set of tuples [service,score] , - the set of NFPs user is
interested in;

B «— 0, is a set of quadruples [service,n fp,n fpvalue,degreel,

for s € Sser do

for nfp € Ado
if nfp € s.nfps then
fuzzyprog = extractN fp(s,nfp) U K,
[s,nfp,nfpvalue, degree] < evaluate(fuzzyprog, Q);
B =B U][s,nfp,nfpvalue, degree];
end
else
‘ ﬁ:ﬂU[S,ﬂfp,O,l];
end
end
end
for s € 5 do
scores =0;
for nfp € 3 do
nfpvalue = B.get N F PValue(s,nfp);
nfpvaluemae = maz(B.npf);
scores = scores + degree * %ﬁ,
end
2 =0U s, scores];

end
Lger < sort(£2);

descriptions and user preferences. For example, in [16] a fuzzy description logic ap-
proach is proposed for automating matching in e-marketplaces. In [19] multiple Quality
of Service (QoS) values of services are evaluated and a fuzzy multi-attribute decision
making algorithm is proposed to select the best services. The approach does not provide
a flexible enough mechanism to model user preferences and services as proposed in our
current work. In [20] fuzzy logic is used to evaluate the degree of matching between
QoS provided by services and requested by clients. However, the approach is UDDI-
based lacking sufficient expressivity for declarative reasoning with user preferences.
Furthermore, none of the approaches mentioned before provides support for integration

of external data sources or libraries, which is often required in real world settings.

7

Directions for Further Research

As future work, we plan to develop a reasoner for fuzzy HEX programs based on the
DLVHEX reasoner, using the translation of fuzzy HEX programs to HEX programs pre-
sented in this paper. The implementation of the service ranking algorithm presented in
Section 6 together with the evaluation of the approach is also left for the future.

References

1

2.

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The Description

Logic Handbook. Cambridge University Press, 2003.

C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge Press, 2003.

. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein. OWL Web Ontology Language Reference, 2004.

. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, pages
3443, May 2001.

. J. de Bruijn, T. Eiter, A. Polleres, and H. Tompits. On representational issues about combi-
nations of classical theories with nonmonotonic rules. In Proc. of KSEM2006, pages 1-22.

. J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel. The web service modeling language: An
overview. In Proc. of ESWC2006, number 4011 in LNCS, pages 590-604. Springer, 2006.

. L. Chung. Non-Functional Requirements for Information Systems Design. In Proc. of
CAISE’91, LNCS, pages 5-30. Springer-Verlag, 1991.

. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic
programming. ACM Computing Surveys (CSUR), 33(3):374-425, 2001.

. T. Eiter, G. lanni, T. Krennwallner, R. Schindlauer, and H. Tompits. dlvhex.

http://con.fusion.at/dlvhex/.

T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of higher-order

reasoning and external evaluations in answer-set programming. In Proc. of IJCAI2005.

T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer Set Program-

ming with DLs for the Semantic Web. In Proc. of KR 2004, pages 141-151, 2004.

T. Lukasiewicz. Fuzzy description logic programs under the answer set semantics for the

semantic web. In RULEML ’06, pages 89-96. IEEE Computer Society, 2006.

T. Lukasiewicz and U. Straccia. Tightly integrated fuzzy description logic programs under

the answer set semantics for the semantic web. Technical Report 1843-0703.

. T. Lukasiewicz and U. Straccia. Tightly integrated fuzzy description logic programs under

the answer set semantics for the semantic web. In Proc. of RR 2007, pages 289-298, 2007.

C. Preist. A conceptual architecture for semantic web services. In Proceedings of the Inter-

national Semantic Web Conference 2004 (ISWC 2004), November 2004.

A. Ragone, U. Straccia, F. Bobillo, T. Di Noia, E. Di Sciascio, and F. M. Donini. Fuzzy

description logics for bilateral matchmaking in e-marketplaces. In Description Logics, 2008.

Umberto Straccia. In Fuzzy Logic and the Semantic Web, chapter 4.

I. Toma, D. Roman, D. Fensel, B. Sapkota, and J. M. Gomez. A multi-criteria service ranking

approach based on non-functional properties rules evaluation. In ICSOC, pages 435-441,

2007.

H. Tong and S. Zhang. A fuzzy multi-attribute decision making algorithm for web services

selection based on qos. In Proc. of APSCC 06, pages 51-57. IEEE Computer Society, 2006.

H.-C. Wang, C.-S. Lee, and T.-H. Ho. Combining subjective and objective qos factors for

personalized web service selection. In Expert Systems with Applications, pages 571-584.

Elsevier, 2007.

