
Cooperating Answer Set Programming

Davy Van Nieuwenborgh1,�, Stijn Heymans2, and Dirk Vermeir1

1 Dept. of Computer Science
Vrije Universiteit Brussel, VUB

Pleinlaan 2, B1050 Brussels, Belgium
{dvnieuwe, dvermeir}@vub.ac.be

2 Digital Enterprise Research Institute (DERI)
University of Innsbruck, Austria
stijn.heymans@deri.org

Abstract. We present a formalism for logic program cooperation based on the
answer set semantics. The system consists of independent logic programs that
are connected via a sequential communication channel. When presented with an
input set of literals from its predecessor, a logic program computes its output as
an answer set of itself, enriched with the input.

It turns out that the communication strategy makes the system quite expres-
sive: essentially a sequence of a fixed number of programs n captures the com-
plexity class ΣP

n , i.e. the n-th level of the polynomial hierarchy. On the other
hand, unbounded sequences capture the polynomial hierarchy PH. These results
make the formalism suitable for complex applications such as hierarchical de-
cision making and preference-based diagnosis on ordered theories. In addition,
such systems can be realized by implementing an appropriate control strategy
on top of existing solvers such as DLV or SMODELS, possibly in a distributed
environment.

1 Introduction

In answer set programming (see e.g. [2]) a logic program is used to describe the require-
ments, that must be fulfilled by the solutions to a problem. The models (answer sets)
of the program, usually defined through (a variant of) the stable model semantics [18],
then correspond to the solutions of the problem. This technique has been successfully
applied in problem areas such as planning [20], configuration and verification [23], di-
agnosis [9], . . .

In this paper we use the answer set semantics to formalize a framework in which
programs cooperate to obtain a solution that is acceptable to all and cannot unilater-
ally be improved upon. E.g., when a company has to make up an emergency evacua-
tion plan for a building, one of the employees will make up a strategy that could be
implemented for that building. However, as she is probably not aware of all current
regulations about such strategies, her solution is forwarded to the emergency services,
e.g. the police or the fire brigade, who will try to improve her plan so it conforms
to all legal requirements. This adapted, legal version of the received starting plan is
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then send back to the employee who verifies its feasibility. If the verification fails, the
communication starts all over again by the employee sending a new possible plan to
the emergency services. In the other case, i.e. the adapted plan is successfully veri-
fied by the employee, it is presented to the firm’s management which will try to im-
prove it to obtain e.g. a cheaper one. Again, this cheaper alternative is sent back to the
emergency services for verification, and eventually also to the employee, to check its
feasibility.

We develop a framework of cooperating programs that is capable of modeling hi-
erarchical decision problems like the one above. To this end, we consider a sequence
of programs 〈Pi〉i=1,...n. Intuitively, a program Pi communicates the solutions it finds
acceptable to the next program Pi+1 in the hierarchy. For such a Pi-acceptable solution
S, the program Pi+1 computes a number of solutions that it thinks improve on S. If
one of these Pi+1 improvements S′ of S is also acceptable to Pi, i.e. S′ can be success-
fully verified by Pi, the original S is rejected as an acceptable solution by the program
Pi+1. On the other hand, if Pi+1 has no improvements for S, or none of them are also
acceptable to Pi, S is accepted by Pi+1. It follows that a solution that is acceptable to
all programs must have been proposed by the starting program P1.

It turns out that such sequences of programs are rather expressive. More specifically,
we show not only that arbitrary complete problems of the polynomial hierarchy can
be solved by such systems, but that such systems can capture the complete polynomial
hierarchy, the latter making them suitable for complex applications.

Problems located at the first level of the polynomial hierarchy can be directly solved
using answer set solvers such as DLV [16] or SMODELS [22]. On the second level,
only DLV is left to perform the job directly. However, by using a “guess and check”
fixpoint procedure, SMODELS can indirectly be used to solve problems at the second
level [4, 15]. Beyond the second level, there are still some interesting problems. E.g.,
the most expressive forms of diagnostic reasoning, i.e. subset-minimal diagnosis on
disjunctive system descriptions [13] or preference-based diagnosis on ordered theo-
ries [27], are located at the third level of the polynomial hierarchy, as are programs that
support sequences of weak constraints1 on disjunctive programs. For these problems,
and problems located even higher in the polynomial hierarchy, the framework presented
in this paper provides a means to effectively compute solutions for such problems, us-
ing SMODELS or DLV for each program in the sequence to compute better solutions.
E.g., to solve the problems mentioned before on the third level, it suffices to write three
well-chosen programs and to set up an appropriate control structure implementing the
communication protocol sketched above.

The remainder of the paper is organized as follows. In Section 2, we review the
answer set semantics and present the definitions for cooperating program systems. Fur-
ther, we illustrate how such systems can be used to elegantly express common problems.
Section 3 discusses the complexity and expressiveness of the proposed semantics, while
Section 4 compares it with related approaches from the literature. Finally, we conclude
and give some directions for further research in Section 5. Due to space restrictions,
proofs have been omitted, but they can be found in [25].

1 A weak constraint is a constraint that is “desirable” but may be violated if there are no other
options.
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2 Cooperating Programs

We give some preliminaries concerning the answer set semantics for logic programs [2].
A literal is an atom a or a negated atom ¬a. For a set of literals X , we use ¬X to denote
{¬l | l ∈ X } where ¬¬a = a. When X∩¬X = ∅ we say X is consistent. An extended
literal is a literal or a naf-literal of the form not l where l is a literal. The latter form
denotes negation as failure. For a set of extended literals Y , we use Y − to denote the set
of ordinary literals underlying the naf-literals in Y , i.e. Y − = {l | not l ∈ Y }. Further,
we use not X to denote the set {not l | l ∈ X }. An extended literal l is true w.r.t. X ,
denoted X |= l if l ∈ X in case l is ordinary, or a �∈ X if l = not a for some ordinary
literal a. As usual, X |= Y iff ∀l ∈ Y · X |= l.

A rule is of the form α ← β where2 α is a finite set of literals, β is a finite set of
extended literals and |α| ≤ 1. Thus the head of a rule is either an atom or empty. A
countable set of rules is called a (logic) program. The Herbrand base BP of a program
P contains all atoms appearing in P . The set of all literals that can be formed with the
atoms in P , denoted by LP , is defined by LP = BP ∪ ¬BP . Any consistent subset
I ⊆ LP is called an interpretation of P .

A rule r = α ← β is satisfied by an interpretation I , denoted I |= r, if I |= α
and α �= ∅, whenever I |= β, i.e. if r is applicable (I |= β), then it must be applied
(I |= α ∪ β ∧ α �= ∅). Note that this implies that a constraint, i.e. a rule with empty
head (α = ∅), can only be satisfied if it is not applicable (I �|= β). For a program P , an
interpretation I is called a model of P if ∀r ∈ P · I |= r, i.e. I satisfies all rules in P .
It is a minimal model of P if there is no model J of P such that J ⊂ I .

A simple program is a program without negation as failure. For simple programs
P , we define an answer set of P as a minimal model of P . On the other hand, for a
program P , i.e. a program containing negation as failure, we define the GL-reduct [18]
for P w.r.t. I , denoted P I , as the program consisting of those rules α ← (β\not β−)
where α ← β is in P and I |= not β−. Note that all rules in P I are free from negation
as failure, i.e. P I is a simple program. An interpretation I is then an answer set of P
iff I is a minimal model of the GL-reduct P I .

Example 1. Consider the following program P about diabetes.

diabetes ← thirsty ← ¬sugar ← diabetes
cola light ← thirsty, not cola cola ← thirsty, not ¬sugar , not cola light

One can check that P has I = {diabetes , thirsty, ¬sugar , cola light} as its single
answer set. Indeed, the rule cola ← thirsty, not ¬sugar , not cola light is removed to
obtain the reduct P I of P as ¬sugar ∈ I , i.e. the rule can never become applicable.
Further, the rule cola light ← thirsty, not cola is kept as cola light ← thirsty in P I .
Clearly, the reduct P I so obtained has I as its minimal model.

In the present framework, it is assumed that all programs “communicate using the same
language”, i.e. the Herbrand bases of the programs are all subsets of some set of atoms
PL (and LPL = PL∪¬PL). Because programs will receive input from other programs

2 As usual, we assume that programs have already been grounded.
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that influence their reasoning, we do not want any unintentional implicit interferences
between the input of the program and the produced output. E.g., a program should be
able to compute for an input containing a, an output containing ¬a or containing neither
a nor ¬a. For this purpose, we will also use a mirror language PL′ of PL, where we
use l′ ∈ LPL′ to denote the mirror version of a literal l ∈ LPL and we have that
l′′ = l ∈ LPL. The notation is extended to sets, i.e. X ′ = {l ′ | l ∈ X }.

Intuitively, a program will receive input in the language LPL, do some reasoning
with a program over LPL ∪ LPL′ and it will only communicate the part over LPL′

to the other programs, i.e. an input literal l ∈ LPL can only appear in the output as
l′ ∈ LPL′ if the program explicitly provides rules for this purpose.

Definition 1. For a language PL, a cooperating program P is a program such that
BP ⊆ PL ∪ PL′. For such a program P and a set of literals I ⊆ LPL, called the
input, we use P (I) to denote the program P ∪ {l ← | l ∈ I }.

An interpretation S ⊆ LPL is called an output w.r.t. the input I , or an improvement
by P of I , iff there exists an answer set M of P (I) such that S = (M ∩ LPL′)′.

We use AS(P, I) to denote the set of all outputs of P w.r.t. input I .

Example 2. Take PL = {sugar , cola, cola light , hypoglycemia, diabetes , thirsty}
and consider the following program P , where we use the notation keep {a1 , . . . , an},
to denote the set of rules {a′

i ← ai | 1 ≤ i ≤ n}, i.e. to denote that part of the input
that can be literally copied to the output,

keep {thirsty, hypoglycemia, diabetes}
cola light ′ ← thirsty, not sugar ′, not cola′

cola′ ← thirsty, not ¬sugar ′, not cola light ′

¬sugar ′ ← diabetes , not hypoglycemia
sugar ′ ← hypoglycemia

Intuitively, the above program only copies the part of the input concerning hypo-
glycemia, diabetes and thirsty, because these are the only possible non-critical input
literals. Other possible input literals, like e.g. cola or cola light , will be recomputed in
function of the availability (or not) of certain input literals.

Let I1 = ∅, I2 = {thirsty, hypoglycemia} and I3 = {thirsty, diabetes , cola} be
three inputs. One can check that P has only one output S1 = ∅ w.r.t. I1. For both I2
and I3 there is an improvement S2 = I2 ∪ {sugar , cola} and S3 = {thirsty, diabetes ,
¬sugar , cola light}, respectively. Note the necessity of the mirror language to obtain
the latter result.

A single cooperating program is not a very powerful instrument. However, connecting
a number of such programs together reveals their real capabilities. To keep things sim-
ple we will use, in what follows, cooperating program systems of linearly connected
programs.

Formally, a cooperating program system is a linear sequence of cooperating pro-
grams P1, . . . , Pn, where P1 is the source program, i.e. the program that starts all com-
munication. Solutions for such systems are inductively defined by the notion of accep-
tance. Intuitively, a solution S is accepted by the source program P1 if it recognizes S
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as an improvement of the empty input; and a successor program Pi, 1 < i ≤ n, accepts
S if it has no improvement on S that can be verified by the previous program Pi−1 to
be acceptable to it.

Definition 2. Let PL be a language. A cooperating program system is a sequence
〈Pi〉i=1,...n of n cooperating programs over PL.

The set of acceptable interpretations AC(Pi) for a cooperating program Pi,
1 ≤ i ≤ n, is inductively defined as follows:

– AC(P1) = AS(P1, ∅)
– for i > 1,

AC(Pi) = {S ∈ AC(Pi−1) | ∀T ∈ AS(Pi, S) · T �= S ⇒ T �∈ AC(Pi−1)}

An interpretation S ⊆ LPL that is acceptable to Pn, i.e. S ∈ AC(Pn), is called a
global answer set for the cooperating program system.

Note that the above definition allows for an output interpretation S of Pi−1 to be ac-
cepted by a program Pi even if Pi ∪ S has no answer sets. This fits the intuition that
the answer sets of Pi ∪ S are to be considered as improvements upon S. Hence, if Pi

cannot be used to provide such an improvement, Pi ∪ S should not have any answer
sets, and S should be accepted by Pi.

Example 3. Consider the job selection procedure of a company. The first cooperating
program P1 establishes the possible profiles of the applicants together with a rule stating
the belief that inexperienced employees are ambitious. Thus, each answer set3 of the
program below corresponds with a possible applicant’s profile.

male ′ ⊕ female′ ← old ′ ⊕ young ′ ←
experienced ′ ⊕ inexperienced ′ ← ambitious ′ ← inexperienced ′

The decision on which applicant gets the job goes through a chain of decision mak-
ers. First, the human resources department constructs a cooperating program P2 that im-
plements company policy which stipulates that experienced persons should be preferred
upon inexperienced ones. Therefore, the program passes through all of its input, except
when it encounters a profile containing inexperienced, which it changes to experienced,
intuitively implementing that an applicant with the same profile but experienced instead
of inexperienced, would be preferable. Further, as we tend to prefer experienced peo-
ple, for which nothing about being ambitious is known, we do not have any rule in P2
containing ambitious , such that the literal is dropped from the input if present.

keep {male, female, old , young, experienced}
experienced ′ ← inexperienced

On the next level of the decision chain, the financial department reviews the remaining
candidates. As young and inexperienced persons tend to cost less, it has a strong desire
to hire such candidates, which is implemented in the following cooperating program P3.

3 In the rest of the paper we will use rules of the form a ⊕ b ← to denote the set of rules
{a ← not b ; b ← not a}.
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keep {male, female, young, inexperienced}
ambitious ′ ← inexperienced ′

inexperienced ′ ← young, experienced
young ′ ← old , inexperienced
young ′ ← old , experienced , not old ′

old ′ ← old , experienced , not young ′

inexperienced ′ ← old , experienced , not experienced ′

experienced ′ ← old , experienced , not inexperienced ′

← old ′, experienced ′

Intuitively, this program handles the four possible cases: when the input profile is
from a young and inexperienced person, the input is passed without modification indi-
cating that this cannot be improved upon. On the other hand, if only one of the properties
is not as desired, e.g. young and experienced, then the only improvement would be a
profile containing both young and inexperienced. Finally, a profile containing old and
experienced has three possible improvements: the last 5 rules ensure that the improve-
ments proposed by P3 will contain young or inexperienced, or both.

Finally, the management has the final call in the selection procedure. As the current
team of employees is largely male, the management prefers the new worker to be a
woman, as described by the next program P4, which is similar to P2.

keep {female, old , young, experienced , inexperienced , ambitious}
female′ ← male

One can check that P1 has eight answer sets (improvements on ∅), that are thus
acceptable to it. However, only four of these are acceptable to P2, i.e.

M1 = {experienced ,male, young} ,

M2 = {experienced ,male, old} ,

M3 = {experienced , female, young} ,

M4 = {experienced , female, old} ,

which fits the company policy to drop inexperienced ambitious people. E.g., feeding
M5 = {inexperienced , female, young, ambitious} as input to P2 yields one answer
set M3, which is also acceptable to P1 making M5 unacceptable for P2. Similarly, when
P3 is taken into account, only M1 and M3 are acceptable. Considering the last program
P4 yields a single global answer set, i.e. M3, which fits our intuition that, if possible, a
woman should get the job.

Note that rearranging the programs gives, in general, different results. E.g., inter-
changing P2 with P3 yields M5 as the only global answer set.

3 Complexity

We briefly recall some relevant notions of complexity theory (see e.g. [2] for a nice in-
troduction). The class P (NP) represents the problems that are deterministically (non-
deterministically) decidable in polynomial time, while coNP contains the problems
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whose complements are in NP . The polynomial hierarchy, denoted PH, is made up of
three classes of problems, i.e. ΔP

k , ΣP
k and ΠP

k , k ≥ 0, which are defined as follows:

1. ΔP
0 = ΣP

0 = ΠP
0 = P ; and

2. ΔP
k+1 = PΣP

k , ΣP
k+1 = NPΣP

k , ΠP
k+1 = coΣP

k+1 .

The class PΣP
k (NPΣP

k ) represents the problems decidable in deterministic (nonde-
terministic) polynomial time using an oracle for problems in ΣP

k . The class PH is
defined by PH =

⋃∞
k=0 ΣP

k . Finally, the class PSPACE contains the problems that
can be solved deterministically by using a polynomial amount of memory and unlimited
time.

To prove hardness for the above complexity classes4, we will use validity checking
of quantified boolean formulas. A quantified boolean formula (QBF) is an expression
of the form Q1X1Q2X2 . . . QkXk · G, where k ≥ 1, G is a Boolean expression over
the atoms of the pairwise nonempty disjoint sets of variables X1, . . . , Xk and the Qi’s,
for i = 1, . . . , k are alternating quantifiers from {∃, ∀}. When Q1 = ∃, the QBF is k-
existential, when Q1 = ∀ we say it is k-universal. We use QBF k,∃ (QBF k,∀) to denote
the set of all valid k-existential (k-universal) QBFs. Deciding, for a given k-existential
(k-universal) QBF φ, whether φ ∈ QBF k,∃ (φ ∈ QBF k,∀) is a ΣP

k -complete (ΠP
k -

complete) problem. When we drop the bound k on the number of quantifiers, i.e. con-
sidering QBF∃ =

⋃
i∈N

QBF i,∃, we have a hard problem for PSPACE .
The following results shed some light on the complexity of the global answer set

semantics for linear combinations of cooperating programs.
First, we consider the case where the length of the sequence of cooperating programs

is fixed by some number n.

Theorem 1. Given a cooperating program system 〈Pi〉i=1,...,n, with n fixed, and a lit-
eral l ∈ LPL, the problem of deciding whether there exists a global answer set con-
taining l is ΣP

n -complete. On the other hand, deciding whether every global answer set
contains l is ΠP

n -complete.

Proof Sketch. Membership ΣP
n : It is shown, by induction, in [25] that checking whether

an interpretation S ⊆ LPL is not acceptable to Pn, i.e. S �∈ AC(Pn), is in ΣP
n−1. The

main result follows by

– guessing an interpretation S ⊆ LPL such that S � l; and
– checking that it is not the case that S �∈ AC(Pn).

As the latter is in ΣP
n−1, the problem itself can be done by an NPΣP

n−1 algorithm, i.e.
the problem is in ΣP

n .
Hardness ΣP

n : To prove hardness, we provide a reduction of deciding validity of
QBFs by means of a cooperating program system. Let φ = ∃X1∀X2 . . .QXn · G ∈
QBFn,∃, where Q = ∀ if n is even and Q = ∃ otherwise. We assume, without loss
of generality [24], that G is in disjunctive normal form, i.e. G = ∨c∈Cc where C is
a set of sets of literals over X1 ∪ . . . ∪ Xn and each c ∈ C has to be interpreted as a
conjunction.

4 Note that this does not hold for the class PH for which no complete, and thus hard, problem
is known unless P = NP .



Cooperating Answer Set Programming 233

In what follows, we use P i to denote the set rules

– keep {x , ¬x | x ∈ Xj ∧ 1 ≤ j < i} ,
– {x ′ ← not ¬x ′ ; ¬x ′ ← not x ′ | x ∈ Xj ∧ i ≤ j ≤ n} , and
– {sat ′ ← c′ | c ∈ C } .

Further, we use P i
∀ and P i

∃ to denote the programs P i
∀ = P i∪{ ← sat ′ ; ← not sat}

and P i
∃ = P i ∪ { ← not sat ′ ; ← sat} respectively.

The cooperating program system 〈Pi〉i=1,...,n corresponding to φ is defined as:

– P1 contains the rules {x ′ ← not ¬x ′ ; ¬x ′ ← not x ′ | x ∈ Xj ∧ 1 ≤ j ≤ n} and
{sat ′ ← c′ | c ∈ C };

– if n is even, then Pi = Pn+2−i
∀ when i even and Pi = Pn+2−i

∃ when i > 1 odd;
– if n is odd, then Pi = Pn+2−i

∃ when i even and Pi = Pn+2−i
∀ when i > 1 odd.

Obviously, the above construction can be done in polynomial time. Intuitively, P1
has answer sets for every possible combination of the Xi’s and if such a combina-
tion makes G valid, then the corresponding answer set also contains the atom sat.
The intuition behind the program P i

∀ is that it tries to disprove, for the received in-
put, the validity of the corresponding ∀, i.e. for a given input combination over the
Xj’s making G satisfied, the program P i

∀ will try to find a combination, keeping the
Xj’s with j < i fixed, making G false. On the other hand, the program P i

∃ will try to
prove the validity of the corresponding ∃, i.e. for a given combination making G false
it will try to compute a combination, keeping the Xj’s with j < i fixed, making G
satisfied.

Instead of giving the formal proof for the above construction, we give a feel on how
the construction works by means of an example and refer the reader to [25] for the
actual proof.

Consider
φ = ∃x · ∀y · ∃z · (x ∧ ¬y ∧ z) ∨ (y ∧ ¬z) .

The cooperating program P1 contains the rules

x ′ ← not ¬x ′ ¬x ′ ← not x ′ y ′ ← not ¬y ′ ¬y ′ ← not y ′

z ′ ← not ¬z ′ ¬z ′ ← not z ′ sat ′ ← x ′, ¬y ′, z ′ sat ′ ← y ′, ¬z ′

We have 8 possible outputs for P1(∅), i.e. I1 = {x , y, z}, I2 = {x , y, ¬z , sat}, I3 =
{x , ¬y, z , sat}, I4 = {x , ¬y, ¬z}, I5 = {¬x , y, z}, I6 = {¬x , y, ¬z , sat}, I7 =
{¬x , ¬y, z} and I8 = {¬x , ¬y, ¬z}. Clearly, these are all acceptable interpretations
for P1.

The second cooperating program P2 is defined by P 3
∃ and thus contains the rules

keep({x , ¬x , y, ¬y}) ← z ′ ← not ¬z ′ ¬z ′ ← not z ′ sat ′ ← x ′, ¬y ′, z ′

← sat ← not sat ′ sat ′ ← y ′, ¬z ′

Feeding I1 to P2 yields I2 as the single output. As I2 is an acceptable interpretation
to P1, I1 cannot be acceptable to P2, i.e. I1 �∈ AC(P2). On the other hand, for the input
I2, the program P2 has no outputs, as the input contains sat, which makes the constraint
← sat unsatisfied. As a result, I2 is acceptable to P2, i.e. I2 ∈ AC(P2). In case of the
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input I7, P2 is not able to derive sat′ with the given input, yielding that ← not sat ′

can never be satisfied and thus P2 will not produce any outputs for I7, again yielding
that I7 will be acceptable to P2.

One can check in similar ways that AC(P2) contains 5 interpretations, i.e. AC(P2) =
{I2 , I3 , I6 , I7 , I8}. It is not difficult to see that for each of these acceptable solutions it
holds that ∃z · (x ∧ ¬y ∧ z) ∨ (y ∧ ¬z) when x and y are taken as in the interpretation
iff the literal sat is contained in that interpretation.

The third and final cooperating program P3 is given by P 2
∀ and contains the rules

keep({x , ¬x}) ←
y ′ ← not ¬y ′ ¬y ′ ← not y ′ ← not sat sat ′ ← x ′, ¬y ′, z ′

z ′ ← not ¬z ′ ¬z ′ ← not z ′ ← sat ′ sat ′ ← y ′, ¬z ′

When providing P3 with the input I2, we have two outputs, i.e. I1 and I4. However,
neither I1 ∈ AC(P2) nor I2 ∈ AC(P2), yielding that I2 is an acceptable solution to P3.
Intuitively, P3 accepts the input I2 as it cannot disprove ∀y·∃z ·(x∧¬y∧z)∨(y∧¬z) for
the chosen truth value of x in I2. In a similar way one can check that also I3 ∈ AC(P3).

On the other hand, feeding P3 with I6, we get the outputs {I5 , I7 , I8}. This time,
both I7 ∈ AC(P2) and I8 ∈ AC(P2), implying that I6 is not acceptable to P3. Further,
using I7 or I8 as an input to P3, results in no outputs, making them both acceptable to
P3. As a result, AC(P3) = {I1 , I3 , I7 , I8}, which are also the global answer sets of the
system.

Now, one can check that for each global answer set in AC(P3) it holds that ∀y · ∃z ·
(x∧¬y ∧z)∨ (y ∧¬z) for x taken as in the interpretation iff the literal sat is contained
in that global answer set. From this it follows that φ is valid iff there exists a global
answer set I ∈ AC(P3) such that sat ∈ I . In our example, I2 is such a global answer
set and one can check that φ holds when we assume x is true.

ΠP
n -completeness: To show this result, we consider in [25] the complement decision

problem and show that it is ΣP
n -complete, from which the result follows. ��

While the previous result handles the cases where the number of programs in the se-
quence is fixed, we can generalize the results to arbitrary sequences.

Theorem 2. Given a cooperating program system 〈Pi〉i=1,...,n∈N
and a literal l ∈

LPL, the problem of deciding whether there exists a global answer set containing l
is PSPACE -complete.

Proof Sketch. Membership PSPACE : Intuitively, each program in the sequence needs
the space to represent a single answer set, while the system itself needs the space to
represent a global answer set. Now, the algorithm will place a possible solution in the
latter allocated space, and will use the former allocated space to check acceptability
for the different programs in the sequence. Thus, an algorithm for a sequence of n
programs, needs maximum n + 1 times the space to represent an answer set, which is
clearly polynomial in space, from which membership to PSPACE follows.

Hardness PSPACE : Clearly, the hardness proof of Theorem 1 can be generalized to
validity checking of arbitrary quantified boolean formula, from which hardness readily
follows. ��
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While the previous results describe the complexity of reasoning with the presented
framework, they don’t give a clear picture on the expressiveness of the system, i.e.
whether each problem that belongs to a certain complexity class can be expressed in
the framework. The reason therefore is that a formalism F being complete for a partic-
ular class only implies that each instance of a problem in that class can be reduced in
polynomial time to an instance of F such that the yes/no answer is preserved. However,
completeness does not imply that the polynomial time reduction itself from an instance
of the problem to an instance in F is expressible in F 5.

In this context, one says that a formalism captures a certain complexity class iff
the formalism is in the class and every problem in that class can be expressed in the
formalism. The latter part is normally proved by taking an arbitrary expression in a
normal (or general) form6 for the particular complexity class and by showing that it can
be expressed in the formalism.

By using the results from [14, 12], the following normal form for the complexity
class ΣP

k , with k ≥ 2, can be obtained. First, we have to consider a signature σ =
(O, F, P ), with O finite and F = ∅, i.e. we do not allow function symbols. A finite
database over σ is any finite subset of the Herbrand Base over σ. Secondly, we have
three predicates that do not occur in P , i.e. succ, first and last. Enumeration literals are
literals over the signature (O, ∅, {succ,first , last}) that satisfy the conditions:

– succ describes an enumeration of the elements in O; and
– first and last contain the first and last element in the enumeration respectively.

Intuitively, succ is a binary predicate such that succ(x, y) means that y is the successor
of x. Further, first and last are unary predicates.

A collection S of finite databases over the signature σ = (O, ∅, P ) is in ΣP
k iff there

is a second order formula of the form

φ = Q1U
1
1,...,m1

Q2U
2
1,...,m2

. . . QkUk
1,...,mk

∃x · θ1(x) ∨ · · · ∨ θl(x) ,

where Qi = ∃ if i is odd, Qi = ∀ if i is even, U i
1,...,mi

(1 ≤ i ≤ k) are finite sets
of predicate symbols and θi(x) (1 ≤ i ≤ l) are conjunctions of enumeration literals
or literals involving predicates in P ∪{U 1

1 ,...,m1
,U 2

1 ,...,m2
, . . . ,U k

1 ,...,mk
} such that for

any finite database w over σ, w ∈ S iff w satisfies φ.
Again, we first consider the case in which the number of programs in the sequence

is fixed by a number n ∈ N.

Theorem 3. The global answer set semantics for cooperating program systems with a
fixed number n of programs captures ΣP

n .

Proof Sketch. Membership ΣP
n : The result follows directly from the membership part

of the proof of Theorem 1.

5 A good example of this fact is the query class fixpoint, which is PTIME-complete but cannot
express the simple query even(R) to check if |R| is even. See e.g. [7, 2] for a more detailed
explanation on the difference between completeness and expressiveness (or capturing).

6 A normal (or general) form of a complexity class is a form in which every problem in the class
can be expressed. Note that not every complexity class necessarily has a general form.
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Capture ΣP
n : This proof is a generalization of the technique used in the hardness

proof of Theorem 1. Further, the construction of the programs, especially the first pro-
gram, is based on the proof of Theorem 6.3.2. in [2], where it is shown that disjunctive
logic programming under the brave semantics captures ΣP

2 .
However, we first have to consider the case where n = 1 separately, as the general

form discussed above only holds for n ≥ 2. It is easy to see that the global answer set
semantics for cooperating systems of a single program coincides with the classical an-
swer set semantics, for which capturing of ΣP

1 = NP is already proven in the literature
(e.g. in [2]).

To prove that any problem of ΣP
n , with n ≥ 2, can be expressed in a cooperating

program system of n programs under the global answer set semantics, we have to show
a construction of such a system 〈Pi〉i=1,...,n such that a finite database w satisfies the
formula

φ = ∃U1
1,...,m1

∀U2
1,...,m2

. . . QnUn
1,...,mn

∃x · θ1(x) ∨ · · · ∨ θl(x) ,

with everything defined as in the general form for ΣP
n described before, iff 〈Pi〉i=1,...,n

has a global answer set containing sat.
The first program7 P1 in the sequence contains, beside the facts that introduce the

database w (as w′), the following rules:

– For the enumeration of the predicates U1
1,...,m1

, U2
1,...,m2

, . . . , Un
1,...,mn

, we have the
rules:

U i
k
′(w i

k ) ← not ¬U i
k
′(w i

k ) ¬U i
k
′(w i

k ) ← not U i
k
′(w i

k )

for 1 ≤ i ≤ n and 1 ≤ k ≤ mi.
– To introduce the linear ordering, we need a set of rules similar to the ones used in

Section 2.1.13. of [2] (see the technical report [25] for a detailed description). This
set of rules has the property that when a linear ordering is established, the literal
linear ′ is derived.

– To check satisfiability, we use the rules

sat ′ ← θi
′(x), linear ′

for 1 ≤ i ≤ l.

The other programs of the sequence are defined, similar to the hardness proof of
Theorem 1, by using two skeletons P i

∀ and P i
∃. First, both skeletons have the following

set of rules P i in common

– keep {U j
k (w j

k ) , ¬U j
k (w j

k ) | (1 ≤ j < i) ∧ (1 ≤ k ≤ mi)} ,
– keep {facts of the linear ordering} ,
– keep w ,

– {U j
k
′
(w j

k ) ← not ¬U j
k
′
(w j

k ) ; ¬U j
k
′
(w j

k ) ← not U j
k
′
(w j

k ) |
(i ≤ j ≤ n) ∧ (1 ≤ k ≤ mi)} , and

7 For clarity, we will use non-grounded rules, but we assume that the reader is familiar with
obtaining the grounded versions of non-grounded rules.
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– {sat ′ ← θi
′(x ), linear ′ | 1 ≤ i ≤ l} .

Now, we define the programs P i
∀ and P i

∃ as P i
∀ = P i ∪ { ← sat ′ ; ← not sat} and

P i
∃ = P i ∪ { ← not sat ′ ; ← sat} respectively.
Besides P1, the remaining programs in the sequence are defined by:

– if n is even, then Pi = Pn+2−i
∀ when i even and Pi = Pn+2−i

∃ when i > 1 odd;
– if n is odd, then Pi = Pn+2−i

∃ when i even and Pi = Pn+2−i
∀ when i > 1 odd.

It is not difficult to see (similar to the hardness proof of Theorem 1) that the above
constructed program will only generate, for a given input database w, global answer
sets that contain sat iff φ is satisfied. ��
When we drop the fixed length of the sequence, the above result can be easily general-
ized to arbitrary cooperating program systems.

Corollary 1. The global answer set semantics for cooperating program systems cap-
tures8 PH, i.e. the polynomial hierarchy.

The above result yields that the presented framework is able to encode each problem in
the polynomial hierarchy in a modular way, making the framework useful for complex
knowledge reasoning tasks, e.g. involving multiple optimization steps.

4 Relationships to Other Approaches

In [5], answer set optimization (ASO) programs are presented. Such ASO programs
consist of a generator program and a sequence of optimizing programs. To perform the
optimization, the latter programs use rules similar to ordered disjunction [3], i.e. rules
of the form c1 < · · · < cn ← β which intuitively read: when β is true, making c1
true is the most preferred option and only when c1 cannot be made true, the next best
option is to make c2 true, ... Solutions of the generator program that are optimal w.r.t.
the first optimizing program and, among those, are optimal w.r.t. the second optimizing
program, and so on, are called preferred solutions for the ASO program.

The framework of ASO programming looks very similar to our approach, i.e. just
consider the generator program as program P1 and the optimizing programs as pro-
grams P2, . . . , Pn. However, ASO programs are far more limited w.r.t. their expressive-
ness, due to the syntactical and semantical restrictions of the optimizing programs in
comparison to our approach where arbitrary programs can be used to do the optimiza-
tion. It turns out that the expressiveness of an ASO program does not depend on the
length of the sequence of optimizing programs: it is always ΣP

2 -complete. Hence ASO
programs can be captured by the presented cooperating program systems in this pa-
per using a pair of programs. The construction of these two programs simulating ASO
programs is subject to further research.

Weak constraints were introduced in [6] as a relaxation of the concept of a constraint.
Intuitively, a weak constraint is allowed to be violated, but only as a last resort, meaning
that one tries to minimize the number of violated constraints. Additionally, weak con-
straints are allowed to be hierarchically layered by means of a sequence of sets of weak

8 Note that while the semantics captures PH, it can never be complete for it as the hierarchy
would than collapse.
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constraints. Intuitively, one first chooses the answer sets that minimize the number of
violated constraints in the first set of weak constraints in the sequence, and then, among
those, one chooses the answer sets that minimize the number of violated constraints in
the second set, etc.

Again, this approach can be seen as a kind of cooperating programming system. The
complexity of such a system, independent of the number of sets of weak constraints,
is at most ΔP

3 -complete. Thus, using the presented cooperating programming system
from Section 2, a sequence of three programs suffice to capture the most expressive
form of that formalism.

The framework developed in this paper can be seen as a more general version of
the idea presented in [15], where a guess and a check program are combined into a
single disjunctive program such that the answer sets of this program coincide with the
solutions that can be obtained from the guess program and successfully checked by the
check program. The approach in this paper allows to combine a guess program and mul-
tiple check programs, which each have to be applied in turn, into a single cooperating
system such that the global answer sets correspond to solutions that can be guessed by
the guess program and subsequently verified by the check programs.

In [26, 19], hierarchies of preferences on a single program are presented. The prefer-
ences are expressible on both the literals and the rules in that program. It is shown that
for a sequence of n preference relations the complexity of the system is ΣP

n+1-complete.
The semantics proposed in Section 2 is a generalization of that approach: instead of us-
ing one global program with a sequence of preferences expressed on that program, we
use a sequence of, in general, different programs, thus allowing a separate optimizing
strategy for each individual program. To capture a hierarchy of n preference relations,
we need n + 1 cooperating programs: the first one will correspond with the global pro-
gram, while the rest will correspond to the n preference relations. The system described
in Example 3 can be seen as a translation of such a preference hierarchy. Intuitively, the
program P2 describes the preference relation experienced < inexperienced , while P3
implements the relation young < old ; inexperienced < experienced . Finally, P4 cor-
responds to the single preference female < male. This also suggests that the present
framework may be useful to encode, in a unified way, sequential communication be-
tween programs supporting different higher level language constructs such as prefer-
ence orders.

Updates of logic programs [1, 10] can be seen as a form of sequential communica-
tion. However, the approaches presented in the literature are limited to solving problems
located in the first or second level of the polynomial hierarchy.

[21] presents composition of logic programs as a way to solve decision making in
agent systems. Intuitively, for two programs P1 and P2 the system tries to compute a
program P such that each answer set S of P is of the form S = S1∪S2 (or S = S1∩S2),
where S1 and S2 are answer sets of P1 and P2 respectively. Clearly, this approach can
be extended to sequences of programs, but it is different from the one presented in
this paper in the sense that we apply each program in the sequence in turn, while all
programs in the former approach are applied at once in the composed program P ′. This
explains why the complexity of the former semantics remains the same as that of the
underlying answer set semantics.
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Finally, the concept of cooperation for decision making is also used in other areas
than answer set programming, e.g. in the context of concurrent or distributed theorem-
proving [8, 17]. In [17], the idea is to split up and distribute a set of axioms and a theory
among a number of agents that each derive new knowledge to prove the theory (using
only the part of the knowledge they received) and who communicate their newly derived
knowledge to the other agents in the system. [8] handles the same problem in a different
way, i.e. each agent has its own strategy to prove the theory and after an amount of time
the results of the cooperating agents are evaluated. If an agent scored badly during this
evaluation, the system can decide to replace it with a new agent having another proof
strategy. In the end, one wants to obtain a team of agents that performs best to solve the
given problem.

5 Conclusions and Directions for Further Research

We presented a framework suitable for solving hierarchical decision problems using
logic programs that cooperate via a sequential communication channel. The resulting
semantics turns out to be rather expressive, as it essentially covers the polynomial hi-
erarchy, thus enabling further complex applications. E.g., the framework could be used
to develop implementations for diagnostic systems at the third level of the polynomial
hierarchy [11, 13, 27].

Future work comprises the development of a dedicated implementation of the ap-
proach, using existing answer set solvers, e.g. DLV [16] or SMODELS [22], possibly
in a distributed environment. Such an implementation will use a control structure that
communicates candidate solutions between consecutive programs. When a program Pi

receives a solution S from Pi−1, it attempts to compute an improvement S′. If no such
S′ exists, S is acceptable to Pi and is communicated to Pi+1. Otherwise, S′ is send
back to Pi−1, who verifies its acceptability (for Pi−1). If it is, Pi starts over to check
if it can (or cannot) improve upon S′. On the other hand, when S′ is not acceptable
to Pi−1, Pi generates another improvement and starts over again. For efficiency, each
program can hold some kind of success- and failure list containing solutions that have
already been tested for acceptability and were either accepted or rejected.

In the context of an implementation, it is also interesting to investigate which con-
ditions a program has to fulfill in order for it not to lift the complexity up with one
level in the polynomial hierarchy, yielding possible optimizations of the computation
and communication process.

Finally, we plan to look into a broader class of communication structures, e.g. a tree
or, more generally, a (strict) partial ordering of programs, or even cyclic structures.
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