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Abstract

We address two problems in underspecified graph-
structured knowledge bases (GSKBs): the co-
reference and the provenance problem. The for-
mer asks “Which existentially quantified variables
in different but related axioms of a GSKB pos-
sibly denote identical individuals?”, and the lat-
ter “From which axioms in a GSKB is a piece
of knowledge getting derived?” In an underspeci-
fied GSKB, the desired co-reference problem can-
not be addressed by means of sound inference,
i.e., the co-reference information does not follow
logically from the GSKB. We present an algo-
rithm which rewrites an underspecified GSKB into
a strengthened GSKB by Skolemization and addi-
tion of equality atoms such that the co-reference
information can be drawn from it. This enlarges
the logical theory (the deductive closure) of the
GSKB, and hence strengthens its inferential power.
Both problems are important for a variety of rea-
sons, e.g., to reduce modeling effort and to keep
the GSKB small by identification of entailed and
hence redundant atoms. We are identifying a class
of desirable logical models which we call preferred
models — our approach is model-theoretic in na-
ture. We prove that the strengthened GSKBs en-
forces those preferred models. The prefered models
capture the desired co-references. The presented
framework is a logical reconstruction of an algo-
rithm which we successfully applied on a large-
scale biological knowledge base, in which it identi-
fied more that 22,000 equality atoms.

1 Introduction

Underspecified knowledge bases occur naturally, for exam-
ple, when modeling biological knowledge of the form:

S1 Every Cell has part a Ribosome and a C'hromosome.
S2 Every EukaryoticCell is a Cell.

S3 Every FEukaryoticCell has part a FEukaryotic-
Ribosome, a EukaryoticChromosome, a Nucleus,
such that the FukaryoticChromosome is inside the
Nucleus.

S4 Every EukaryoticRibosome is a Ribosome.
S5 Every EukaryoticChromsome is a Chromsome.

Here the question arises - is the EukayoticChromosome
that S3 is talking about actually the Chromsome from S1?
Such assumptions are often reasonable. We are calling a
knowledge base which does not answer this question defi-
nitely underspecified. These kinds of question are studied to
some extent in the field of computational linguistics, where
it is called anaphora resolution [Carpenter, 1994], [Cohen,
2007]. We will use the term co-reference resolution in the
following.

From a logical point of view, these sentences correspond
to the following FOPL formulas; we are using the comma in
consequents to denote conjunction, and combine S2, 53 into
S523:

S1 Va:Cell(z) = 1,29 :
hasPart(z,z1), Ribosome(xy),
hasPart(z,z2), Chromosome(zs)

S23 Va : EukaryoticCell(x) = Jxg, x4, x5 : Cell(x),
hasPart(x, x3), Euk.Ribosome(xs),
hasPart(x, x4), Euk.Chromosome(xy),
hasPart(x,x5), Nucleus(xs), inside(xz4, Ts5)

S4 Vx: Euk.Ribosome(x) = Ribosome(x)

S5 Va : Euk.Chromosome(x) = Chromosome(x)

In the following, unary predicates are called concepts, and
binary predicates relations. The concept D is called a su-
perconcept of C if Vo : C(z) = D(z),...,and C is a
subconcept of D.

Co-references are, in general, tedious to specify at knowl-
edge authoring time, or impossible if the input is underspec-
ified in the first place (e.g., if natural language or incom-
plete visual graphical formalisms are used for GSKB au-
thoring). Hence, an automatic co-reference resolution algo-
rithm is desired which will necessarily have to rely on some
sort of guessing. Related motivation and mechanisms can
be found in the literature. For example, the KM reasoning
system [Clark and Porter, 1997] employs a so-called unifica-
tion operator for this purpose. Dealing with underspecified
object-oriented knowledge bases has also been studied in the
context of answer set programming (ASP) in [Chaudhri and
Tran, 2012] where a unification operator is presented. These
and related approaches (e.g., based on Description Logics)
are discussed in more detail in Section 5.



We consider co-reference resolution in GSKBs an impor-
tant problem to solve because of its potential to reduce mod-
eling effort and to maximize the deductive power of a GSKB
(get more entailments from it). For example, if we extend
Ribosome(x1) in S1 by saying that it is inside Cytosol(xg),
resulting in

S1b Vz : Cell(x) = Jxq, 22, %6 :
hasPart(x,x1), Ribosome(zy),
hasPart(z,xzg), Chromosome(zxs),
inside(x1,xg), Cytosol(xe)

then we would like to derive that the same holds for
Euk.Ribosome(zxs) in EukaryoticCell, assuming that the
Ribosome which got inherited from Cell got specialized.
Thus, there is only one Euk.Ribosome in EukaryoticCell,
and no additional Ribosome. However, this only holds if
there is a co-reference between x3 and x1. We can ensure that
x3 = x1 holds in S1b if we ”strengthen” the GSKB by addi-
tion of equalities between Skolem function values represent-
ing the original existentials. Such a hypothesized strength-
ened GSKB might look as follows:

S1b’ Vz : Cell(z) =

hasPart(z, fi(x)), Ribosome(fi(x)),

hasPart(z, f2(x)), Chromosome( f2(z)),

inside(f1(z), fo(x)), Cytosol( fo(x))
YV : EukaryoticCell(x) = Cell(z),

hasPart(z, f3(x)), Euk.Ribosome( f3(x)),

hasPart(z, f1(x)), Euk.Chromosome( fi(x)),

hasPart(z, f5(x)), Nucleus(f5(x)),
inside(f4(2), f5(x))),

fs(z) = fi(z), fa(z) = fa(z)

Note that Vz EukaroyticCell(z) [ 3x1,x3
hasPart(x,x1), Euk.Ribosome(xy),inside(x1, x3),
Cytosol(xg) in {S1b',523', 54, 55}, due to fs(x) = fi(x)
in 523'. Hence, this piece of knowledge does not have to be
remodelled in S23'.

The provenance of an atom is important, as it enables
us to identify and remove implied and hence redundant
atoms. This reduces the size of the GSKB and keeps
it manageable. For example, in S23, it is not neces-
sary to re-state that every FukaryoticCell has part a
Ribosome, because this can be derived from {51, 52}. Of-
ten, established co-references affect the provenance infor-
mation. An example is again given in {S1b,523, 54, 55}
by Vz EukaryoticCell(x) B Jr1,x3, 29
hasPart(x, x3), Euk.Ribosome(xs), inside(xs, x9),
Cytosol(xg), and hence, inside(xs,xg) would not be re-
dundant if added to S23. However, this entailment does
hold in {S1¥’,.523', 54, S5}, because of f3(z) = fi(x) co-
reference in S23'.

The contribution of this paper is the presentation of a
novel GSKB rewriting algorithm. It rewrites a GSKB such
as {S1b, 523,54, S5} into a strengthened GSKB, similar to
{S1¥', 523,54, S5}. From the strengthened GSKB we com-
pute the provenance of atoms and co-references. We will use
a model theoretic notion of preferred models to characterize
the additional desirable inferences that we wish to get from
the underspecified GSKB. The information in the preferred
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model is used to rewrite a Skolemized version of the GSKB
into a strengthened version of the GSKB, whose models are
exactly the preferred ones. Obviously, deciding entailment
of atoms, and hence the provenance problem, are in general
undecidable problems in FOPL. In our fragment of FOPL(=)
these problems are decidable.

The paper is structured as follows: We first formally de-
fine the GSKB framework and required notions of GSKB
and strengthened GSKB, and the semantic notion of pre-
ferred models. We then present the algorithm and show
that the strengthened GSKB (produced by the algorithm)
has models which are preferred which hence gain the re-
quired additional conclusions in order to decide the prove-
nance and co-reference problems. Next we evaluate the al-
gorithm on a large-scale biological graph-structured GSKB
from the AURA project [Gunning, D. and Chaudhri, V. K. et
al., 2010]. Finally we conclude and discuss related and future
work.

2 Graph Structured Knowledge Bases

In the following, we denote an atom or a conjunction of atoms
with free variables {z,z1,...,z,} as p(z, &), with & =
(1,...,2n). Graph-structured knowledge bases (GSKBs)
are formulated in first order-logic with equality (FOPL(=)).
We assume that there is a function terms which returns
the terms in a formula (or atom), e.g. terms(R(t1,t2)) =
{tl, tQ}:

Definition 1. Basic Definitions. Let C be a countably in-
finite set of unary predicate names, R be a countably infi-
nite set of binary predicate names, and F = {f1, f2,...} be
a countably infinite set of unary function names. We have
no constants. Hence, (C U R,F) constitutes the signature
of the exploited fragment of first-order logic with equality.
Elements in C are called concepts, and elements in R rela-
tions. Moreover, let X = {x, 1, %2, ...} be a countably infi-
nite set of variables. We only allow function nesting of max.
depth 2 - t is a GSKB term iff either t € X, ort = f;(x),
ort = fi(fi(z)). In the following, assume that t,t1,t, are
GSKB terms:

GSKB atoms: Let {C,D} CC, R€ R, {v,w} C X. Then,
C(v) and C(fi(x)) are concept atoms, and R(v,w),
R(z, fi(x)) are relation atoms. Moreover, there are
equality and in-equality atoms of the following form:
filz) = £3(2), filx) = £ (fu(0)), £ (Fulw)) = o),
and fi(z) # f;(x), with i, j, k pairwise unequal.

GSKB rule: For a concept C, a formula of the
form Vx Cz) = 3% o(xz,T), where
o(x,%) = N;e1. Qi is finite conjunction of GSKB
atoms. This is shorthand for ¥z : C(z) = 37 :

pairwise_disjoint(z,T) A p(x, ), T = (x1,...,Zn),
with the macro pairwise_disjoint(x, ) =
Nicicjcn®i T AN Nicicn Ti # 2

For a concept C with pc = Yz : C(z) = 37 :

¢(x, T), denote (v, ) = Ny, @i asaset by ¢ =
fon,..

We require that the terms in terms(C') are connected to
x: forall t € terms(C), connected(zx,t) holds, where
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connected is defined as follows: connected(ty, t3) holds
if {R(t1,t2), R(t2,t1)} N 7c # 0, or there is some t s.1.
connected(ty,t) and connected(t, ts) holds.

GSKB: A finite set of GSKB rules ¥ in which there is at most
one rule per concept.

Input GSKB: A GSKB which is function-free and without
equality atoms.

Auxiliary notions: Given a GSKB Y, we refer to the set of
concepts used in . as concepts(X), and T¢ 5 to refer to
the consequent of pc € X. We extend the other defini-
tions to accept a ¥ argument as well, e.g., terms(C, %),
etc.

For example, {S1b, 523, 54,55} is an (“underspecified”) in-

put GSKB, and {S1b',523', 54, S5} is a strengthened (out-

put) GSKB; however, we need to replace the 3 quantifier with

3!. Strengthened GSKB is defined below. Note that somtimes

the strengthening algorithm will not add anything, and the in-

put with equal the ouput, e.g. for {54, S5}.
We require that a input GSKB must be coherent:

Definition 2. Coherent GSKB and coherent model. A GSKB
Y. is coherent if there is standard first-order model T =
(A1), T |= %, in which every concept C mentioned in ¥
is interpreted in a non-empty way: CT # (). Such a model is
called a coherent model.

Moreover, we define standard notions such as superconcepts
as follows:

Definition 3. Auxiliary Definitions. Let C be a concept, %
be a GSKB. We then define the following functions and pred-
icates w.r.t. X:
e asserted_types(C,¥) = {D | D(t) € To.x}
e has_asserted_types(C, D)
iff D € asserted_types(C,X)
e asserted_superconcepts(C,¥) = {D | D(z) € 7o.x}
e has_asserted_superconcepty, (C, D)
iff D € asserted_superconcepts(C, %)
e superconcepts(D, Y)
= {E | has_asserted_superconcepty: (D, E) }
e has_superconcepty,(C, D)
iff D € superconcepts(C,X)
o all_typess(C)
= {E| D € asserted_types(C,¥),
E € superconcepts(D, %)}
U superconcepts(C, X)
e has_types(C, D) iff D € all_types(C,X)

where R denotes the transitive closure of relation R.

We require that the relations has_superconcepts, and
has_typey are irreflexive and define:

Definition 4. Admissible GSKB. An input GSKB Y is
called admissible if . is coherent, has_superconcepts, and
has_typey, are irreflexive, and if there are no implied concept
atoms in the rules: for all C € concepts(X), if D(t) € ¢,
then for all E € superconcepts(D,X): E(t) € 7o,

The following is straightforward:

Proposition 1. Every admissible GSKB 3. has a coherent,
finite model.

Proof. Given that we do not support negation of concepts or
relations, and given that inequality atoms are only introduced
by the 3! quantor, inconsistencies such as  # x cannot occur.
Moreover, since GSKB has_superconcepts, and has_types
are irreflexive, the GSKB is acyclic, and the consequent of
every rule can be “unfolded”, analog to the unfolding of an
acyclic TBox in description logics [Baader er al., 2003]. This
produces a finite consequent for every rule. Next, for every
pc € X, C can be instantiated s.t. ic € CZ holds, and we
can easily satisfy the existentials in the consequent by cre-
ating one instance per variable. The process terminates and
produces a model of > which is coherent and finite. O

We need a notion of connectedness on models:

Definition 5. Predicate connected on models. Let T =
(A,T) be a model of ¥. For i,j € AL, we define
connectedz (i, 7) if, for some R € R, {(i,]), (j,i)} N RT #
0, or there is some k € Az s.t. connectedz(i, k) and
connectedz(k, 7).

In the following we are considering admissible GSKBs only,
and we are interested in their preferred models. The intuition
behind the notion of a preferred model is the following: for
every concept C, there should be a prototypical model of C
which is not also a model of some non-superconcept of C,
in the form of a connected graph that “mirrors” the atoms in
Tc,x — due to the disjointness axioms there will be at least
one individual per variable in po in this model. Moreover,
the prototypical model for C' also contains inherited “graphs”
from concepts in all_typess,(C). Hence, the graph satisfying
the atoms 7¢ x; is only a subgraph of the full model for C.
Most importantly, the notion of a preferred model captures
the intuition that inherited content can be specialized, and
hence should give rise to co-references: in the prototypical
model for EukaryoticCell, the Chromsome inherited from
its superclass Cell will be represented by the same individual
as its own local Fuk.Chromsome. Note that this minimizes
the extension of Chromsome. The same argument applies
to arbitrary conjunctions: we will not identify the inherited
Chromsome with the local Euk.Ribosome, as this would
result in a model in which Chromsome A Euk.Ribosome
is interpreted non-empty, and there are models in which this
conjunction is interpretated by the empty set. These intuitions
are formalized as follows:

Definition 6. Preferred model of admissible GSKB X.. Let
Y be an admissible GSKB, and I |= X be a coherent finite
model. Then, T is called preferred if the following holds:

1. for every concept C' € concepts(X), there is (at least)
one i € C7 s.t. for all D, if has_superconcept(D,C),
then i & DT — hence, there is at least one element which
is “unique” to C, and denoted by ic.

2. for C € concepts(X), define participantsz(C) =
{j | connectedz(ic,j)}. Then, for all C,D €
concepts(X), with C # D, the following holds:
participants(C) N participants(D) = (.



3. for every non-empty subset CS C concepts(X), there
is no preferred model T # T', with Azr C Az s.t.

7’ z
Neees €7 CNeees €

Consider the preferred models of {S1,523,54,55}. We
are forced to have at least one “unique” Clell which is
not a FukaryoticCell, due to 1. Otherwise, every Cell
would acquire the properties of FukaryoticCells, which
is not desirable. Moreover, none of the individuals con-
nected to that unique Clell are shared by another concept,
due to 2. Hence, the concept models have the forms of
“non-overlapping graphs”, and inherited content is “mapped
in”. We are forced to minimize the extension of ev-
ery concept, as well as of every conjunction of concepts.
This prevents models in which, for example, Ribosome’ N
Euk.Chromosome* # () holds, as there are smaller mod-
els in which they are interpreted disjointly: Ribosome” N
Euk.Chromosomer = (). Note that the inequality atoms
in X only prevent “merging” of variables within the same
formula, but the individual for Chromosome(ys) inherited
from Cell could in principle be made co-referential with
the local Euk.Ribosome(ys) in EukaryoticCell. This is
prevented in an admissible model. Also, looking at the
model of FukaryoticCell, the co-reference between the
from Cell inherited C'hromosome(yz) and its own local
Euk.Chromosome(yy) is made explicit, since this will
result in the smallest (extension of) Chromosome®. A
model in which a FukaryoticCell would have two differ-
ent Chromosomes would be larger and in violation to 3.
So, we only make those conjunction true in an preferred
model that we have to make true - for example, Cellf N
EukaryoticCellI # (0, due to S23, and there is no model
in which this conjunction is interpreted by a smaller set.

Note that an preferred model is not a “minimal” model
in the classical sense.  Consider Vz : C(z) =
dlzl R(z,z1), D(xl), Vx SubC(x) = a2
C(z), R(x,22), E(«2). In the classical minimal model Z,
we would have #A = 2, and it would satisfy D A E. Also,
CT = SubCZ. But this is not what we want. It violates 1, 2,
as well as 3. The preferred model will need at least 5 nodes.

In principle, there can be more than one preferred model
and hence, more than one strengthened version of the GSKB.
For example, consider the GSKB

C(z) = 3z : R(x,x1), E(x1)
SubC(x) = Jwg, 23 1 C(x),
R(z,x3), E(x2), F(x2),
R(z, x3), E(xs), G(x3).

Here, 21 in C can be co-referential with either x5 in SubC,
or with 3.

In the next section, we will show the following construc-
tively, by specifying an algorithm which constructs an pre-
ferred model for a given admissible GSKB >:

Proposition 2. Every admissible GSKB has an preferred
model.

We can now state the purpose of the GSKB strengthening al-
gorithm more clearly. Given an admissible GSKB X (note
that this is an input GSKB), we are interested in finding a
strengthened version of X:

Definition 7. Strengthened version of X.. Given an admissi-
ble (input) GSKB ¥, we are calling ¥’ a strengthened version
of 3 if the following holds:

1. for every rule pc € X, there is a rule pi, € ¥’ that uses
only the variable x: T (p) N X = {z}.

2. ifT' =Y is a standard first-order model of ¥/ which is
coherent, then T' |= %, and T' is an preferred model for
Y. Hence, ¥ = X.

From a strengthened GSKB, we can decide provenance and
co-reference as follows:

Definition 8. Provenance and co-reference determination.
Let C be a concept, ¥’ be a strengthened GSKB, and P C
TC,Sigma’- With B = /\aeP «, we then say that 3 (and hence
all the atoms in P) are

e local (or asserted) in C' if

S\ {pe} UL O@) > Auery ip 0)
Ve Clx) = B,

o and inherited otherwise. More specifically, 3 (and P)
is inherited from D, iff D(t) € 7¢yx, and [/ =
Nacpr @ with P' = {as,)= @) | @ € P} is lo-
cal in D, and there is no more general SupD with
has_superconcepts: (D, SupD) such that 3 (and P) is
inherited from SupD.

Moreover, given concepts C,D, two GSKB terms t; €
terms(C), ta € terms(D) are said to be co-referential in
> iﬁ”either t1 = to =z, t1 = fi<.’17), to = f](fk(x)):
orty = fi(z), t1 = fi(fu(x)), and ¥’ = (Vx : C(z) =
filz) = fi(x) vV (Vo : D(z) = fi(z) = f;(2)).

Note that a conjunction S is local as soon as some atom is
already local. Hence, if a complex conjunction (3 (resp. P) is
local, this does not mean that all its atoms have to be local —
some atoms may be inherited.

Proposition 3. Provenance and co-reference are decidable
in a strengthened GSKB Y'.

The proof is given in the next Section.

3 Constructing a Strengthened GSKB
The algorithm works by performing the following steps:

1. Produce the skolemized version of X, g, by bring-
ing every rule in ¥ into Skolem normal form. The
Skolemized axioms contain no nested function terms,
only terms of the form f;(z) and z. Let O =
{oc | C € concepts(X)} be a set of constants, and also
add {C(o¢) | C € concepts(X)} to T.

2. Construct the minimal Herbrand model 14 =
(Ay,I#) of g. The minimal Herbrand model is
unique and finite, given that ¥ is admissible (and does
not contain disjunctions in the consequents). Note that
the minimal Herbrand model will automatically satisfy
the inequality atoms, and it will also satisfy points 1 and
2 from Definition 6, due to the set of constants @ which
are instantiated as {C'(o¢) | C' € concepts(X)} C Xg,
and with the exception of x, there are no shared terms



in the rules of X g, as Skolemization creates fresh func-
tion symbols for every variable. Thus, o represents the
root individual of the unique model for concept C, with
Og«H =1ic,10 € CTn,

3. Transform Zy; into an preferred model of X, 74 =
(A, T4). Ay is the quotient set of Ay under the
= equivalence relation, Ay = Ay\ =. Hence, the
elements of A4 represent the equivalence classes of
equated Skolem ground terms from the Herbrand uni-
verse Ay;. This step is non-deterministic, as there may
be more than one preferred model for X.

4. Use Z4 to construct a strengthened GSKB Y/ from X g
which is satisfied by that model. Use the equivalent clus-
ters in A 4 to generate equality atoms.

5. From Y’ it is possible to decide the provenance and the
co-reference problem, on a syntactic basis.

Since steps 1 and 2 are standard and well-know [Hedman,
2004], let us define the algorithm for step 3. We need two
more utility notions before we can proceed:

Definition 9. Relations £ and U, and equivalence classes.
Let Tyy = (Ay,-I%) be the minimal unique Herbrand
model after step 2 of g above. Let £ be a binary rela-
tion over terms from the Herbrand universe Ay, and define

CZOS’U/TG((‘:) = UCGconcepts(E),kGAH
{(f1(k), f2(k)) | (fi(oc), f2(oc)) € E¥} U
{(f1(f2(k)), f3(K)) | (fi(f2(0c)), f3(oc)) € E¥} U
{(f1(f2(R)), f3(fa(R))) | (f1(f2(0c)), fs(faloc))) € E¥}

and -® denotes the reflexive, symmetric, and transitive clo-
sure of a relation. Let [i]¥ = {j | (i,j) € closure(&)}.
Moreover, let U = {[i]¥ # [ | i1 € [i]¢,51 € [j]¢,C €
concepts(X), (i1 # j1) € To,xg} be the set of inequality
atoms.

Intuitively, (4, j) € & represents i = j, and [i]¢ represents the
equivalence class of i. The relation £ (and hence the equiva-
lence classes) will grow as pairs of equated individuals / terms
are added by the algorithm given below. Intuitively, the clo-
sure operator makes sure that whenever two terms starting
from the same root node o¢ are equated in the unique model
of C, that then this equality will also hold for all its C' instanti-
ations in other parts of the model. Note that also I/ will grow,
representing inferences such as i # j. k # 1, =k =i # [.
The algorithm can now be stated as follows:

Algorithm 1. Construction of an preferred model for 3. Let
Ty = (Ay, -I7) be the minimal unique Herbrand model of
Y.g after step 2 above.

1. define hasRoot(i) = oc iff connectedr,, (oc, i) holds,
for every C' € concepts(X).
2. then, non-deterministically apply the following merging
rule on the model as long as it is applicable:
if there are individuals i,5 € Ay, i # J,
with hasRoot(i) = hasRoot(j) = oc and
ind_types(i) C ind_types(j), i & [4]¢,
[i]€ # [§]€ ¢ U, then £ = EU{(4,4)}.

Assume the rule application stops with a global maxi-
mum of inequality atoms s.t. #U is maximized. Since

this is a non-deterministic algorithm, such a run exists,
and we can assume that the non-deterministic algorithm
will produce it.
3. define Ty = (A4, -T4) as follows:
A = {[i)¥ | i € Ay}, and for all C € concepts(X) :
CTa = gi]f |i € C™}, forall R € R : RT4 =
{([%, [71°) 1 (5, 5) € RP*}.
The algorithm terminates, since Z, is finite, so there is a finite
set of merging possibilities in the rule. The solution which
maximizes #U can obviously be found by search in a deter-
ministic version.

Lemma 1. Z4 = (A4, -Z4) is an admissible model for ¥.

Proof. Obviously, Z 4 is finite and coherent, as it was con-
structed by the algorithm based on the unique finite Herbrand
model. Assume that Z 4 is not an preferred model for . By
construction, Z 4 is a model of X, as the merging rule pre-
serves the model character of Z3,. Since 74, is a model of the
Skolemized version, it is also a model of ¥, since ¥g | X
for the Skolemized GSKB [Hedman, 2004]. Hence, Z 4 is a
model of ¥, also.

It remains to show that it is admissible. Assume that it
is not. Since points 1 and 2 from Definition 6 are already
satisfied by construction, only 3 can be violated. Then, there
must be some other model Z’ and some CS C concepts(X)

such that Noees CF € Neoees CF. witnessed by [i]° €
Neoees CF with [i]% & Neees CF
1. If ﬂCec s cT = (), then this violates the assumption
that ¥4, was a minimal Herbrand model (which does not
make things true without need). Hence, (\ces C* =0
as well, which contradicts [i]* € N ces CF.

2. Assume CS = {D} is a single concept name. As Zy
was a minimal model, the existence of i, with i € [i]%,
is somehow enforced by g, hence there is some term
t; € terms(C, Xg) with D € ind_types(t;). Moreover,
for the same reason, DT = (), as otherwise it wouldn’t
be a model, but i & DT, Consequently, there is some
j € DY withi # j. Then, there must also be some ¢; €
terms(C,Xg) with D € ind_types(t;), with t; # t;.
There are a couple of cases:

(a) Assume ind_type(t;) C ind_types(t;)

i.if ¢’ = C and hence hasRoot(i) =
hasRoot(j) = C, then (t; # t;) & Tcss
and [i]¢ # [j]¢ & U, as otherwise Z would
not be a model. But then, the merging rule
would have been applied and merged ¢ and j,
such that [i]* = [j]° = {i,;}. Rule application
could not have been blocked by the precondition
[i]¥ # [j]¢ & U, because T4 was produced by
a run in which #U was maximized. This means
that the rule will be applicable and equate ¢ and j,
contradicting the assumption that the algorithm
has terminated.

ii. otherwise, C' # C’, then we don’t have to worry:
as stated in Definition 6, participants(C) N
participants(C’) = .



(b) Assume ind_type(t;) C ind_types(t;): analog to
the previous case.

(c) Assume ind_type(t;) € ind-types(t;). Then
there is some E € indtype(t;),E ¢
ind_types(t;). As Z4 was a minimal Herbrand
model, and there is no way for [i]¢ to “vanish”
from EZ4, there must be [i]¢ € EZ4 and hence
[i] € Neees CT'. Contradiction.

3. If C§ = {Dy,...,D,}, then there must already be
some CS" = {D,,,D,},CS" C CS for which we
have such an . If has_superconcept(D,,, D,,) or vice
versa, then there is already some CS’ = {D,,}, and
this is handled by 2. Otherwise, D,,, D, are not in
a sub/superconcept relationship, and corresponding in-
stances are not getting merged by the merging rule.
But similar to 2¢), this will lead us to conclude that
[ € Neees CT', contradicting the assumption.

Hence, 7 4 is an preferred model. Note that this proves Propo-
sition 2. O

For what remains to be shown is how we can compute a
strengthened GSKB from X5 and Z 4.

Definition 10. Construction of strengthened GSKB ¥'. Let
Y.g be the skolemized version of the admissible GSKB, and
T 4 be an preferred model of X.. We then rewrite the rules in
Y5 as follows; note that at, —1,) means “in «, substitute all

occurrences of ty with ts”:
> = {rewrite(pc, terms(C, £s)) | po € Sg}, with
. A
rewrite(pc, terms) = C(z) =
a A

QETC ng

/\teterms,t;éoc haSROOt(tax)[ocHI] A
t1,toEterms,t F£to 1 7é t2[oc—>w] A
t1€terms,ta€(ty) t1 = t2[op—a]

In addition, we need the following axioms:

1. ¥ 2% U{C(oc) | C € concepts(X)}
2. X' 2% U{oc #op | C,D € concepts(X),C # D}
3% =Y U {Ve,y, 2
hasRoot(x,y), hasRoot(y, z) = hasRoot(z,z) }
4. ¥ =Y U{Va,y:
hasRoot(z, oc), hasRoot(y,op) = = # y },
forall C, D € concepts(X),C # D.
Lemma 2. IfZ = Y/, then T is an preferred model for Y.

Proof. As Y has been constructed from X5 by adding equal-
ity atoms to explicitly represent the co-references with inher-
ited Skolem function successors, which have been identified
by the merging rule from an preferred model of ¥, it is clear
that any model of ¥’ will force the same co-references, and
hence, satisfy point 3 in Definition 6. Moreover, point 1 in
Definition 10 makes sure that we have non-empty concept
models for every concept by requiring an instance, hence sat-
isfying condition 1 in Definition 6. Point 2 in Definition 10
enforces disjointness between those constants, and point 3
declares hasRoot as a transitively closed relation. In com-
bination with the added hasRoot atoms in X/, and with the

axioms in point 4 of Definition 10, this ensures that condition
2 in Definition 6 is satisfied, requiring that the unique concept
models do not overlap (no sharing of participants). O

Let us return to our example. For X =
{S1b,523,54,55} we will get g as follows:
Cell(x) =
hasPart(z, fi(x)), Ribosome(fi(x)),
hasPart(z, fo(x)), Chromosome(f2(x)),
inside(f1(z), fo(z)), Cytosol( fo(z)),
pairwise.disjoint ({z, fo(x), f1(2), J2(2)})
EukaryoticCell(z) = Cell(z)
hasPart(z, f3(x)), Euk.Ribosome( f3(x)),
hasPart(z, fa(x)), Euk.Chromosome(fi(z)),
hasPart(z, f5(x)), Nucleus(fs(z)),
inside(fa(), f5(z)),
pairwise_disjoint({z, f3(x), fa(x), f5(x)})
Cell(ocen), Eukaryotchell(oEukarwtwce”)
Ribosome(oRibosome) - - -
If we look at the minimal Herbrand model of g, we
find that the following atoms are satisfied for ogyk.celr:
hasPart(oguk.ceil, f1(0Buk.cell)),
hasPart(opuk.ceits f2(0Buk.Cell)),
inside( f1(0guk.cett); fo(OBuk.Cell))s
Ribosome( fi1(0guk.ceit)),
Chromosome( fo(opuk.ceil)),
Cytosol( fo(0Euk.cett))s
hasPart(oguk.ceil, f3(0Buk.cell)),
hasPart(opuk.ceits f4(0Buk.Cell)),
hasPart(oguk.ceil, f5(0Euk.cell)),
inside(f4(0puk.cer): [5(0Buk.Cell))s
Euk.Ribosome( f3(0puk.cell)),
Euk.Chromosome( f4(0guk.cell))s
Nucleus(fs(0puk.ceit))s
Moreover, there are pairwise inequality atoms between
0Buk.Cell, [3(0Buk.cetl), fa(0Buk.Cetl)s f5(0Buk.Cen)  and

between oguk.ceil, fo(OBuk.Cell)s f1(0Buk.Cet1), f2(0Buk.Cell)-

If we next look at 7 4, we will find that [f3(0guk.cen]) =
[f1(oguk.cen)] = {f3(0puk.cen); f1(0Buk.cen)} holds,
and likewise [fi(opuk.ceu]) = [fo(0Buk.cen)l =

{f2(0Buk.cett); f1(0Buk.cen)}.  Hence, the desired co-
references have been established, e.g., the from Cell in-

herited Ribosome( f1(0guk.cen)) is identified as being co-
referential with the “local” Euk.Ribosome( f3(0puk.ceil))-
The abridged strengthened GSKB ¥’ then looks as follows:
Cell(z) =
hasPart(z, f1(x)), Ribosome(f1(x)),
hasPart(z, f2(x)), Chromosome( f2(z)),
hasRoot(f1(x), ), hasRoot(fg(m), x),
pairwise_disjoint({z, fi(x), f2(x)})
EukaryoticCell(x) = Cell(z),
hasPart(m f3( ), szosome(]%(m)),
fs(@) = f1(z), fa(x) = fa(),
hasPart(z, fa(x)), Chromosome(fi(z)),
hasPart(z, f5(x)),Nucleus(fo( ),
inside(fa(x), f5(x)),
hasRoot(fs(z), ), hasRoot(fa(x), x),
hasRoot(f5( ), ),

pairwise_disjoint({x, f3(x), fa(x), fs(x)})



Ribosome(oRiposome ), Chromosome(ochromosome)
... 0Cell 7 OEukaryoticCell - - - (axiom sets 2—4 from Def. 10)

We claim that we can decide the provenance problem for the
strengthened GSKB Y’ syntactically as follows; also recall
that in an admissible KB, the consequents do not contain re-
dundant concept atoms:

Definition 11. Syntactic provenance of atoms in ¥X'. In a
strengthened GSKB ¥, for C' € concepts(X), let o € 7¢.5y
be an atom:

e a = C(f(x)) is inherited from D if D(fs(x)) €
oy with D € {C} U all_superclasses(C,%")
and f'(fs(zx)) = [f(z) € 7ox with C(f'(z)) €

Tp,s, and there is no more general class SupD with
has_superconcept(D, SupD) for which this is also the
case.

e a = R(f1,f2) is inherited from D if D(fs(x)) €
Tos with D € {C} U all_superclasses(C,¥’) and
{fi(fs(2)) = fi@), f5(fs(@)) = f2(@)} € 7O With
R(f{,f5) € Tp,x, and there is no more general class
SupD with has_superconcept(D, SupD) for which
this is also the case.

If a is not inherited from some concept, it is called local to C.

Looking at the example GSKB X/, we see

that the atoms  hasPart(x, fs(x)) are  inher-
ited from Cell, due to f3(x) = fi(x), and
hasPart(z, f4(x)), due to fy(x) = fa(x). Consequently,

hasPart(z, f5(x)), Nucleus(fs(x)), inside( f4(x), f5(x))
are local to FukaryoticCell. Hence, for the original GSKB
%, hasPart(x,ys) and hasPart(x,y,) were inherited from
Cell, and hasPart(z,ys), Nucleus(ys ), inside(ys,ys) are
local to FukaryoticCell.

We claim that we can decide the co-reference problem for
the strengthened GSKB X syntactically as follows:

Definition 12. Syntactic co-reference of terms in ¥'. Two
terms with t; € terms(C,%¥'),ta € terms(D,X’) are co-
referential, if t1 = to = x, or t1(x) = ta(t) € 105, or
to(z) = t1(t) € Tp x (note that t = x, ort = fs(x)).
Looking at the example GSKB X', we see that f5(z) = f1(z)
are co-referential and hence the Ribosome in Cell is the
same as the Fuk.Ribosome in EukaryoticCell, and like-
wise for the Chromosome due to fy(x) = fa(x).

Lemma 3. Syntactic provenance according to Def. 11 is
sound and complete for deciding semantic provenance ac-
cording to Def. 8. Syntactic co-reference according to Def.
12 is sound and complete for deciding semantic co-reference
according to Def. 8.

Proof. Soundness is immediate. Completeness is a straight-
forward too, as Skolem functions are not shared by different
consequents in ¥/, and ¥ was admissible. Moreover, for two
different Skolem functions f;, f;, with i # j, fi(t) = f;(t)
will hold for a certain term ¢ in all models of ¥’ if and only
if this was explicitly enforced by an equality atom. Note that
this also proves Proposition 3. O

We can generalize these results to the original GSKB X as
follows. To check the provenance of 7¢ 5: we need to keep

track during Skolemization which atom o € 7¢ 5 corre-
sponds to «, and check the provenance of o’ in /. Likewise,
to check to co-referentiality of two variables, let ¢; and ¢ be
its corresponding (Skolem function) terms in the Skolemized
versions. Now, y; and yo are co-referential in X iff ¢; and
to are co-referential in ¥'. Looking at the example GSKB X,
we see that y; from S1 is co-referential with y3 in 523 since
fa(x) = fi(z) in X', and ys from S1 is co-referential with
Y4 in S23 due to fy(z) = fa(z) in X'

However, given that a GSKB may have more than one
strengthened version, “to decide” should be understood in
a credulous way here. Only in case a provenance informa-
tion or co-reference holds in all strengthened GSKBs, this
would be a skeptical conclusion; it is clear that all strength-
ened GSKBs can in principle be constructed, due to finiteness
of Z3,. We can hence present the main result of this paper as
follows:

Corollary 1. Given a strengthened GSKB Y./, we can decide
the provenance and co-reference problem on a syntactic ba-
sis. For an admissible (input) GSKB 3., we can decide the
credulous provenance and credulous co-reference problem by
constructing a strengthened GSKB Y first, and check there.
The skeptical provenance and skeptical co-reference problem
can be decided by constructing all strengthened GSKBs, and
checking if a positive answer holds in all of them.

4 Implementation & Evaluation

We have applied the algorithm on the AURA GSKB [Gun-
ning, D. and Chaudhri, V. K. et al., 2010], which currently
contains 5662 graph-structured concepts, with a number of
141909 atoms. The GSKB strengthening algorithm identi-
fies 116442 of these triples as inherited, which amounts to ~
82 %. Moreover, 22667 equality atoms were hypothesized,
and 2858 cases of variable specialization in a subconcept
were found (e.g., the Chromosome in Cell got specialized
to Euk.Chromosome in FEukaryoticCell). The required
runtime is =~ 15 hours on a Intel Xeon ES607 2.2 GHz PC
with 8 GB of RAM running Windows 7 64 Bit with a 64 Bit
Common Lisp implementation.

For the sake of implementability, the implemented algo-
rithm does not really construct a Skolemized version of 3 and
neither its Herbrand model. Rather, it works directly on the
level of formulas, by considering graph morphisms between
concept graphs. The operations performed on these graphs
can be understood as operations on the minimal Herbrand
model. The actual deterministic implementation of the non-
deterministically specified algorithm requires search in order
to maximize the number of inequality assertions. The search
space (number of possible individual mergings) is tremen-
dously large, and can only be tackled by employing a large
number of search heuristics, including time outs and pruning
of the search space. The achieved progress is good enough
from a practical point of view (i.e., 82 % of all AURA atoms
in the GSKB are identified as being inherited).

We have given the constructed strengthened GSKBs to the
subject matter experts in the knowledge factory [Chaudhri, V.
and Dinesh, N, et al, 2011] and they have evaluated the qual-
ity of the rewritten GSKB by spot-checking the provenance



of atoms. So far, the results are very encouraging, and only a
small percentage of atoms is falsely given a local provenance
(they should be inherited). This is caused by the heuristics
which prune the search space. The identified co-references
were correct to a very large extent.

5 Related Work, Conclusions, and Outlook

The problem of anaphora resolution has been studied in the
NLG literature to some extent; for example, [Carpenter, 1994;
Cohen, 2007] use default rules to hypothesize equality asser-
tions between variables (NLG referents).

The work of [Chaudhri and Tran, 2012] uses answer set
programming (ASP) to add so-called UMap atoms to the
GSKB specified as an ASP program. This is similar to our
approach here, but we are using a standard first-order seman-
tics and equality atoms. Note that in ASP programs, all con-
stants are distinct by definition. Also, they rely on a more
complicated axiomatic system encoded as ASP rules to pre-
vent unwanted unifications, whereas our approach is in prin-
ciple model-theoretic and hence does not require additional
axiomatic framework. Scalability of the ASP approach has
not been demonstrated yet.

As mentioned, the reasoning system KM uses a so-called
unification mechanism in order to tackle the same problem
[Clark and Porter, 19971, but a lack of a formal framework
makes it difficult to understand and to debug. One problem
with the approach is that unifications are not represented ex-
plicitly as (equality or Umap) atoms in the GSKB. Hence, re-
traction and comprehensibility is very difficult and time con-
suming, especially in case heuristically generated bad unifi-
cations have to be revised manually later. Dealing with the
effects of such destructive heuristic unifications ha time con-
suming in the AURA project.

It is well-known that the modeling of graph structures is
challenging in description logic (DL), as derivations from the
tree-model property usually result in decidability problems
[Vardi, 1996] which can often only be regained by impos-
ing severe artificial modeling restrictions. Although some
progress has been made on modeling graph structures with
DLs [Motik et al., 2009], those extensions are still too re-
stricted to be employed in a large-scale modeling effort such
as AURA. Our experience is that graph structures are cen-
tral to biology, and approximating them by trees results in
coarse models. Our framework allows us to express the graph
structures truthfully, but comes with other restrictions, too.
The AURA system and the actual implementation of the al-
gorithm covers additional expressive means that we have not
formally reconstructed yet (transitive, functional, hierarchi-
cal relations, number restrictions, and disjointness axioms,
cyclical GSKBs, etc.) This is future work. To the best of
our knowledge, there is no body of work in the DL commu-
nity that provides answers to the problems addressed in this
paper, namely, how to construct a strengthened GSKB by hy-
pothesizing equality atoms. To the best of our knowledge,
no abduction or hypothesization algorithm has every success-
fully been applied to such a large-scale GSKB.

The strengthened GSKB is also the basis for a cou-
ple of AURA knowledge base exports in SILK, ASP,

FOPL, and TPTP FOF syntax. We also have an
OWL2 translation, in which the graphs are approx-
imated by trees (using unraveling). The equality
atoms are omitted. These GSKBs can be downloaded
on request from http://www.ai.sri.com/halo/
halobook2010/exported-kb/biokb.html (a pass-
word and a license agreement are required). It is interesting
to note that our second smallest OWL2 export (we have sev-
eral variants, in increasing complexity) cannot be checked for
consistency by contemporary DL reasoners. However, our al-
gorithm has identified 116442 inherited atoms, hypothesized
22667 equality atoms, and found 2858 cases of variable spe-
cialization in 18 hours. Compared to the performance of DL
reasoners on the AURA KB, that is a success story.
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