
Faculteit Wetenschappen
Vakgroep Computerwetenschappen
Theoretische Informatica

Beslisbaar Open Answer Set

Programmeren

Proefschrift ingediend met het oog op het behalen van de

wetenschappelijke graad van Doctor in de Wetenschappen

10 februari 2006

Door: Stijn Heymans
Promotor: Prof. Dr. Dirk Vermeir

Faculty of Science
Department of Computer Science
Theoretical Computer Science

Decidable Open Answer Set

Programming

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Science

10 February 2006

By: Stijn Heymans

Supervisor: Prof. Dr. Dirk Vermeir

The Cure - A Forest

Samenvatting

Traditionele paradigma’s voor logisch programmeren hebben een gesloten
wereld veronderstelling: geldige deducties gebruiken enkel die constanten die
in het programma voorkomen. Het grounden van een logisch programma met
zijn eigen constanten verhindert het gebruik van logisch programmeren als
conceptuele modelleertaal. Een kennisingenieur zou alle “invloedrijke” con-
stanten moeten voorzien.

Open answer set programmeren (OASP) lost dit gebrek aan modulariteit
op door toe te laten dat logische programma’s geground worden met de ele-
menten van een willekeurige niet-lege aftelbare verzameling die de constanten
in het programma omvat. OASP is echter, in het algemeen, onbeslisbaar. Het
onbeslisbare domino probleem kan ernaar gereduceerd worden.

Ten einde beslisbaarheid te herwinnen, beperken we de vorm van logische
programma’s. Dit levert 3 families van logische programma’s op, gebaseerd op
3 verschillende reducties:

• Conceptuele Logische Programma’s (CoLPs) zijn logische programma’s
met unaire en binaire predikaten (mogelijk omgekeerde binaire predikaten)
waar regels een boomstructuur hebben. Beslisbaarheid van het nakijken of
er aan een predikaat voldaan kan worden, kan getoond worden door een
reductie naar het nakijken of er boomstructuren zijn die door een two-way
alternating tree automaton aanvaard worden.

• Forest Logische Programma’s (FoLPs) breiden CoLPs uit met constanten
en laten omgekeerde binaire predikaten weg. We identificeren fragmenten
die een reductie naar eindig answer set programmeren toelaten (i.e., met
een gesloten wereld veronderstelling).

• Guarded Programma’s laten n-aire predikaten toe maar beperken het ge-
bruik van negatieve atomen, zoals bv. ongelijkheid 6=. Beslisbaarheid van
guarded programma’s hangt af van een vertaling naar guarded fixed point
logic, welke gezien kan worden als een uitbreiding van Clark’s completion
met fixed point formules. We breiden guarded programma’s verder uit en

tonen aan dat (alternation-free) guarded fixed point logic equivalent is met
het resulterende formalisme.

We bespreken de bovenstaande 3 families in detail. In het bijzonder
illustreren we hun expressiviteit door hen te relateren aan kennisrepresentatie
formalismen zoals description logics (DLs), mogelijk uitgebreid met DL-safe
regels, computation tree logic (CTL), Datalog lite, (alternation-free) guarded
fixed point logic, en eindig answer set programmeren met ω-restricted pro-
gramma’s. Bovendien integreren logische programma’s onder de open answer
set semantiek, in één unificerend formalisme, het beste van zowel het logisch
programmeren paradigma (nonmonotoniciteit door negation by failure) en het
DL paradigma (beslisbaar open domein redeneren). Dit maakt OASP een
geschikte kandidaat voor Semantic Web redeneren.

VIII

Abstract

Traditional logic programming paradigms have a closed world assumption:
they make valid deductions using the logic program’s constants only. By
grounding a logic program with its own constants, the use of logic program-
ming as a conceptual modeling language is severely hampered. A knowledge
engineer would need to provide all “influential” constants.

Open answer set programming (OASP) solves this lack of modularity by
allowing for the grounding of logic programs with an arbitrary non-empty
countable superset of the program’s constants. However, OASP is, in general,
undecidable: the undecidable domino problem can be reduced to it.

In order to regain decidability, we restrict the shape of logic programs,
yielding 3 families of logic programs, based on 3 different decidability vehicles:

• Conceptual Logic Programs (CoLPs) are logic programs with unary and
binary predicates (possibly inverted) where rules have a tree shape. De-
cidability of satisfiability checking of predicates is shown by a reduction
to non-emptiness checking of two-way alternating tree automata.

• Forest Logic Programs (FoLPs) extend CoLPs with constants and leave
out inverted predicates. We identify fragments that enable a reduction to
finite answer set programming (i.e., with a closed world assumption).

• Guarded Programs allow for n-ary predicates but restrict the use of nega-
tive atoms like, e.g., inequality 6=. Their decidability depends on a transla-
tion from guarded programs to guarded fixed point logic formulas, which
can be seen as an extension of Clark’s completion with fixed point for-
mulas. We further extend guarded programs with generalized literals and
show that (alternation-free) guarded fixed point logic is equivalent to the
resulting framework.

We discuss the above 3 families in depth, in particular, we illustrate their
expressiveness by relating them to knowledge representation formalisms such
as description logics (DLs), possibly extended with DL-safe rules, computation
tree logic (CTL), Datalog lite, (alternation-free) guarded fixed point logic,
and finite answer set programming with ω-restricted programs. Moreover,

logic programs under the open answer set semantics integrate, in one unifying
framework, the best of both the logic programming paradigm (a flexible rule-
based representation and nonmonotonicity by means of negation as failure)
and the DL paradigm (decidable open domain reasoning). This makes OASP
a viable candidate for Semantic Web reasoning.

X

Acknowledgments

I am infinitely indebted to the supervisor of this dissertation, Prof. Dr. Dirk
Vermeir. Actually, the term supervisor does not do justice to the indispens-
able role he played. This dissertation benefited greatly from Dr. Davy Van
Nieuwenborgh’s input. Davy read drafts of this dissertation, yielding a con-
tinuous stream of comments and suggestions for improvements. I want to
thank Dr. Mustafa Jarrar for thought-provoking discussions on conceptual
modeling. The remaining credits go to my parents and brother.

Brussels, Stijn Heymans
November 2005

Contents

1 Introduction . 1
1.1 Motivation . 1
1.2 Overview of Decidable Fragments . 4

1.2.1 Conceptual Logic Programs . 5
1.2.2 Forest Logic Programs . 10
1.2.3 Guarded Programs . 13

1.3 Organization . 18

2 Preliminaries . 21
2.1 Decidability, Undecidability, and Complexity 21

2.1.1 Decidability and Turing Machines 21
2.1.2 Undecidability and the Domino Problem 25
2.1.3 Complexity . 31

2.2 Trees and Tree Automata . 32
2.2.1 Trees . 32
2.2.2 Finite Tree Automata . 34
2.2.3 Infinite Tree Automata . 35

2.3 Knowledge Representation Formalisms . 44
2.3.1 Answer Set Programming . 44
2.3.2 Description Logics . 49
2.3.3 Computation Tree Logic . 54
2.3.4 Fixed Point Logic . 56

3 Open Answer Set Programming . 61
3.1 Open Answer Set Programming . 61
3.2 Undecidability of Open Answer Set Programming 67
3.3 The Inverted World Assumption . 72
3.4 Decidable Open Answer Set Programming under the IWA

using 2ATAs . 77
3.4.1 Conceptual Logic Programs . 78
3.4.2 Decidability of Conceptual Logic Programs 86

3.5 Application: Conceptual Modeling . 96
3.6 Related Work . 102

3.6.1 Domain Assumptions . 102
3.6.2 k-Belief Sets . 103
3.6.3 Finitary Programs . 105
3.6.4 Open Predicates . 106
3.6.5 ASP-EX . 111
3.6.6 ω-Restricted Logic Programs . 111

4 Bounded Finite Model Property in Open Answer Set
Programming . 115
4.1 Forest Model Property . 115
4.2 Bounded Finite Model Property . 121
4.3 Acyclic Programs . 133
4.4 Complexity . 135
4.5 Extended Forest Logic Programs . 137

5 Guarded Open Answer Set Programming 145
5.1 Open Answer Set Programming via Fixed Point Logic 145
5.2 Guarded Open Answer Set Programming 153
5.3 Open Answer Set Programming with Generalized Literals 164
5.4 Open Answer Set Programming with gPs via Fixed Point Logic168
5.5 Open Answer Set Programming with Guarded gPs 175
5.6 Relationship with Datalog LITE . 180

5.6.1 Reduction from GgPs to Datalog LITE 181
5.6.2 Reduction from Datalog LITE to GgPs 183

5.7 Application: CTL Reasoning using GgPs 189

6 Description Logics Reasoning via Open Answer Set
Programming . 197
6.1 Simulating SHIQ . 197
6.2 Simulating ALCHOQ(t,u) . 208
6.3 Simulating ALCHOQ(t,u) with DL-safe Rules 214

6.4 Simulating DLR−{≤} . 218
6.5 Discussion: OASP vs. DLs . 222
6.6 Related Work . 224

6.6.1 Simulation of DLs in Rule-based Paradigms 225
6.6.2 Integration of DLs and Rule-based Paradigms 227

7 Conclusions and Directions for Future Research 231

References . 235

Index . 245

XIV

1

Introduction

1.1 Motivation

In traditional logic programming paradigms a closed world assumption holds.
In practice, this means that, in order to make valid deductions, one only
takes into account the known objects. More specifically, one only considers
the constants that are specified in the logic program. Take, for example, a
logic program consisting of the following rules

study(X) ∨ not study(X) ←
pass(X) ← study(X)
fail(X) ← not pass(X)

pass(john) ←

This program represents the knowledge that one may study or not, and if
one does, one will pass, otherwise one will fail. In particular, we have a fact
stating that student john passes.

Logic programming paradigms , as, e.g., answer set programming [GL88],
will then ground the program with all constants that are present in the pro-
gram, resulting in a program without variables:

study(john) ∨ not study(john) ←
pass(john) ← study(john)
fail(john) ← not pass(john)

pass(john) ←

with answer sets {pass(john)} and {pass(john), study(john)}1, none of them
containing a fail -atom. One might then conclude, since there is no fail -literal
in any answer set, that one can never fail, or, formally, that the fail -predicate
is not satisfiable. However, in the setting where the first three rules of the

1 Note the effect of study(X) ∨ not study(X) ←, which freely allows for john to
study or not. We call such rules free rules.

2 1 Introduction

example program are just specifying some general knowledge about studying,
passing, and failing, such a conclusion is wrong. Given other instance data
than the rule pass(john) ← the conclusions of the program may be different
and individuals can fail (the predicate fail is satisfiable). Thus, listing more
students in the program might solve the problem in this case. However, in
general, this puts a serious burden on the knowledge engineer, having to handle
all “influential” constants.

The illustrated behavior of closed world reasoning indicates a lack of mod-
ularity, as discussed in [VS93]. In [VS93], it is argued that, like in normal
software, “procedures” should be independent of the environment, i.e., adding
new procedures to the system should not interfere with the conclusions the
already defined procedures make. In essence, procedures should be able to
cope with unknown objects, or, in a logic programming context, deductions
made by logic programming semantics should be robust against the addition
of new constants and should take into account the existence of unspecified,
anonymous elements.

The lack of modularity was termed the universal query problem in [PP90]:
take the universal query ∀X ·p(X) asking whether for all elements x from some
universe, p holds. Given a rule p(a) ←, one has, with a standard Herbrand
least model semantics (i.e., under a closed world assumption), that the only
model of the rule is {p(a)}. No further objects than a are considered such that
the query ∀X · p(X) holds. However, adding (unrelated) knowledge q(b) ←
one gets the model {p(a), q(b)} such that the query no longer holds: p(b) does
not hold.

In [VS93], several alternative assumptions for the closed world assump-
tion are discussed, largely independent of any particular logic programming
semantics. E.g., assumptions that always assume an infinite number of freshly
named elements by adding a rule with a constant and a function symbol such
that the Herbrand Universe is always infinite, or, allowing for an arbitrary
number of anonymous elements like in a first-order setting.

[GP93] solves the described problem in the context of answer set program-
ming by introducing k new constants, k finite, and grounding the program
with this extended universe; the answer sets of the grounded program are
called k-belief sets.

Instead of allowing for extensions of the constants in the program, one can
also allow for so-called open predicates as in [VB97] for a well-founded seman-
tics or in [Bon03] for an answer set semantics with function symbols. Instead
of dropping the closed world assumption altogether as in [VS93] or [GP93],
one restricts the closed world reasoning to predicates that are not open, i.e.,
roughly, the open predicates receive a first-order semantics while the other
ones remain closed world (but, of course, by allowing for open predicates the
domain is actually open since the open predicates may introduce anonymous
elements in the program).

We extend the principle of k-belief sets in [GP93] by allowing for arbitrary,
thus possibly infinite, non-empty countable supersets of the program’s con-

1.1 Motivation 3

stants, so-called universes. Open answer sets are then pairs (U,M) with M an
answer set of the program grounded with the universe U of P . Recapitulating
our example, we have that ({a, x}, {pass(john), fail(x)}) is an open answer
set of the program. Indeed, the grounding is now w.r.t. {a, x} instead of {a}
where x is a new anonymous element:

study(john) ∨ not study(john) ←
pass(john) ← study(john)
fail(john) ← not pass(john)

study(x) ∨ not study(x)←
pass(x)← study(x)
fail(x) ← not pass(x)

pass(john) ←

which has an answer set {pass(john), fail(x)} such that the predicate fail
is indeed satisfiable, or, intuitively, there is instance data such that the fail
predicate can be populated.

Although open answer sets consist of a universe like first-order logic in-
terpretations, the formalism is not a fragment of first-order logic. Since open
answer sets are minimal models of their Gelfond-Lifschitz reduct [GL88], i.e.,
the transformation of a program with negation as failure to a program with-
out it, they are capable of expressing concepts that are not expressible in
first-order logic. E.g., a program with rules

p(X ,Y)← f (X ,Y)
p(X ,Z) ← f (X ,Y), p(Y ,Z)

expresses that p is the transitive closure of f . It is well-known that transitive
closure cannot be expressed in first-order logic, see, e.g., [AHV95].

However, as reasoning with k-belief sets is already undecidable [Sch93] it
comes as no surprise that open answer set programming (OASP) is too. We
show this by reducing a well-known undecidable problem, the domino problem,
to satisfiability checking of predicates under an open answer set semantics.2

In order to regain decidability but still have the desired openness, we will
compromise on the shape of programs and look for specific forms of programs
for which reasoning under the open answer set semantics is decidable, but
which are still expressive enough to represent useful knowledge.

Consequently, the main topic of this dissertation is:

The identification of interesting decidable classes of logic programs
for which reasoning under the open answer set semantics is decidable.

A promising area of application for open answer set programming is the en-
visioned Semantic Web. The Semantic Web [BLHL01] seeks to improve on

2 Note that we cannot use the undecidability of reasoning with k-belief sets to show
undecidability of reasoning with open answer sets, as the latter may be infinite
while the former are always finite.

4 1 Introduction

the current World Wide Web, making knowledge not only viewable and in-
terpretable by humans, but also by software agents. Ontologies play a crucial
role in the realization of this next generation web by providing a “shared
understanding” [UG96] of certain domains.

Description Logics (DLs) [BCM+03] constitute a family of logical for-
malisms that are based on frame-based systems and useful for knowledge
representation, e.g., the representation of taxonomies in certain application
domains. Its basic language features include the notions of concepts and roles.
Different DLs can then be identified by the set of constructors that are allowed
to form complex concepts or roles. Although DLs are being heavily promoted
as an ontology language standard (see the ontology language OWL [BvHH+]),
they are by no means synonymous for ontology language. Possible alternatives
to DL ontologies include, for example, ORM [Hal01] ontologies as illustrated
in the DOGMA framework [JM02]. Or, as we will argue, logic programs under
an open answer set semantics.

In the context of the Semantic Web, the integration of rules and ontologies
has gained renewed interest, e.g., in [MSS04]. Note that this naming is rather
confusing, in the sense that sets of rules (like in logic programming) can
be considered to be ontologies as well, in fact, the programs under an open
answer set semantics are, syntactically, rule-based, while they are suitable
for expressing “ontological” knowledge as well. What is usually meant in the
literature with such an integration of rules and ontologies is the integration
between a logic programming paradigm and a particular description logic,
intended to provide a more powerful framework, see, e.g., [MSS04, GHVD03,
AB02, HMS03, Swi04, VBDDS97, LR96, DLNS98, Ros05, ELST04a, EIST05,
HSB+04, HPS04b].

More specifically, from the logic programming side, one can, e.g., attempt
to retain the nonmonotonicity (typically provided by negation as failure),
while from the description logics side exactly the open domain reasoning is
one of the interesting features (besides decidability of reasoning). Logic pro-
grams under an open answer set semantics naturally combine both of those
strongholds in one unifying decidable framework, allowing for both negation
as failure and open domains in a rule-based formalism.

1.2 Overview of Decidable Fragments

We can place the different types of programs for which satisfiability checking
is decidable in 3 categories, based on the used decidability vehicle:

1. The programs for which satisfiability checking is reduced to checking non-
emptiness of two-way alternating tree automata (2ATA): conceptual logic
programs.

2. The programs for which satisfiability checking is reduced to normal finite
answer set programming: (local) forest logic programs and variations or
extensions thereof.

1.2 Overview of Decidable Fragments 5

3. The programs for which satisfiability checking is reduced to satisfiability
checking in guarded fixed point logic: guarded programs and variations or
extensions thereof.

In the next subsections, we present a brief overview of the above three
types, e.g., indicating how their decidability is established, how they differ
from each other, what the resulting complexity of reasoning is, and that they
are expressive enough to capture reasoning in other knowledge representation
formalisms.

1.2.1 Conceptual Logic Programs

Two-way alternating tree automata (2ATA) [Var98] are automata that take
infinite labeled trees as input. They either accept or reject such an infinite
tree based on the notion of accepting run of the 2ATA on the tree. A run is
again a labeled tree that describes the execution of the 2ATA on a given input
tree: its root is labeled by the initial state of the 2ATA and the root of the
input tree. In general, the nodes of a run are labeled with the state the 2ATA
is in together with the node the automaton is scanning. Each successor of a
node in the run corresponds to the state and the scanning node of (a copy) of
the 2ATA at a next time step. Those transitions from a node to a successor
node are constrained by a transition function.

E.g., when the 2ATA is in a state q and reading a label a of a certain node,
the transition function δ can express that the 2ATA should enter state q1 and
move to the predecessor node or enter q2 in the first successor and q3 in the
third successor as follows:

δ(q, a) = (−1, q1) ∨ ((1, q2) ∧ (3, q3)) .

Note that, intuitively, a 2ATA can “fork” into multiple instances by starting
to scan the first and third successor of the current node. The fact that the
automaton can go up in the input tree (indicated by −1) explains the naming
two-way and the alternating considers the fact that the definition of the tran-
sition function may be a positive boolean formula (in normal tree automata,
the automaton always forks one version of itself into all of the successors).

An accepting run is a run of the 2ATA on an infinite tree that satisfies the
acceptance condition. This acceptance condition can indicate which states of
the 2ATA must be visited infinitely often or which states cannot be visited
infinitely often. E.g., a 2ATA can recognize infinite trees that contain only a
finite number of labels containing some symbol a.

One of the basic reasoning procedures associated with 2ATAs is checking
non-emptiness, i.e., given a 2ATA A, is there some infinite tree that is ac-
cepted by A. In [Var98], it is shown that checking non-emptiness of a 2ATA is
in exptime w.r.t. the number of states of the 2ATA. 2ATA can, e.g., be used
to show decidability (and tight upper complexity bounds) of expressive de-
scription logics (DLs), logics for expressing conceptual knowledge [BCM+03],

6 1 Introduction

as is shown in [CGL02]. These decidability results are based on the reduc-
tion of satisfiability checking of DL concepts to checking non-emptiness of a
constructed 2ATA.

We want to identify a type of logic programs for which satisfiability check-
ing of predicates can be reduced to checking non-emptiness of a constructed
2ATA. Formally, checking whether a predicate p is satisfiable w.r.t. a program
P amounts to checking whether there is an open answer set that contains some
atom p(x). Intuitively, we construct a 2ATA Ap,P such that an open answer
set of P that satisfies p can be rewritten as an (infinite) tree that is accepted
by Ap,P and, vice versa, such that an infinite tree that is accepted by Ap,P
can be written as an open answer set of P that satisfies p.

This requirement – open answer sets of programs can be rewritten as
labeled trees – leads us to the definition of conceptual logic programs (CoLPs)
which satisfy this tree model property. Predicates in CoLPs must be unary or
binary. Intuitively, unary literals p(x) can be seen as enforcing that the node
corresponding to x has p in its label. Similarly, f(x, y) in an open answer set
corresponds to a predecessor/successor relation between the nodes associated
with x and y, where the connecting edge is labeled with f .

We do not allow for constants in CoLPs: intuitively, {f(x, y), f(y, x)} is
a cycle with anonymous elements x and y in an open answer set and can be
replaced by {f(x, y), f(y, z)}, i.e., introduce a new anonymous element z that
is a copy of x, yielding a tree structure. A similar cycle {f(a, y), f(y, a)} for
a constant a cannot be removed this way: a is not anonymous so we cannot
necessarily replace the f(y, a) by some f(y, z) since f(y, a) may be introduced
by a rule with head f(Y, a) which cannot be used to motivate f(y, z) for an
anonymous z. In the next section, we show how to cope with constants in a
program.

Given those restrictions CoLP rules are one of the following types

• free rules a(X) ∨ not a(X) ← or f (X ,Y) ∨ not f (X ,Y) ← . Such rules
allow for the “free” introduction of unary and binary literals, provided
other rules do not impose extra constraints.

• unary rules, i.e., rules with a unary literal in the head. E.g.,

a(X)← f (X ,Y1),not g(X ,Y2), h(X ,Y2),Y1 6= Y2

expresses that if x and y1 are connected by f (i.e., f(x, y1) holds), x and
y2 are connected by h and g does not hold for that connection, and y1 and
y2 are different, then a must hold at x. Unary rules have a branching or
tree structure if we regard X as a node and Y1 and Y2 as its successors.
We ensure that we can rewrite open answer sets as trees by imposing the
existence of a positive connection between each X and Yi, i.e., in the above
rule if h(X,Y2) were missing it would not be a valid CoLP rule.
Indeed, take a program containing rules3

3 The example is an adaptation of the DL concept A u ∀¬R.¬A which is not sat-
isfiable by tree models, see, e.g., [LS00].

1.2 Overview of Decidable Fragments 7

q(X) ← a(X),not p(X)
p(X) ← not r(X ,Y), a(Y)

In order to make q satisfiable, one needs some q(x) to hold. By minimality
of open answer sets, we have that the body of the first rule must be true,
i.e., a(x) holds and p(x) does not hold. The latter implies that the body of
the second rule cannot be true, i.e., if there is some y such that r(x, y) does
not hold, then a(y) cannot hold. Since a(x) holds, we have that r(x, x) must
always hold, resulting in a cycle. Hence, open answer sets of the program
that satisfy q can never be rewritten as a tree since such a cycle will always
arise.

• binary rules, i.e., rules with a binary literal f(X,Y) in the head. E.g.,

f (X ,Y)← a(X),not b(X), g(X ,Y), c(Y)

Similarly as for unary rules, we ensure that there is some connection
g(X,Y) in the body, avoiding that connections between arbitrary nodes
(i.e., not successor/predecessor) are imposed.

• constraints ← a(X) or ← f (X ,Y). Rules with empty head (i.e., the left
hand side of←) are called constraints; they ensure the body (i.e., the right
hand side of ←) can never be true. Actually, the constraints of the simple
types above can be equivalently replaced by constraints that have a body
like in unary rules or binary rules respectively.

Furthermore, we allow for a special type of predicates in CoLPs, inverted

predicates, which are denoted f i for a binary predicate f . The intuitive mean-

ing of f i(x, y) is that it holds in an open answer set iff f(y, x) holds, i.e., f i

is indeed the inverse of f . Open answer sets that enforce this inverted world
assumption are called open answer sets under IWA and satisfiability checking
of predicates that is only interested in open answer sets under IWA is called
satisfiability checking under IWA. Inverted predicates are conceptually simi-
lar to inverted roles in description logics like SHIQ [HST99] and allow one
to express knowledge that has only infinite open answer sets (under IWA).
Intuitively, one can write down rules that continually enforce the introduction
of new elements, making use of inverted predicates to prohibit the reuse of
previously introduced elements (see Example 3.21, pp. 73).

Conceptual logic programs are a type of programs for which the open
answer sets can be rewritten as labeled trees such that they can be given as
input to 2ATA, and vice versa, labeled trees recognized by an appropriately
constructed 2ATA can be rewritten as open answer sets. The constructed
2ATA has a transition function that is in accordance with the rules of the
program. E.g., a rule

a(X)← f (X ,Y), b(Y)

amounts to transitions specifying that, if a is not in the label of a node, then
there can be no f -successor of that node where b holds. Such rules take care
of satisfaction of rules and we call the associated states negative states. The

8 1 Introduction

minimality of open answer sets is guaranteed by rules that ensure that if a is
in the label of a node then there must be some f -successor of the node where b
holds. States that implement the latter behavior will be called positive states.

The acceptance condition ensures that positive states cannot appear in-
finitely on a path. Intuitively, the infinite occurrence of such a positive state
would imply that a predicate cannot be finitely motivated, which contra-
dicts with the minimality of (open) answer sets. E.g., for a rule a(X) ←
f (X ,Y), a(Y), an a in the label of a node would amount to a f -successor
where again a holds, and a similar scenario occurs, resulting in an infinite
path containing infinitely many times the positive state that should motivate
a. By the minimality of open answer sets such “infinite” motivations are not
allowed.

As noted above, checking non-emptiness of 2ATA is in exptime in the
number of states. Since the number of states of the 2ATA that is constructed
from a CoLP P is polynomial in the size of P , we have that satisfiability
checking w.r.t. CoLPs is in exptime as well.

CoLPs turn out to be useful for expressing conceptual knowledge, hence
their naming. They can serve as a formalized representation of graphically rep-
resented models that result from the conceptual modeling approach object-role
modeling (ORM) [Hal01]. Moreover, CoLPs can be used to detect and signal
inconsistencies in the conceptual models, thus supporting a continuous quality
assessment during the conceptual design phase. Advantages of using CoLP for
conceptual modeling include modularity: rules can be added independently,
e.g., to express complex constraints, while the consistency of the updated
scheme can be verified automatically. We do not claim a mapping of the rich
language of ORM to CoLPs. However, we will show the translation of a signif-
icant part of the allowed ORM constructs to CoLP, illustrating the usefulness
of CoLPs for conceptual modeling.

In description logics, terminological axioms encode the knowledge that a
concept is subsumed by another one. The simple example that, if a child is
popular then it has at least three different popular friends, can be expressed
as follows:

PopChild v Child u (≥ 3 friend .PopChild)

A set of such axioms is called a knowledge base. PopChild and Child are called
concept names and friend is a role name. The concept expression (≥ n Q .D),
a qualified number restriction, represents all the items for which there are at
least n different Q-successors that belong to D. More specifically, if x belongs
to (≥ n Q .D) there are n different yi such that (x, yi) belongs to Q (or x is
connected through Q with yi) and yi belongs to the concept expressionD. The
intersection constructor u expresses that an item belongs to both operands:
if x belongs to A u B it belongs to both A and B. Similar to intersection,
t (union) is also a commonly used constructor, as well as negation ¬, which
have their trivial set-theoretic interpretations.

1.2 Overview of Decidable Fragments 9

Other widely used DLs constructors are the exists restriction ∃R.C and
the value restriction ∀R.C. They can express items that have a rich father:
∃father .RichPerson . Such a concept expression represents all the x’s that have
at least one y, connected through the role father (i.e., they have at least one
father), such that y belongs to the concept RichPerson . People having only
rich friends can be represented by the value restriction ∀friends .RichPerson .4

Some DLs also allow for the declaration of roles as being transitive, such that,
for example, if x is an ancestor of y, y is an ancestor of z, then, in case the
ancestor role is declared to be transitive, x is an ancestor of z. Another role
constructor is P−, which takes the inverse of a role such that if (x, y) belongs
to P , (y, x) belongs to P−.

Satisfiability checking of concept expressions w.r.t. a knowledge base, i.e.,
is their a model of the knowledge base such that the concept expression has a
non-empty extension w.r.t. that interpretation, cannot be simulated by finite
answer set programming for several DLs, because of the lack of the finite
model property: some DL knowledge bases have only infinite models. Such a
DL is, for example, SHIQ [HS98].

Take, for example, the following knowledge base:

SalesItem v Item u ∃hasPrice
Item u ∃hasPrice v SalesItem

The corresponding CoLP defines SalesItem, Item, and hasPrice with free
rules

SalesItem(X) ∨ not SalesItem(X) ←
Item(X) ∨ not Item(X) ←

hasPrice(X ,Y) ∨ not hasPrice(X ,Y) ←

and defines the intersection and the exists restriction ∃hasPrice as follows:

(Item u ∃hasPrice)(X) ← Item(X), ∃hasPrice(X)
∃hasPrice(X) ← hasPrice(X ,Y)

Finally, we express both DL axioms directly by the constraints,

← SalesItem(X),not (Item u ∃hasPrice)(X)
← not SalesItem(X), (Item u ∃hasPrice)(X)

In general, SHIQ reasoning can be polynomially reduced to reasoning
w.r.t. CoLPs. Since SHIQ reasoning is exptime-complete, this yields ex-
ptime-hardness for reasoning w.r.t. CoLPs. Together with the exptime-
membership for CoLPs, we have exptime-completeness for CoLP reasoning.

4 Note that belonging to this concept does not imply having any friends, only that
if one has friends, they are rich.

10 1 Introduction

1.2.2 Forest Logic Programs

In a next phase, we allow for constants in CoLPs, resulting in Forest Logic
Programs (FoLPs). Forest Logic Programs are again programs with only unary
and binary predicates.

Essentially, FoLP rules are like their corresponding CoLP versions, with
the difference that we allow for constants too. The conditions in unary and
binary rules hold for variables only, i.e., the constants are effectively ignored.
The main difficulty that is introduced by constants is the loss of the tree
model property. Open answer sets of FoLPs can no longer be rewritten as tree
structured open answer sets. However, they can be rewritten as open answer
sets that have a forest structure where a forest is a set of trees. Intuitively, we
associate each constant with the root of its own tree.

Take, for example, the FoLP,

profit(C ,P) ∨ not profit(C ,P)←
daught(C ,D) ∨ not daught(C ,D) ←

good(C) ← profit(C , >10%)
good(C) ← daught(C ,D),not bad(D)
bad(C) ← not good(C)

expressing that a company had a good year if either its profits were more
than 10 percent of its turnover or if it has a daughter company that did well.
The two rules with disjunction may freely introduce profit or daught tuples.

The program has an open answer set that is a forest model consisting of two
trees, one with root x, and one with a constant root >10% (which is a single
node tree), indicating that x is a good company (good(x)) which makes a lot of
profit and has a chain of good daughters. In order to have a valid forest struc-
ture, links to constants can be kept in the starting node, e.g. profit(x , >10%)
can be stored in the label of x as profit>10% without losing any informa-
tion. This forest model is depicted in Figure 1.1. Satisfiability checking w.r.t.

good >10%x

zgood

y

daught

good

profit

daught

Fig. 1.1. Forest Model

CoLPs is shown to be decidable by a reduction to non-emptiness checking of
two-way alternating tree automata. However, the definition of FoLPs includes
constants and open answer sets can now be rewritten as forests instead of

1.2 Overview of Decidable Fragments 11

trees. Since 2ATA take trees as input and not forests, the automata reduction
cannot be readily applied and we opt to identify a fragment of FoLPs, local
FoLPs, that have a bounded finite model property, i.e., if there is an open an-
swer set, there is an open answer set with a universe that is bounded by a
number of elements that can be specified in function of the program at hand.
Since inverted predicates allow the expression of programs that have only in-
finite open answer sets, we do not allow for inverted predicates in FoLPs. This
bounded finite model property allows to reduce satisfiability checking of local
FoLPs to finite (normal) answer set programming.

The forest model in Figure 1.1 is infinite, but it can be turned into a finite
open answer set by cutting the trees from the moment we have repetition,
i.e., when duplicate labels occur on a path, we cut the path below the second
occurrence of the label and mimic the outgoing connections of the first node.
In the figure, y has the same label “good” as x such that we cut the tree
below y, and, since we have profit(x,>10%) and daught(x, y), we introduce
connections profit(y,>10%) and daught(y, y) for y. This cutting results in
Figure 1.2. However, such a cutting is not possible for arbitrary FoLPs, i.e.,

profit

>10%x

y

daught

good

good

Fig. 1.2. Cutting

the cutting does not necessarily result in an open answer set. We identify a
basic class for which cutting is possible: local FoLPs, which have only negated
atoms in the successor part of the tree structure of the unary or binary rules.
E.g., we only have the negation not bad(D) in the example program. The
motivation for particular facts can then be given locally: good(x) is supported
by daught(x, y) or profit(x , >10%) with rules good(x) ← daught(x , y)5 or
good(x) ← profit(x , >10%), involving only x, direct successors y of x, or a
constant. Without locality, cutting the trees may lead to the loss of minimality,
e.g., a rule good(C)← daught(C ,D), good(D) could lead to an answer set

{good(x), daught(x , y), good(y), daught(y, z), good(z), profit(z , >10%)}

and cutting at y would make good(x) unmotivated, leading to a non-minimal
model.

5 The “not” in the original body is deleted by the Gelfond-Lifschitz transformation
[Lif02].

12 1 Introduction

Since the number of different predicates in a program is finite and the
branching of forest models is bounded, one can calculate a finite bound k
from the program P and a predicate p under consideration only. For this k
we then have that for every forest model (U,M) there is an open answer set
(U ′,M ′) with |U ′| < k, obtained by using the above cutting technique. As
a result, reasoning w.r.t. a local FoLP P can be reduced to finite answer set
programming w.r.t. the program P extended with at most k constants. This
reduction to finite answer set programming results in a 2-exptimeΣ

p
2 upper

bound of reasoning.
We can actually loosen up the syntax of local FoLPs some more by allowing

for arbitrary ground rules, or, more formally, let an extended FoLP (EFoLP)
be the union of a FoLP and an arbitrary ground program with only unary
and binary predicates.

Alternatively, one can specify an EFoLP as a pair (Q,R) whereQ is a FoLP
and R is an arbitrary program containing only unary and binary predicates
(possibly with variables) such thatR is only ground with constants fromQ∪R,
and not with anonymous elements. With such arbitrary rules one can then
state circular knowledge such as

uncle(X ,Z)← brother(X ,Y), father(Y ,Z)

which states that if for known constants a, b and c, a is the brother of b and
b is the father of c, then a is the uncle of c. Such a rule is not a FoLP rule.

EFoLPs have the same nice properties as FoLPs, i.e., a forest model prop-
erty, and, in case the FoLP part is local, the bounded finite model property.
Intuitively, the added rules add arbitrary connections between the roots of
the trees in the forest model, but do not interfere with the tree structure of
the trees in the forest itself. Complexity of satisfiability checking w.r.t. such
local EFoLPs rises, however, to the upper bound 2-exptimenexptime.

Using these local (E)FoLPs as the basis, one can identify further fragments,
e.g., semi-local and (free) acyclic (E)FoLPs. While syntactically different, rea-
soning w.r.t. to those types can be reduced to reasoning w.r.t. local (E)FoLPs.

If one removes the support for transitive and inverted roles from SHIQ,
but adds support for nominals/individuals (O) and intersection and conjunc-
tion of roles, one gets the DL ALCHOQ(t,u). Since FoLPs support constants,
we can cope with the nominals in ALCHOQ(t,u). However, FoLPs do not
support inverted predicates such that we left out inverted roles from the DL
SHIQ. Unfortunately, it does not seem possible to simulate transitive roles
in local FoLPs such that we need to leave this out of SHIQ too.

In [MSS04], DLs are extended with DL-safe rules. EFoLPs are an extension
of FoLPs with arbitrary rules that can only be ground with constants from the
program, which corresponds conceptually with this extension of DL knowledge
bases with DL-safe rules. In particular, we can simulate ALCHOQ(t,u) with
DL-safe rules by free acyclic EFoLPs.

DL-safe rules do not include the negation as failure (naf) operator, and
as a consequence, do not cope well with incomplete or dynamically changing

1.2 Overview of Decidable Fragments 13

knowledge: like reasoning with DL, reasoning with DL knowledge bases and
DL-safe rules is monotonic. However, nonmonotonic reasoning may be useful
in closed sub-areas of the Semantic Web as illustrated in the following ex-
ample. Assume a business is setting up its website for processing customer
feedback. It decides to commit to an ontology O which defines that if there
are no complaints for a product, it is a good product, i.e.,

good product(X)← not complaint(X)

The business has its own particular business rules, e.g.,

i : invest(tps , 10K) ← not good product(tps)

saying that if its particular top selling product tps cannot be shown to be a
good product, then the business has to invest 10K in tps. Finally, the busi-
ness maintains a repository of dynamically changing knowledge, originating
from user feedback collected on the site, e.g., at a certain time the repository
contains R1 = {complaint(tps)← } with a complaint for tps .

If the business wants to know whether to invest more in tps it needs to
check O ∪ {i} ∪ R1 |= invest(tps , 10K), i.e., whether the ontology, combined
with its own business rules, and the information repository, demand for an
investment or not.

One can use EFoLPs to express the above knowledge. Intuitively, any
model ofO∪{i}∪R1, must verify complaint(tps), and thus good product(X)←
not complaint(X) will not trigger and good product(tps) will be false, which
in turn, with rule i, allows to conclude that the business should indeed invest.

Evaluating the same query with an updated repository

R2 = {complaint(tps)← , good product(tps)← }

containing a survey result saying that tps is a good product, no matter
what complaints of individual users there may be, leads to O ∪ {i} ∪ R2 6|=
invest(tps , 10K), such that no further investments are necessary. Adding
knowledge thus invalidates previous conclusions making reasoning nonmono-
tonic; similar scenarios can easily be imagined in any environment with dy-
namically changing knowledge.

1.2.3 Guarded Programs

Characteristic about (O)ASP is its treatment of negation as failure (naf): one
guesses an interpretation for a program, computes the program without naf
(the GL-reduct [GL88]), calculates the iterated fixed point of this reduct, and
checks whether this fixed point equals the initial interpretation. We compile
these external manipulations, i.e., not expressible in the language of programs
itself, into fixed point logic (FPL) [GW99] formulas. First, we rewrite an
arbitrary program as a program containing only one designated predicate p

14 1 Introduction

and (in)equality; this makes sure that when calculating a fixed point of the
predicate variable p, it constitutes a fixed point of the whole program. In
the next phase, such a p-program P is translated to FPL formulas comp(P).
comp(P) ensures satisfiability of program rules by formulas comparable to
those in Clark’s completion. The specific answer set semantics is encoded by
formulas indicating that for each atom p(x) in the model there must be a true
rule body that motivates the atom, and this in a minimal way, i.e., using a
fixed point predicate. Negation as failure is correctly handled by making sure
that only those rules that would be present in the GL-reduct can be used to
motivate atoms.

In [CH82], Horn clauses were translated to FPL formulas and in [GGV02]
reasoning with an extension of stratified Datalog is reduced to FPL, but, to
the best of our knowledge, this is the first encoding of an answer set semantics
in FPL.

In [LZ02, LL03], ASP with (finite) propositional programs is reduced to
propositional satisfiability checking. The translation makes the loops in a pro-
gram explicit and ensures that atoms p(x) are motivated by bodies outside
of these loops. Although this is an elegant characterization of answer sets in
the propositional case, the approach does not seem to hold for OASP, where
programs are not propositional but possibly ungrounded and with infinite
universes. Instead, we directly use the built-in “loop detection” mechanism of
FPL, which enables us to go beyond propositional programs.

Translating OASP to FPL is thus interesting in its own right, but it also
enables the analysis of decidability of OASP via decidability results of frag-
ments of FPL. Satisfiability checking of a predicate p w.r.t. a program, i.e.,
checking whether there exists an open answer set containing some p(x), is
undecidable. It is well-known that satisfiability checking in FOL is undecid-
able, and thus the extension to FPL is too. However, expressive decidable
fragments of FPL have been identified [GW99]: (loosely) guarded fixed point
logic (µ(L)GF) extends the (loosely) guarded fragment (L)GF of FOL with
fixed point predicates.

GF is identified in [ANB98] as a fragment of FOL satisfying properties such
as decidability of reasoning and the tree model property, i.e., every model can
be rewritten as a tree model. The restriction of quantified variables by a guard,
an atom containing the variables in the formula, ensures decidability in GF.
Guards are responsible for the tree model property of GF (where the concept
of tree is adapted for predicates with arity larger than 2), which in turn enables
tree-automata techniques for showing decidability of satisfiability checking. In
[Ben97], GF is extended to LGF where guards can be conjunctions of atoms
and, roughly, every pair of variables must be together in some atom in the
guard. Satisfiability checking in both GF and LGF is 2-exptime-complete
[Grä99], as are their extensions with fixed point predicates µGF and µLGF
[GW99].

1.2 Overview of Decidable Fragments 15

We identify a syntactically restricted class of programs, (loosely) guarded
programs ((L)GPs), for which the FPL translation falls in (alternation-free6)
µ(L)GF, making satisfiability checking w.r.t. (L)GPs decidable and in 2-
exptime. In LGPs, rules have a set of atoms, the guard, in the positive body,
such that every pair of variables in the rule appears together in an atom in
that guard. GPs are the restriction of LGPs where guards must consist of
exactly one atom.

For example,

f (X ,Y ,Z , b)← g(X ,Y), h(Y ,Z), q(X ,Z)

is a valid rule of a loosely guarded program since every pair of variables
appears together in an atom in the body. Note that constants are allowed
and no extra conditions are put on their appearance in rules. Furthermore,
compared to (E)FoLPs, n-ary predicates are allowed for arbitrary n. So, in
this respect, (L)GPs are more expressive than (E)FoLPs. However, one cannot
express with (L)GPs, e.g., that binary predicates must be functional. Take the
CoLP constraint

← f (X ,Y1), f (X ,Y2),Y1 6= Y2

Since Y1 6= Y2 is considered equivalent with not Y1 = Y2, we do not have a
positive atom in the body that connects Y1 and Y2: the rule is not (loosely)
guarded. Thus, (E)FoLPs are more expressive in some ways and less expressive
in others than LGPs.

Programs under the normal answer set semantics can be rewritten as LGPs
under the open answer set semantics by guarding all variables with atoms that
can only deduce constants from the original program. Besides the desirable
property that OASP with LGPs is thus a proper decidable extension of normal
ASP, this yields that satisfiability checking w.r.t. LGPs is, at least, nexptime-
hard.

Datalog lite [GGV02] is a language based on stratified Datalog with in-
put predicates where rules are monadic or guarded and may have generalized
literals in the body, i.e., literals of the form ∀Y · a ⇒ b for atoms a and b.
It has an appropriately adapted bottom-up fixed point semantics. Datalog
lite is devised to ensure linear time model checking while being expressive
enough to capture computational tree logic [EC82] and alternation-free µ-
calculus [Koz83]. Moreover, it is shown to be equivalent to alternation-free
µGF. Our reduction of GPs to alternation-free µGF ensures that we have a
reduction from GPs to Datalog lite, and thus couples the answer set seman-
tics to a fixed point semantics based on stratified programs. Intuitively, the
guess for an interpretation in the answer set semantics corresponds to the
input structure one feeds to the stratified Datalog program. The translation
from GPs to Datalog lite needs only one stratum to subsequently perform
the minimality check of answer set programming.

6 µ(L)GF without nested fixed point variables in alternating least and greatest
fixed point formulas.

16 1 Introduction

The other way around, we reduce satisfiability checking in recursion-free
Datalog lite to satisfiability checking w.r.t. GPs. Recursion-free Datalog lite
is equivalent to GF [GGV02], and, since satisfiability checking of GF formulas
is 2-exptime-hard [Grä99], we obtain 2-exptime-completeness for satisfiabil-
ity checking w.r.t. (L)GPs.

We next extend programs with generalized literals, resulting in generalized
programs (gPs). A generalized literal is a first-order formula of the form ∀Y ·
φ⇒ ψ where Y is a sequence of variables, φ is a finite boolean formula and ψ is
an atom. Intuitively, such a generalized literal is true in an open interpretation
(U,M) if for all substitutions [Y | y], y in U , such that φ[Y | y] is true in M ,
ψ[Y | y] is true in M .

Generalized literals ∀Y · φ ⇒ ψ, with φ an atom instead of a boolean
formula, were introduced in Datalog7 with the language Datalog lite. In
open answer set programming (OASP), we define a reduct that removes the
generalized literals. E.g., a rule

r : ok ← ∀X · critical(X)⇒ work(X)

expresses that a system is OK if all critical devices are functioning: the GeLi-
reduct (generalized literal reduct) of such a rule for an open interpretation
({x0, . . .},M) where M contains critical(xi) for even i, contains a rule

r′ : ok ← work(x0),work(x2), . . .

indicating that the system is OK if the critical devices x0, x2, . . . are working.
The GeLi-reduct does not contain generalized literals and one can apply the
normal answer set semantics, modified to take into account the infinite body.

Just like it is not feasible to introduce all relevant constants in a program
to ensure correct conceptual reasoning, it is not feasible, not even possible, to
write knowledge directly as in r′ for it has an infinite body. Furthermore, even
in the presence of a finite universe, generalized literals allow for a more robust
representation of knowledge than would be possible without them. E.g., with
critical devices y1 and y2, a rule s : ok ← work(y1),work(y2) does the job
as good as r (and in fact s is the GeLi-reduct of r), but adding new critical
devices, implies revisiting s and replacing it by a rule that reflects the updated
situation. Not only is this cumbersome, it may well be impossible as s contains
no explicit reference to critical devices, and the knowledge engineer may not
have a clue as to which rules to modify.

One can modify the aforementioned FPL translation of programs without
generalized literals to take into account generalized literals. With this FPL
translation, we then have again a mapping from one undecidable framework
into another undecidable framework. We restrict gPs, resulting in guarded gPs
(GgPs), such that all variables in a rule appear in an atom in the positive body

7 The extension of logic programming syntax with first-order formulas dates back
to [LT84].

1.2 Overview of Decidable Fragments 17

and all generalized literals are guarded, where a generalized literal is guarded if
it can be written as a guarded formula in µGF. The FPL translation of GgPs
then falls into the µGF fragment, yielding a 2-exptime upper complexity
bound for satisfiability checking. Together with the 2-exptime-completeness
of guarded programs without generalized literals this establishes 2-exptime-
completeness for satisfiability checking w.r.t. GgPs. As a consequence, adding
generalized literals to a guarded program does not increase the complexity of
reasoning.

We further illustrate the expressiveness of (bound) GgPs by simulating rea-
soning in computational tree logic (CTL) [Eme90], a temporal logic. Temporal
logics [Eme90] are widely used for expressing properties of nonterminating
programs. Transformation semantics, such as Hoare’s logic are not appropri-
ate here since they depend on the program having a final state that can be
verified to satisfy certain properties. Temporal logics on the other hand have
a notion of (infinite) time and may express properties of a program along
a time line, without the need for that program to terminate. E.g., formulas
may express that from each state a program should be able to reach its initial
state: AGEFinitial .

Two well-known temporal logics are linear temporal logic (LTL) [Eme90,
SC85] and computation tree logic (CTL) [Eme90, EH82, CES86], which differ
in their interpretation of time: the former assumes that time is linear, i.e.,
for every state of the program there is only one successor state, while time is
branching for the latter, i.e., every state may have different successor states,
corresponding to nondeterministic choices for the program.

Since CTL satisfiability checking is exptime-complete and satisfiability
checking w.r.t. GgPs is 2-exptime-complete, a reduction from CTL to GgPs
does not seem to be optimal. However, we can show that the particular trans-
lation has a special form, i.e., it is bound, for which reasoning is exptime-
complete and thus optimal.

Finally, we can reduce general Datalog lite reasoning, i.e., with recursion,
to reasoning with GgPs. In particular, we prove a generalization of the well-
known result from [GL88] that the unique answer set of a stratified program
coincides with its least fixed point model: for a universe U , the unique open
answer set (U,M) of a stratified Datalog program with generalized literals
is identical8 to its least fixed point model with input structure id(U), the
identity relation on U . Furthermore, the Datalog lite simulation, together
with the reduction of GgPs to alternation-free µGF, as well as the equivalence
of alternation-free µGF and Datalog lite [GGV02], lead to the conclusion that
alternation-free µGF, Datalog lite, and OASP with GgPs, are equivalent, i.e.,
their satisfiability checking problems can be effectively polynomially reduced
to one another.

GgPs are thus just as expressive as Datalog lite, however, from a knowl-
edge representation viewpoint, GgPs allow for a compact expression of circular

8 Modulo equality atoms, which are implicit in OASP, but explicit in Datalog lite.

18 1 Introduction

knowledge. E.g., the omni-present construction with rules a(X) ← not b(X)
and b(X)← not a(X) is not stratified and cannot be (directly) expressed in
Datalog lite. The reduction to Datalog lite does indicate that negation as
failure under the (open) answer set semantics is not that special, but can be
regarded as convenient semantic sugar.

The most distinct feature of GPs, compared with (E)FoLPs, are its al-
lowing of arbitrary n-ary predicates. Usually, DLs only support concepts and
binary roles, however, the DL DLR supports n-ary role names. One can sim-
ulate a fragment of DLR, called DLR−{≤}, with bound GPs.

We summarized the main complexity results of this dissertation in Table
1.1.

Table 1.1. Summary Complexity Results

Type Hardness Membership

CoLP exptime (Theorem 3.39) exptime (Theorem 6.3)

Local FoLP exptime (Theorem 6.10) 2-exptimeΣp
2 (Theorem 4.26)

Local EFoLP exptime (Theorem 6.11) 2-exptimenexptime (Theorem 4.35)

(L)GP 2-exptime (Theorem 5.72) 2-exptime (Theorem 5.28)
GgP 2-exptime (Corollary 5.69 2-exptime (Corollary 5.58)

bound GgP exptime (Theorem 5.77) exptime (Theorem 5.77)

Table 1.2 contains a summary of the DLs simulations in a decidable class
of programs under the open answer set semantics.

Table 1.2. Summary Description Logics Simulations

DL OASP Where

SHIQ CoLP Section 6.1
ALCHOQ(t,u) acyclic FoLP Section 6.2

ALCHOQ(t,u) with DL-safe rules free acyclic EFoLP Section 6.3

DLR−{≤} bound GP Section 6.4

1.3 Organization

Chapter 2 introduces preliminaries to this dissertation such as basic de-
cidability theory, a discussion of undecidable problems such as the domino
problem, and an explanation on how to classify decision problems according
to their complexity. Next, we introduce the tree data structure and discuss
both finite and infinite tree automata. Finally, we introduce four knowledge

1.3 Organization 19

representation formalisms that will appear repeatedly throughout this disser-
tation: answer set programming, description logics, computation tree logic,
and fixed point logic.

We define the open answer set semantics for logic programs in Section 3.1 of
Chapter 3 and show in Section 3.2 that for unrestricted programs satisfiabil-
ity checking for this semantics is undecidable. In Section 3.3, we introduce the
notion of inverted predicates and we define an accompanying inverted world
assumption. Section 3.4 identifies different syntactical subclasses of logic pro-
grams for which reasoning is shown to be decidable by a reduction to 2ATAs.
We indicate in Section 3.5 how the restricted programs are still suitable to
do conceptual modeling, in particular we show how to simulate a large part
of Object-Role Modeling constructs. Finally, in Section 3.6, we discuss related
work.

In Section 4.1 of Chapter 4, we introduce the forest model property
and define a syntactically restricted class of programs, forest logic programs
(FoLPs), satisfying this property. We show in Section 4.2 that a particular
type of FoLPs, local FoLPs, has the bounded finite model property, which en-
ables a reduction to finite ASP. A type that can be reduced to local FoLPs
are the acyclic FoLPs from Section 4.3. Section 4.4 identifies an upper bound
for the complexity of reasoning. In Section 4.5, we extend FoLPs with an ar-
bitrary finite set of rules that can only be grounded with constants present in
the program, resulting in EFoLPs, and show that properties such as the forest
model property and the bounded finite model property are valid for suitably
restricted classes of EFoLPs.

Chapter 5 reduces satisfiability checking w.r.t. arbitrary logic programs
to satisfiability checking of alternation-free fixed point logic formulas. We
identify in Section 5.2 syntactical classes of programs for which this FPL
translation falls into the decidable logic µGF or µLGF, i.e., guarded or loosely
guarded fixed point logic. In Section 5.3, we introduce so-called generalized
literals and device a modified translation to FPL in Section 5.4. Section 5.5
mirrors Section 5.2 and identifies classes of programs with generalized literals
that can be mapped to guarded FPL. Finally, in Section 5.6, we relate the
obtained languages under the open answer set semantics to Datalog lite
which has a least fixed point model semantics.

In Section 6.1 of Chapter 6, we reduce satisfiability checking in the SHIQ
DL to satisfiability checking w.r.t. CoLPs, and in Section 6.2, we show how
a DL that adds constants and conjunction/disjunction of roles and removes
transitive roles from SHIQ, the DL ALCHOQ(t,u), can be simulated by
acyclic FoLPs. The DL ALCHOQ(t,u) extended with DL-safe rules can be
simulated using free acyclic EFoLPs as shown in Section 6.3. Section 6.4 de-
scribes the DL DLR which supports n-ary relations; a fragment of DLR,
so-called DLR−{≤}, can be simulated by bound guarded programs. We dis-
cuss in Section 6.5 some of the advantages and disadvantages of using open
answer set programming instead of DLs for knowledge representation. We give
an overview of related work in Section 6.6.

20 1 Introduction

Chapter 7 concludes and provides directions for further research.
Part of the results discussed in this dissertation is published in [HV03b,

HV03c, HV03a, HVNV04, HVNV05b, HVNV05a, HVNV06].

2

Preliminaries

2.1 Decidability, Undecidability, and Complexity

Relying on the exposition in [Pap94], we define Turing Machines as our basic
model of computation, show what it means for a problem to be decidable
or undecidable, discuss undecidable problems, and explain how to classify
decision problems according to their complexity.

2.1.1 Decidability and Turing Machines

The main concern of decidability theory is the question “given a problem,
is there an algorithm that solves the problem?”. We introduce the formal
meaning of informal concepts such as algorithm, problem, and solves, using the
model of Turing Machines. An example of a problem is Reachability [Pap94]:

Given a graph G = (V,E) and two nodes x, y ∈ V , is there a path
from x to y?

where a graph G = (V,E) is a pair consisting of a finite set of nodes V and
a relation of edges E ⊆ V × V . The reachability problem contains 3 different
parameters: a graph G, a begin node x, and an end node y. Instantiating those
parameters with actual objects yields an instance of the problem. Reachability
is a decision problem as any instance requires a yes or no answer: either there is
a path or not. An algorithm that solves a decision problem is then, informally,
a set of instructions, such that, given an instance of the problem, one gets an
answer to the problem. For example, the reachability problem can be solved
by taking the begin node, marking it, recursively repeating this marking for
all successors, and stopping when there are no more new successors to be
marked. If the end node was marked, we answer yes, otherwise we answer no.

A more formal account of an algorithm is given by the concept of a Turing
Machine (TM). A deterministic Turing Machine (DTM) is a tuple (K,Σ, δ, s)
where K is a finite set of states , Σ is a finite alphabet (a set of symbols),

22 2 Preliminaries

δ : K ×Σ → K ∪ {h, “yes”, “no”} ×Σ × {←,→,−} is a transition function,
and s ∈ K is the begin state. A Turing Machine can be seen as a device
equipped with a reading head and capable of reading and processing an infinite
tape containing symbols from Σ. Furthermore, we assume Σ always contains
the symbols t and B, representing the blank symbol and the start symbol
respectively.

The input to the machine is a string x ∈ (Σ \{B,t})∗ with the symbol
B pre-pended to x, where X∗, for a set X , is the set of finite strings using
elements from X . The TM starts computing in the begin state s with the
reading head at B. The function δ can be seen as the program of the machine
indicating what the machine is supposed to be doing next: if the machine
is in a state q ∈ K and the reading head is reading a symbol σ ∈ Σ, then
δ(q, σ) = (q′, σ′, D) says that the machine should overwrite σ with σ′, enter
state q′, and move its reading head in the direction D ∈ {←,→,−}, where
←, →, or −, indicates a move to the left, right, or no move, respectively. The
machine knows what to do on any input as δ is a function, hence the notion
deterministic TM. Moreover, we assume that for any state q, δ(q,B) = (q′,B
,→) for some state q′, such that, intuitively, the machine will never read to
the left of B, making the infinite tape infinite on the right hand side of B

only, and will start reading the first symbol of its input.
The machine halts if one of the three states h, “yes”, or “no” are reached.

If it halts in a state “yes” (“no”), we say the machine accepts (rejects) the
input x. If it halts in h, the machine is assumed to produce output which can
be read from the tape as the finite1 string y following B whose last symbol is
not t and where only ts appear after y on the tape. Note that it is possible
that the machine M does not halt on an input.

Formally, the state of a TM can be described by a configuration (q, w, u) ∈
K ×Σ∗×Σ∗ indicating the state q the machine is in together with the string
w to the left of the reading head (with the position at the reading head
included) and the string u to the right of the reading head. A configuration
(q, w, u) yields (q′, w′, u′) in one step, denoted (q, w, u)→M (q′, w′, u′) for the
DTM M , if δ(q, σ) = (q′, σ′, D) where σ is the last symbol of w (i.e., the
position of the reading head) and,

• if D =→, then w′ is w with σ replaced by σ′ and the first symbol of u
appended, and u′ is u without its first symbol, or

• if D =←, then w′ is w without σ, and u′ is u with σ′ pre-pended, or
• if D = −, then w′ is w with σ replaced by σ′ and u′ is u.

A configuration (q, w, u) yields (q′, w′, u′) in k steps, denoted (q, w, u) →Mk

(q′, w′, u′), k ≥ 1, if there is a (q, w, u) = (q0, w0, u0) →
M (q1, w1, u1) →

M

. . . →M (qk, wk, uk) = (q′, w′, u′); a configuration (q, w, u) yields (q′, w′, u′),

denoted (q, w, u)→M∗

(q′, w′, u′), if there is a finite k such that (q, w, u)→Mk

1 The string y is finite as the machine stopped after a finite number of moves.

2.1 Decidability, Undecidability, and Complexity 23

(q′, w′, u′). We can then formally reformulate “accepts” and “rejects” in func-
tion of configurations: M accepts an input x if (s,B, x)→M∗

(“yes”, w, u) for
some strings w and u and M rejects x if (s,B, x)→M∗

(“no”, w, u) for some
strings w and u. We say that the machine halts on x if it either accepts x,
rejects x or (s,B, x)→M∗

(h,w, u) for some strings w and u.

Example 2.1. Take a DTM M = (K,Σ, δ, s) with K = {s, q0, q1, q
′
0, q
′
1, q},

Σ = {B,t, 0, 1}, and δ as in Table 2.1. For a particular input x ∈ {0, 1}∗, M

Table 2.1. Transition Function for Palindromes [Pap94]

p ∈ K, σ ∈ Σ δ(p, σ) p ∈ K, σ ∈ Σ δ(p, σ)

s 0 (q0,B,→) q′0 0 (q,t,←)

s 1 (q1,B,→) q′0 1 (“no”, 1,−)

s B (s,B,→) q′0 B (“yes”,t,→)

s t (“yes”,t,−)

q0 0 (q0, 0,→) q′1 0 (“no, 1,−)

q0 1 (q0, 1,→) q′1 1 (q,t,←)

q0 t (q′0,t,←) q′1 B (“yes”,B,→)

q1 0 (q1, 0,→) q 0 (q, 0,←)

q1 1 (q1, 1,→) q 1 (q, 1,←)

q1 t (q′1,t,←) q B (s,B,→)

accepts x iff it is a palindrome, a string that can be read both forward and
backward, e.g., 10011001, and rejects x otherwise.

Intuitively, the DTM starts by scanning the first symbol of x and remem-
bers it: if it was 0, the DTM enters state q0, if it was 1 it goes in state q1, and
if the string is empty it accepts the input. In either q0 or q1 the DTM moves
to the end of the string in order to check whether the last element matches
the first; a DTM can thus remember a finite amount of information by en-
coding it in states. In states q′0 and q′1, the DTM is scanning the last element
which must match 0 and 1 respectively (the remembered first symbol) if x
is to be a palindrome. If the DTM reads 0 in q′0, the palindrome property is
not violated such that the DTM removes the last element and goes in state
q which brings it back to the beginning of the string (which was moved to
the right when in state s, such that the beginning is now the original second
element of the string). The process starts over with the scanned portion of
the string getting smaller on both the left and right hand side. If the DTM
reads 1 in q′0, the palindrome property is violated and the DTM immediately
enters the rejecting state “no”. If it reads B in q′0, the string had an uneven
length and the 0 that led to q′0 was the middle element of the string, yielding

24 2 Preliminaries

a palindrome. If it reads 1 in q′0, the DTM immediately enters the rejecting
state “no” as this does not match the 0 from the beginning of the string. The
case for q′1 is similar.

A set L ⊆ (Σ\{t,B})∗ is called a language. A DTM M decides a language
L if the following holds for any x ∈ (Σ\{t,B})∗:

• if x ∈ L, then M accepts x, and
• if x 6∈ L, then M rejects x.

Thus, M knows how to correctly classify every finite string of (Σ\{t,B})∗ as
an element of L or not.

Example 2.2. The language L of palindromes over an alphabet {0, 1} is de-
cided by the DTM from Example 2.1.

A DTM M accepts a language L if for any x ∈ (Σ\{t,B})∗:

• if x ∈ L, then M accepts x, and
• if x 6∈ L, then M does not halt on x.

Accepts is thus a weaker notion than decides, as the DTM correctly classifies
strings only if they are a member of the language and does not halt otherwise.
The important part is that, if the machine has not halted at a certain time t
after starting the computation for input x, one does not know whether x is in
L or not: it may be that the machine halts after t or that it never halts.

If there is some DTM that decides L, L is called recursive. If there is
some DTM that accepts L, then L is recursively enumerable (r.e.). The set of
r.e. languages encompasses the set of recursive languages as every recursive
language is also r.e. [Pap94].

A DTM can be seen as an algorithm for a decision problem by encoding
instances of the decision problem as strings. The language L(d), associated
with a decision problem d, consists then of all encoded instances that have
a “yes” answer (yes-instances). A DTM M solves a decision problem d if M
decides L(d), i.e., given an instance x of the decision problem, encoded as a
string, M accepts x if it is a yes-instance and rejects it otherwise.

Note that, as is argued in [Pap94], most reasonable string representations
of instances differ only polynomially in each others size, e.g., integers can be
represented in binary notation or decimal notation. One notable exception,
however, is the representation of integers in unary notation which needs ex-
ponentially more space than, e.g., a binary representation. E.g., the n in a
description logics qualified number restriction (≤ n S .C), see Section 2.3.2, is
usually assumed to be represented in unary notation 11 . . . 1, i.e., by a string
of length n, while the binary representation of n has a length in the order of
log2 n.

The transition function δ of a DTM determines for every possible state
q and every possible symbol σ in the alphabet, one and only one possible
outcome in the form of a new state, the overwriting symbol and a movement

2.1 Decidability, Undecidability, and Complexity 25

of the reading head. In a nondeterministic TM, denoted NDTM, there is no
guarantee that every state/symbol combination has an associated outcome,
nor is it guaranteed, if there is an outcome, that the outcome is unique. A
NDTM is a tuple (K,Σ,∆, s) where K, Σ and s are as before, but ∆ is not a
function but a relation∆ ⊆ (K×Σ)×(K∪{h, “yes”, “no”}×Σ×{←,→,−}).

For a NDTM M , a configuration (q, w, u) yields (q′, w′, u′) in one step,
denoted (q, w, u) →M (q′, w′, u′), if ((q, σ), (q′, σ′, D)) ∈ ∆ where the same
conditions as in the DTM case hold for q′, w′, and u′. There may be different
possible configurations that result from (q, w, u) in one step: since ∆ is no

longer a function,→M is not either. The relations→Mk

and→M∗

are defined
as before. A NDTM M decides a language L if, for every x ∈ (Σ\{t,B})∗:
x ∈ L iff (s,B, x) →M∗

(“yes”, w, u) for some strings w and u. Note the
difference with DTMs: a NDTM decides a language if for every x there is some
accepting sequence of nondeterministically chosen configurations (according
to ∆). A NDTM M solves a decision problem d if M decides L(d).

An important extension of TMs (both deterministic and nondeterministic),
is the TM with an oracle. Intuitively, the oracle is a subroutine which the TM
can call in unit time. We consider an oracle to be equivalent to a decision
problem d, such that a call to an oracle amounts to checking whether an
instance of d is a yes-instance or not. Note that a TM M with oracle d can be
either deterministic or nondeterministic. A TM with oracle solves a decision
problem similarly as usual but with an oracle at its disposition. For a more
formal account of TMs with oracle, we refer to [Pap94].

Finally, we use TMs to define decidability of decision problems, the central
topic of a large part of this dissertation: a decision problem is decidable if there
exists a (N)DTM that solves the problem; it is decidable w.r.t. an oracle d if
there exists a (N)DTM with oracle d that solves the problem.

2.1.2 Undecidability and the Domino Problem

A decision problem is undecidable if it is not decidable, i.e., there is no
(N)DTM that solves the problem. Since a decision problem that is solved
by a NDTM, can be a solved by a DTM as well – possibly taking an exponen-
tial time longer than the NDTM [Pap94] – a decision problem is undecidable
if there is no DTM that solves the problem. In this subsection, we discuss
two undecidable problems: the halting problem and the domino problem. The
former mainly to show undecidability of the latter, and the domino problem
itself to prove undecidability of satisfiability checking in unrestricted open
answer set programming in Section 3.2.

The Halting Problem

The halting problem is the following problem [Pap94]:

Given the description of a DTM M and its input x, will M halt on x?

26 2 Preliminaries

This is an undecidable problem; we sketch the proof as in [Pap94].

Theorem 2.3. The halting problem is undecidable.

Proof Sketch. Assume it is not, i.e., there is a DTM N that decides L(h),
where h is the halting problem, and, per definition of languages for decision
problems,

L(h) = {M ;x |M halts on x,M a DTM} .

Define the DTM D such that on input M , where M is a string represen-
tation of the equally named DTM, D simulates N on input M ;M , until it is
about to halt (which will happen since N decides L(h)). If N accepts M ;M ,
D enters a state that moves the reading head to the right forever (and thus
does not halt). If N rejects M ;M , then D halts and accepts M .

We show that this gives rise to a contradiction. Either D halts on input
D, or D does not halt on D. In the former case, by the construction of D,
N rejects D;D such that D;D 6∈ L(h) (since N decides L(h)), and thus, by
definition of L(h), D does not halt on D, a contradiction. In the latter case,
by construction of D, N accepts D;D, such that D;D ∈ L(h) and thus D
halts on input D, again a contradiction.

Thus, there is no DTM that decides L(h), and the halting problem is
undecidable. ut
A variant of the halting problem is the halting problem on DTMs with empty
input h′:

Given the description of a DTM M , will M halt on ε?

where ε denotes the empty string. For a DTM M with input x, define e(M ;x)
as the DTM that overwrites its input with M ;x, goes back to B, and starts
executing M on x2. The DTM e(M ;x) halts iff M halts on x.

Theorem 2.4. The halting problem on DTMs with empty input is undecid-
able.

Proof Sketch. Assume it is not, then there exists a DTM N ′ that decides

L(h′) = {M |M halts on ε,M a DTM} .

Define a DTM N on input M ;x that simulates N ′ on e(M ;x).
We show that N decides L(h). Take a M ;x ∈ L(h), then M halts on x,

by definition of L(h), such that e(M ;x) halts on ε. Thus, e(M ;x) ∈ L(h′),
and, since N ′ decides L(h′), N ′ accepts e(M ;x). Since N simulates e(M ;x)
on input M ;x, N accepts M ;x.

Take a M ;x 6∈ L(h), then M does not halt on x, by definition of L(h),
such that e(M ;x) does not halt on ε. Thus, e(M ;x) 6∈ L(h′), and, since N ′

decides L(h′), N ′ rejects e(M ;x). Since N simulates e(M ;x) on input M ;x,
N rejects M ;x. ut

2 e(M ;x) is a so-called universal TM , i.e., a TM that takes as input the description
of another TM M together with an input x, and executes M on x. For more
details, we refer the reader to [Pap94].

2.1 Decidability, Undecidability, and Complexity 27

The Domino Problem

We define the origin constrained domino problem and show undecidability of
it by a reduction from the halting problem along the lines of [BGG97].

Intuitively, the domino (or tiling) problem asks whether, given a set of
dominoes, there is a tiling of the plane N×N using (infinitely many) copies of
the available dominoes. Formally, a domino system is a tuple (D,H, V) where
D is a finite set of dominoes and H ⊆ D × D (V ⊆ D × D) indicates how
the dominoes must be positioned horizontally (vertically). A domino system
(D,H, V) tiles the plane N × N if there exists a tiling function (or tiling for
short) τ : N× N→ D of the plane N× N such that, for all (x, y) ∈ N× N,

• (τ(x, y), τ(x + 1, y)) ∈ H , and
• (τ(x, y), τ(x, y + 1)) ∈ V ,

i.e., horizontally (vertically) adjacent positions must be in H (V): a domino
d1 may be tiled on the left of (below) d2 if the right (upper) side of d1 matches
the left (lower) side of d2 ((d1, d2) ∈ H , (d1, d2) ∈ V respectively).

The domino problem is then

Given a domino system D, does it tile the plane N× N?

In the related origin constrained domino problem, we have the additional con-
dition that a particular domino d has to be present in the tiling3, where a
domino is present in a tiling τ if there is some (x, y) ∈ N × N such that
τ(x, y) = d:

Given a domino system D and a domino d ∈ D, does D tile the plane
N× N such that d is present in the tiling?

We sketch the undecidability of the origin constrained domino problem by
reducing the halting problem for DTMs on empty input to it.

In the following, we assume that the possible movements of a DTM are
← and → (so we leave out −). It is easy to see that this does not restrict its
expressiveness, i.e., − can be simulated by ← and →.

For a DTM M = (K,Σ, δ, q0), we construct a domino system D and take
a domino d from D such that M does not halt on empty input iff D tiles the
plane such that d is present in the tiling.

Intuitively, if M does not halt on an empty input, the computation of
configurations (s,B, ε) →M (q1, w1, u1) →M (q2, w2, u2) →M . . . is infinite;
we choose the domino system D such that each configuration is encoded as
a row in the tiling of the plane. For each such row in a tiling, the row above
it represents the next configuration, and a non-halting DTM corresponds to
a tiling of the plane. The particular domino d that has to be present in the
tiling corresponds to the the initial configuration.

3 The name origin constrained domino problem is historical; the domino d can
appear anywhere in the tiling, but one can see that any tiling containing d defines
also a tiling with d in the origin of the plane.

28 2 Preliminaries

The other way around, if there is a tiling containing the particular domino
d, the rows of the tiling correspond to an infinite computation of the TM
where the row containing d represents the initial configuration.

Formally, we introduce for every element sk ∈ Σ an alphabet domino such
as in Figure 2.1; an alphabet domino on a particular position in a tiling of
the plane corresponds with the symbol sk on the tape in the configuration
that corresponds with the row. Note that we do not explicitly define H and
V for our domino system D. Instead, we assume that dominoes can only be
matched in correspondence with their label/edge drawing. E.g., the domino
in Figure 2.1 can be matched on its left side by any domino having a blank
right side (likewise on the right), on its upper side by a domino that has on
its lower side a label sk together with the start of an edge, and on its lower
side by a domino that has on its upper side the label sk and an arriving edge;
one can, for example, always tile the plane with one alphabet domino.4

sk

sk

Fig. 2.1. Alphabet Domino

For each combination of a state qi and a symbol sj, we have the merging
dominoes in Figure 2.2. They read the current symbol sj from the previous
configuration (row). The qi arrow, coming from the left in the first merging
domino in Figure 2.2 indicates that in the previous configuration the machine
had to go to the right and in a state qi. The merging domino merges this
information and indicates (at its upper side) that this row is in state qi and
reading sj .

qi

sj

qisj

qi

sj

qisj

Fig. 2.2. Merging Dominoes

4 Note that this, intuitively, shows why the proposed domino system only works
for the origin constrained domino problem: we cannot derive an infinite sequence
of configurations from a tiling consisting of only the alphabet domino. The par-
ticular tile that has to be present in the tiling (the origin) is chosen such that it
corresponds with the initial configuration of the DTM and enforces a tiling such
that the tiling of the plane corresponds with an infinite sequence of configurations.

2.1 Decidability, Undecidability, and Complexity 29

The action dominoes are the left and right ones in Figure 2.3 for each
δ(qi, sj) = (ql, sk,←) and δ(qi, sj) = (ql, sk,→) respectively. Intuitively, if the
previous row contains a merging domino indicating that the DTM is in state
qi and reading sj , then the action domino propagates the outcome state to
the right or to the left, and it overwrites sj with sk, i.e., the tile has sk on its
upper side instead of the sj on the previous row.

ql

qisj

sk sk

qisj

ql

Fig. 2.3. Action Dominoes

The 2 dominoes in Figure 2.4 are used to encode the initial configuration
of the DTM; the left one indicates that the initial state is q0 while reading
B, and the right domino is meant to fill up the rest of the row. We have then

q0 B t

Fig. 2.4. Domino’s for the Initial Configuration

constructed the domino system D and we take the left domino from Figure
2.4 as our dedicated domino d, such that remains to prove:

Theorem 2.5. Let M be a DTM, and D the corresponding domino system
with domino d selected as described above. Then, M does not halt on empty
input iff D tiles the plane such that d is present in the tiling.

Proof Sketch. Assume M does not halt on empty input. Then there is an
infinite sequence (q0,B, ε)→M (q1, w1, u1)→M (q2, w2, u2) →M . . ., and one
can construct a tiling τ by positioning the left domino of Figure 2.4 at the
origin of the plane, and filling up the rest of this first row with copies of the
right domino in Figure 2.4. The rows above the row that corresponds with the
initial configuration, are tiled according to the configurations (q1, w1, u1), . . .
Instead of giving a formal definition, assume for example, that we have the
infinite sequence: (q0,B, ε)→M (q1,B t, ε)→M (q2,B, s1)→M . . ., which re-
sulted from applications δ(q0,B) = (q1,B,→), δ(q1,t) = (q2, s1,←), . . . This
sequence of configurations tiles the plane as in Figure 2.5.

For the other direction, assume there is a tiling that contains d. There
can be no row below d since there are no dominoes with an upper side that

30 2 Preliminaries

q2 B

t

t

t

t

t

B

q1

q0 B

q1

q1t

. . .

. . .

q1t

q1

s1

t

q1 . . .

q0 B

. . .

t

B

Fig. 2.5. Tiling of Plane

is blank to match the lower side of d. Thus d resides on the first row of the
plane. There are no matches for the left side of d - the only ones that would
match the type of arrow are the right merging dominoes, however, they are
labeled with a state, and thus not suitable either. Thus, d is at the origin
of the plane. The dominoes on the right of d can only be copies of the right
domino from Figure 2.4, such that the first row of a tiling of the plane is
exactly as in Figure 2.5.

The domino above d must be an action domino (since the upper side of
d must match the lower side of this domino). On the right there must be
a merging domino. One can continue this reasoning to fill the whole plane.
The corresponding configurations can be read from the upper sides of each
row. Note that on each row there is only one domino with both a state and
a symbol on its upper side. This yields an infinite sequence of configurations
such that M does not halt. ut
Since the halting problem is undecidable, the origin constrained domino prob-
lem is too.

Corollary 2.6. The origin constrained domino problem is undecidable.

The unconstrained domino problem is undecidable as well. The proof is,
however, considerably harder than the constrained case: it uses an aperiodic
tiling of the plane with Robinson’s dominoes, and then, as in the constrained
case, shows that a TM does not halt iff there is a tiling of the plane. Since
the constrained domino problem is sufficient for showing undecidability of
satisfiability checking w.r.t. unrestricted programs under the open answer set
semantics, see Section 3.2, we refer to [BGG97] for a full account of the proof
of the undecidability of the unconstrained domino problem.

2.1 Decidability, Undecidability, and Complexity 31

2.1.3 Complexity

We introduce the theory of complexity classes along the lines of [Pap94]. For

a DTM M with input x, if (s,B, x)→Mt

(q, w, u) where q ∈ {“yes”, “no”, h},
then the time required by M on x is t; if M does not halt on x, the time
required is ∞. For a function f : N → N, we say that a DTM M operates in
time f(n) if for any input x the time required by M on x is at most f(|x|)
where |x| is the length of x.

A NDTM M operates in time f(n) , if, for any input x, the following holds:

if (s,B, x) →Mt

(q, u, w), then t ≤ f(|x|). Thus, for a NDTM to operate in
time f(n), any computation path should fall within the limits imposed by f .

A complexity class C is a set of languages. E.g., time(f(n)) is the com-
plexity class of languages that can be decided by DTMs that operate in time
f(n). Alternatively, viewing a decision problem d as the language L(d), a com-
plexity class is a set of decision problems and time(f(n)) is the set of decision
problems that can be solved by DTMs that operate in time f(n). Some ex-
amples of time(f(n)) for particular f are p for a polynomial f , exptime for
an exponential f , and 2-exptime for a double exponential f . In particular,

exptime ≡
⋃

k∈N

time(2n
k

) ,

and

2-exptime ≡
⋃

k∈N

time(22nk

) .

The complexity class ntime(f(n)) is defined as the set of all languages
(decision problems) that can be decided (solved) by NDTMs that operate in
time f(n). Some examples are np, nexptime, 2-nexptime, i.e., the set of
problems that can be solved by a NDTM in polynomial, exponential, double
exponential time respectively. Note that, since a DTM is a special case of a
NDTM (with a transition function instead of relation), p ⊆ np. The other
direction, np ⊆ p, is an open problem, generally believed not to hold.

Let D be a complexity class, then we denote with time(f(n))D the set of
decision problems that can be solved in time f(n) by DTMs with an oracle

in D. Similarly, ntime(f(n))
D

is the set of decision problems that can be
solved in time f(n) by NDTMs with an oracle in D. E.g., npnp, also denoted
as Σp

2 , is the set of decision problems that are decidable in polynomial time
by NDTMs with an oracle in np.

A decision problem d can be polynomially reduced by a reduction function
ψ to a decision problem d′ if the following holds: for all instances x of d, x
is a yes-instance of d iff ψ(x) is a yes-instance of d′, and the size of ψ(x), as
a string, is polynomial in the size of x. A decision problem d is C-hard for
a complexity class C if every decision problem d′ ∈ C can be polynomially
reduced to d. If, additionally, d ∈ C, we call d a C-complete decision problem.
Note that C-hardness of a decision problem d can be shown by a polynomial
reduction from a C-hard problem d′ to d.

32 2 Preliminaries

2.2 Trees and Tree Automata

In this section, we introduce trees and discuss both finite and infinite tree
automata. Such automata will prove useful in showing decidability of satis-
fiability checking under the open answer set semantics for certain restricted
classes of programs, see Section 3.4.

2.2.1 Trees

For a x ∈ N
∗
0, i.e., a finite sequence of natural numbers (excluding 0), we

denote the concatenation of a number c ∈ N0 to x as x · c, or, abbreviated, as
xc. Formally, a (finite) tree T is a (finite) subset of N

∗
0 such that if x · c ∈ T

for x ∈ N
∗
0 and c ∈ N0, we have that x ∈ T . Elements of T are called nodes

and the empty word ε is the root of T . For a node x ∈ T we call x · c ∈ T ,
c ∈ N0, successors of x. By convention, x · 0 = x and (x · c) · −1 = x (ε · −1 is
undefined). If every node x in a tree has either 0 or k successors we say that
the tree is k-ary; a complete tree T is such that ∀xj ∈ T, 1 ≤ i < j ·xi ∈ T . In
the following, we assume, unless specified otherwise, that trees are complete.
E.g., T1 = {ε, ε1, ε2, ε11} is a finite complete tree with root ε, two successors
ε1 and ε2, and ε11 a successor of ε1; T1 will also be written as {ε, 1, 2, 11}. A
path P in a tree T is a prefix-closed subset of T such that ∀x 6= y ∈ P ·|x| 6= |y|,
e.g., {ε, 1, 11} is a path in T1. The length of a path is the number of elements
of the path, e.g., the path {ε, 1, 11} has length 3.

A labeled tree is a pair (T, t) where T is a tree and t : T → Σ is a labeling
function; usually we will identify the tree (T, t) with t and we will write tx
for trees where the root is identified with some symbol x: if the root in T1

is identified with a symbol φ, we write it as {φ, φ1, φ2, φ12}, and a labeling
function for T1 is denoted as tφ. Often – to make the notation uniform when
dealing with identified roots – we write tε if there is no symbol associated
with the root.

Example 2.7. The tree T = {ε, 1, 2, 11, 12, 21, 22} is a finite binary complete
tree. We label it with labels from Σ = {a, b}: t(ε) = t(2) = t(11) = t(21) =
t(22) = a and t(1) = t(12) = b, and we depict the tree such as in Figure 2.6.
If the root of T is identified with a symbol φ, the labeled tree is depicted such

a b a a

b a

a

Fig. 2.6. Labeled Tree

as in Figure 2.7.

2.2 Trees and Tree Automata 33

φ

b a a

b a

a

a

Fig. 2.7. Labeled Tree with Identified Root

The frontier of a k-ary finite tree T is the set

fr(T) ≡ {x ∈ T | ∀1 ≤ i ≤ k · xi 6∈ T } .

The outer frontier of a k-ary finite tree T contains the nodes just past the
tree

fr+(T) ≡ {xi | 1 ≤ i ≤ k,x ∈ fr(t)} .

We define T+ ≡ T ∪ fr+(T), i.e., the tree extended with the nodes past its
frontier.

Example 2.8. For the tree T from Example 2.7, fr(T) = {11, 12, 21, 22} and
fr+(T) = {111, 112, 121, 122, 211, 212, 221, 222}.

We define a partial5 order ≤ on a tree T such that for x, y ∈ T , x ≤ y iff x
is a prefix of y, or, equivalently, there is a path P in T with x, y ∈ P and
|x| ≤ |y|. As usual, x < y if x ≤ y and y 6≤ x such that < is a strict partial
order on T . We denote the subtree of T at x ∈ T by T [x], i.e.,

T [x] ≡ {y ∈ T | x ≤ y} .

The above definitions can be easily extended for labeled trees t : T → Σ,
e.g., the subtree of t at x ∈ T is t[x] : T [x] → Σ such that t[x](y) ≡ t(y) for
y ∈ T [x].

Example 2.9. For the tree T from Example 2.7, we have, e.g., 1 ≤ 1, 1 < 11,
1 < 12, ε < 22, . . . The subtree of T at 2 is T [2] = {2, 21, 22}.

For a finite tree t : T → Σ, a tree s : S → Σ, and a symbol a ∈ Σ, we denote
with t ·a s, the tree t with every node on fr(t) with label a replaced by s. For
example, take t and s such as in Figure 2.8. The concatenation t ·a s is the
tree in Figure 2.9. If t is an infinite tree, the first (w.r.t. <) occurrence of a on
each path is replaced (instead of the a’s on the frontier). Infinitely repeating
such a concatenation is denoted by t ·a sω. For the same t and s as above, we
have that t ·a sω is as in Figure 2.10.

A forest F is a finite set of trees.

5 A partial order on a set X is a relation on X that is reflexive, anti-symmetric,
and transitive. It is a strict partial order if it is anti-reflexive and transitive (anti-
symmetry is entailed).

34 2 Preliminaries

s

a

b

a

t

Fig. 2.8. Trees t and s

b

a

Fig. 2.9. Concatenation of Trees

b

b

b

Fig. 2.10. Infinite Concatenation

2.2.2 Finite Tree Automata

During this section and a large part of the next one, we assume that (labeled)
trees are binary and complete. Definitions and results can be extended to the
k-ary case.

We introduce nondeterministic finite tree automata as in [Tho90]. A non-
deterministic finite tree automaton (NFTA) over an alphabet Σ is a tuple
A = (Σ,Q,Q0, ∆, F), where Q is a finite set of states, Q0 ⊆ Q is the set of
initial states, F ⊆ Q is the set of final states, and ∆ ⊆ Q × Σ × Q × Q is
the transition relation. A run of A on the finite binary tree t : T → Σ is a
tree r : T+ → Q where r(ε) ∈ Q0, and (r(x), t(x), r(x1), r(x2)) ∈ ∆ for each
x ∈ T . Intuitively, the automaton starts scanning the root of the tree t in
an initial state, e.g., in state q0 with t(ε) = a. It then checks its transition
relation for occurrences (q0, a, q1, q2), if such a transition is present, the au-
tomaton may start two copies of itself, one in state q1 and with the subtree
at the first successor as new input, and one in state q2 with the subtree at
the second successor as new input; the run is a tree that keeps track of this

2.2 Trees and Tree Automata 35

behavior by recording the states that are visited by copies of the automaton.
A run is an accepting run if r(x) ∈ F for all x ∈ fr+(t). A NFTA accepts
a labeled tree if and only if there exists a run that is accepting. We denote
the set of trees that are accepted by a particular automaton A as L(A) (the
language of A).

Example 2.10. Take a NFTA A = (Σ,Q,Q0, ∆, F) with Σ = {a, b}, Q =
{qeven , qodd , q}, Q0 = {qeven}, F = {q}, and

∆ = {(qeven , a, qodd , qodd), (qeven , b, qodd , qodd), (qeven , b, q, q),

(qodd , a, qeven , qeven), (qodd , b, qeven , qeven)} .

The NFTA will accept precisely those finite trees for which all leaves are at
even depth and have a symbol b as label.

The main decision problem we associate with tree automata is the non-
emptiness problem:

Given a NFTA A, is L(A) 6= ∅?

or, equivalently, does A accept trees?

Theorem 2.11 ([Tho90]). The non-emptiness problem for NFTAs is decid-
able.

Proof Sketch. Take a NFTA A = (Σ,Q,Q0, ∆, F). If L(A) 6= ∅, then, for
|Q| = n, there is always a tree in L(A) that has depth at most n. Indeed,
take an arbitrary tree t that is accepted by A: if the depth of t (the maximal
length of nodes in the tree) is at most n, we are done, otherwise, there is
a path in the corresponding run that contains two nodes x < y for which
r(x) = r(y) = q ∈ Q. One can then construct a new tree t′ with a new
corresponding accepting run r′ by replacing t[x] by t[y] and r[x] by r[y]. The
tree t′ has now strictly less nodes than t. One repeats this process until the
resulting t′ has depth at most n.

In order to check non-emptiness, one can construct all finite trees with
depth at most n and check whether there is some tree that is accepted by the
NFTA. ut

2.2.3 Infinite Tree Automata

Whereas Subsection 2.2.2 introduced automata on finite trees, we define in
this subsection two types of automata on infinite trees: Rabin tree automata
(RTAs) and two-way alternating tree automata (2ATAs). We show decidabil-
ity of the non-emptiness problem for RTAs as in [Tho90] by means of a direct
proof (by induction on the number of live states). Decidability of the non-
emptiness problem for 2ATAs is shown as in [Var98] by a reduction to RTAs.

36 2 Preliminaries

Rabin Tree Automata

For an infinite path σ in a tree t, define In(σ) as the set of labels that appear
infinitely often on the path σ. A Rabin tree automaton (RTA) over an alphabet
Σ is a tuple A = (Σ,Q, q0, ∆,Ω) with Q a set of states, q0 an initial state, and
∆ a transition relation as before, Ω = {(L1, U1), . . . , (Ln, Un)} is a collection
of pairs (Li, Ui), 1 ≤ i ≤ n, with Li, Ui ⊆ Q.6 A run of A on an infinite tree
t : T → Σ is a tree r : T → Q where r(ε) = q0, and (r(x), t(x), r(x1), r(x2)) ∈
∆ for x ∈ T . It is an accepting run if for all paths σ of r there exists some
accepting pair (Li, Ui), 1 ≤ i ≤ n of Ω with In(σ)∩Li = ∅ and In(σ)∩Ui 6= ∅;
thus, Li contains the states that cannot occur infinitely often on σ, while there
must be some infinitely appearing state q from σ that is in Ui. A RTA accepts
a labeled infinite tree if and only if there exists a run that is accepting. The
set of trees that are accepted by a RTA A is the language of A , denoted L(A)
as usual.

Example 2.12 ([Tho90]). Consider the language L that consists of infinite trees
t : T → {a, b} such that every path in t carries only finitely many labels a.
A RTA that accepts this language has some state qa that is computed iff the
label a is encountered. The acceptance condition is such that for every path σ
in an accepting run qa does not appear infinitely often on σ, or In(σ)∩{qa} =
∅, while other states may appear infinitely often, and thus In(σ) ∩ Q 6= ∅:
Ω = {({qa}, Q)} for the state set Q.

Theorem 2.13 ([Tho90]). The non-emptiness problem for RTAs is decid-
able.

Proof Sketch. We first reduce the non-emptiness of RTAs to the non-emptiness
of input-free RTAs . An input-free RTA is a tuple (Q, q0, ∆,Ω) with Q a set
of states, q0 an initial state, and ∆ ⊆ Q × Q × Q a transition relation, Ω is
an acceptance condition as before. A run of A is a tree r : T → Q, where T is
the complete infinite binary tree, with r(ε) = q0, and (r(x), r(x1), r(x2)) ∈ ∆
for x ∈ T . Acceptance of runs is defined as for general RTAs.

We transform a RTA A = (Σ,Q, q0, ∆,Ω) into A′ ≡ (Q × Σ,Q0, ∆
′, Ω′)

with ∆′ ⊆ (Q×Σ)× (Q×Σ)× (Q×Σ) such that ((q, a), (q′, a′), (q′′, a′′)) ∈
∆′ iff (q, a, q′, q′′) ∈ ∆. Q0 contains all (q0, a) and Ω′ is such that for a
pair (L,U) ∈ Ω′ with L,U ⊆ Q × Σ, the projection onto Q is an accepting
pair in Ω. It is easy to check that the successful runs of A′ are the (r, t)
with r a successful run of A on the tree t (with (r, t)(x) = (r(x), t(x))).
Furthermore, an input-free automaton (Q,Q0, ∆,Ω) can be reduced to an
input-free automaton (Q, q0, ∆,Ω) with a single initial state.

6 Note that we assume that the set of initial states in the tree automaton is a sin-
gleton q0. This does not affect the expressiveness of the automaton: a set of initial
states Q0 = {q1, q2, . . . , qn} can be replaced by a q0 such that (q0, a, q

′, q′′) ∈ ∆,
for every (qi, a, q′, q′′) ∈ ∆.

2.2 Trees and Tree Automata 37

Assume A = (Q, q0, ∆,Ω) is an input-free RTA. We call a state q ∈ Q
live if q 6= q0 and there are other transitions possible in ∆ than (q, q, q). In
the following, we subsequently reduce the number of live states while retain-
ing non-emptiness. For an automaton with 0 live states the non-emptiness
problem can be trivially decided: a run is of a form as in Figure 2.11. For

q2

q0

q1 q2

q1 q1 q2

Fig. 2.11. No Live States

every path π in such a run either In(π) = {q1} or In(π) = {q2}, and checking
whether it is an accepting run is trivial.

We introduce 4 types of modifications to the original automaton A, each
of them containing less live states.

1. For a live state q ∈ A, remove q from A. The resulting automaton is called
A1
q .

2. For a live state q ∈ A, remove all transitions for q and add (q, q, q) to ∆.
Transform every accepting pair (Li, Ui) to (L′i, U

′
i) with L′i = Li \{q} and

U ′i = Ui ∪ {q}. The resulting automaton is called A2
q .

3. For two live states q and q′, take q initial and delete q′ in the modified
automaton. The resulting automaton is called A3

q,q′ .
4. For a live state q, make two copies of q, make one copy an initial state

and remove all transitions for the other copy while adding (q, q, q). Replace
(Li, Ui) by (L′i, Ui) such that

L′i =

{

Li ∪ {q} if there exists a live state in Li

Li else

The resulting automaton is called A4
q .

Claim. A has an accepting run iff

• there exists an A1
q with an accepting run, or

• there exist A2
q , A

3
q,q′ with each of them an accepting run, or

• there exist A2
q , A

4
q with each of them an accepting run.

Thus, deciding non-emptiness can be done by writing down all the possi-
ble modifications for an automaton (which is finite, since the number of live
states is finite), and checking the finite number of the above combinations for
accepting runs, which can be done by induction as they contain fewer live
states.

We prove the claim. For the “only if” direction, assume A has an accepting
run r.

38 2 Preliminaries

• Assume the live state q is missing in r. Then, one can show that r is an
accepting run of the modified automaton A1

q .
• Assume r contains a node u and r(u) = q with q a live state and q′ does

not appear as a label of nodes beyond u, as in Figure 2.12. Then, A2
q and

q′ not present

u, r(u) = q

Fig. 2.12. Subtree without q′

A3
q,q′ have accepting runs r1 and r2 respectively, where r1 is the tree in

Figure 2.13, i.e. each appearance of q is infinitely followed by q’s, and the
rest of the tree is like r, and r2 is the tree in Figure 2.14, i.e., the subtree
r[u].

q

q q

q q q q

Fig. 2.13. Run Accepted by A2
q

q′ not present

u, r(u) = q

Fig. 2.14. Run Accepted by A3
q,q′

• Assume all live states appear infinitely beyond every node in r. We can
then choose a path π0 where all live states appear infinitely often. Since r
is accepting we have that there exists a (Li, Ui) such that In(π0) ∩Li = ∅
and In(π0)∩Ui 6= ∅, and thus Li does not contain any live states (because
In(π0) contains them all). Take q ∈ In(π0) ∩ Ui. Then, A2

q and A4
q have

accepting runs r1 and r2 respectively, where r1 is the same tree as in Figure

2.2 Trees and Tree Automata 39

2.13 and r2 is the tree in Figure 2.15, i.e., corresponding to a subtree of r
with root q, and subsequently considered the second encounter of q to be
non-live.

q

q

q q

q q

q

Fig. 2.15. Run Accepted by A4
q

For the “if” direction, we distinguish between three cases.

1. Assume there exists an A1
q with an accepting run r. One can show that r

is an accepting run of A.
2. Assume there exist A2

q, A
3
q,q′ with runs respectively r1 and r2. One can

show that r1 ·q r2 is an accepting run of A.
3. Assume there exist A2

q, A
4
q with respective accepting runs r1 and r2. One

can show that r1 ·q rω2 is an accepting run of A.
ut

Two-way Alternating Tree Automata

A transition (q, a, q′i, q
′′
i), 1 ≤ i ≤ n, in the transition relation ∆ of a RTA

A = (Σ,Q, q0, ∆,Ω) expresses that, when the automaton reads a node x with
label a in state q, it goes to node x1 in state q′i and node x2 in state q′′i for
some 1 ≤ i ≤ n. One can alternatively represent the transition relation ∆ by
a function δ, such that δ(q, a) =

∨

1≤i≤n((1, q′i) ∧ (2, q′′i)), i.e., the disjunction
indicates a choice for the different i and the conjunction indicates that the
automaton should follow the 1-direction (to x1 when in x) and enter state q′i
and the 2-direction (to x2 when in x) and enter state q′′i .

In alternating automata [MS87] the conjunction and disjunction in the
definition of a δ do not have to adhere to this strict form. Instead, arbitrary
positive boolean formulas are allowed, i.e., formulas using ∧ and ∨ at liberty.
E.g., a definition

δ(q, a) = (1, q1) ∧ ((2, q2) ∨ (2, q3))

indicates that the automaton, when in some node x, proceeds to x1 and enters
state q1, and subsequently goes to x2 and enters either q2 or q3.

The two-way aspect is achieved by permitting, besides 1 and 2, also the
directions −1 and 0, where −1 stands for go one node up in the tree (to x ·−1
when in x) and 0 stands for stay at the current node (to x0 when in x).

40 2 Preliminaries

Formally, let B+(I) be the set of positive boolean formulas over a set I.
A set J ⊆ I satisfies a positive boolean formula φ, if assigning true to the
elements in J and false to the elements in I \J makes φ true according to the
standard inductive semantics for boolean formulas. A two-way alternating tree
automaton (2ATA) [Var98] over k-ary7 infinite trees is a tuple (Σ,Q, q0, δ, Ω)
where Σ is the input alphabet, Q is a finite set of states, δ : Q × Σ →
B+([k]×Q), with [k] = {−1, 0, . . . , k}, q0 ∈ Q is the initial state and Ω is the
acceptance condition.

A run over a tree t : T → Σ is a tree8 r : R→ T ×Q such that:

1. r(ε) = (ε, q0),
2. if y ∈ R, r(y) = (x, q), and δ(q, t(x)) = φ, then there exists a (possibly

empty) set S = {(c1, q1), . . . , (cn, qn)} ⊆ [k]×Q such that
a) S satisfies φ, and
b) yi ∈ R, for all 0 < i ≤ n, xci is defined and r(yi) = (xci, qi).

Thus, the label (x, q) of a node in a run indicates the node x that the au-
tomaton is scanning as well as the state q it is in. A run r is accepting if all its
infinite paths satisfy the acceptance condition Ω. We consider parity accep-
tance conditions , i.e. Ω = (G1, . . . , Gm) such that G1 ⊆ G2 ⊆ . . . ⊆ Gm = Q,
and a run r satisfies Ω if for every infinite path π in r, there exists an even i
such that In(π)∩Gi 6= ∅ and In(π)∩Gi−1 = ∅.9 Further note that, in contrast
with RTAs, the run of a 2ATA on a tree t might have a different structure
than t.

Decidability of the non-emptiness problem for 2ATAs is shown by a reduc-
tion to the non-emptiness problem for RTAs, according to the following steps
[Var98]:

• define a notion of run (a strategy tree) that has the same tree structure as
the input tree,

• since paths in such strategy trees can still go up in the input tree (with
the −1 direction), as opposed to the one-way runs of RTAs, define an
annotation of the strategy tree such that paths only go down the tree.

The acceptance of a run of a 2ATA is then reduced to the acceptance of a
strategy tree with accepting annotation, where the latter can be performed
by a RTA.

First, we introduce the notion of strategy tree, a tree with the same struc-
ture as the input tree. A strategy tree for a 2ATA A on infinite k-ary trees is
a tree τ : {1, . . . , k}∗ → 2Q×[k]×Q. The set of sources in a label χ ∈ 2Q×[k]×Q

7 Note that we define 2ATAs over k-ary trees whereas RTAs were defined over
binary trees. However, definitions and results for the latter can be easily extended
to the k-ary case.

8 Note that the alphabet of r is infinite.
9 A parity acceptance condition (G1, . . . , Gm) corresponds to an acceptance condi-

tion ((G1, G2), . . . , (Gm−1, Gm)) or ((G1, G2), . . . , (Gm−1, Gm), (Gm, ∅)) for even
or odd m respectively.

2.2 Trees and Tree Automata 41

is state(χ) ≡ {q | (q, c, q′) ∈ χ}. A strategy tree τ is over a k-ary input
tree t if q0 ∈ state(τ(ε)), and, for each node x ∈ {1, . . . , k}∗ and each state
q ∈ state(τ(x)), the set {(c, q′) | (q, c, q′) ∈ τ(x)} satisfies δ(q, t(x)). Thus,
when confronted with δ(q, t(x)), the satisfying set (and thus the directions
and states to go to next) can be simply obtained from τ(x) such that τ is
rightly called a strategy for running the automaton A over t.

A path π in a strategy tree τ is a sequence

(x1, q1), (x2, q2), . . .

with (xi, qi) ∈ {1, . . . , k}∗ × Q such that there exists a (qi, c, qi+1) ∈ τ(xi)
and xi+1 = xic; In(π) is the set of states that appear infinitely often in π. A
strategy tree τ over t is accepting if for every path π in τ there is an even i
such that In(π) ∩ Gi 6= ∅ and In(π) ∩ Gi−1 = ∅, where (G1, . . . , Gm) is the
acceptance condition of A.

Theorem 2.14 ([Var98, Cac02]). A 2ATA accepts an input tree iff it has
an accepting strategy tree over the input tree.

A path in a strategy tree can, however, still go up in the tree: it may be of
the form (x1, q1), (x2, q2), (x1, q3), . . ., i.e., x1 is visited twice. The second step
involves removing those “detours”.

An annotation is a tree η : {1, . . . , k}∗ → 2Q×2{1,...,m}×Q with m as in the
acceptance condition (G1, . . . , Gm) of the automaton. Define index (q) as the
minimal i such that q ∈ Gi. The intuition for (q,H, q′) ∈ η(x) is “for a node
x and in state q, the automaton moves through states qi with index (qi) ∈ H
again to x and state q′”. We forget about the particular states that are visited
by the automaton during its detour and only record the Gi that contained
the visited states – for acceptance we are only interested in checking infinite
visits to states in such Gi’s. The annotation η is an annotation of a strategy
tree τ if the following closure conditions hold for x ∈ {1, . . . , k}∗:

1. if (q,H1, q
′) ∈ η(x) and (q′, H2, q

′′) ∈ η(x) then (q,H1 ∪H2, q
′′) ∈ η(x).

Thus, if, for a node x, the automaton moves from state q through states
qi with index (qi) ∈ H1 again to x and state q′, and it moves from state q′

through states qi with index (qi) ∈ H2 again to x and state q′′, then the
automaton moves from state q through states qi with index (qi) ∈ H1∪H2

again to x and state q′′.
2. if (q, 0, q′) ∈ τ(x) then (q, {index (q′)}, q′) ∈ η(x). Thus, if the strategy

tree says that when reading x and in state q you have to stay in x (the
“0”) and go to state q′, then the η(x) remembers the Gi that q′ belongs
to, i.e. index (q′).

3. if (q,−1, q′) ∈ τ(xi), (q′, H, q′′) ∈ η(x), and (q′′, i, q′′′) ∈ τ(x), then (q,H∪
{index (q′), index (q′′′)}, q′′′) ∈ η(xi).

4. if (q, i, q′) ∈ τ(x), (q′, H, q′′) ∈ η(xi), and (q′′,−1, q′′′) ∈ τ(xi), then (q,H∪
{index (q′), index (q′′′)}, q′′′) ∈ η(x).

42 2 Preliminaries

The annotation η remembers where the automaton has been on its detour.
Like for strategy trees, we define a notion of paths: downward paths . A down-
ward path in η is a sequence

(u1, q1, t1), (u2, q2, t2), . . .

with ui ∈ {1, . . . , k}∗, qi ∈ Q, and ti in τ(ui) or η(ui), such that

• ti is (qi, c, qi+1), c ∈ {1, . . . , k}, ui+1 = uic. We define index (ti) ≡
index (qi+1). Note that c is a direction going strictly down the tree, and
that the index of ti records the Gj through which the automaton would
pass (by state qi+1).

• ti is (qi, H, qi+1), H ⊆ {1, . . . ,m}, ui+1 = ui. We define index (ti) =
min(H). We just record the minimal i such that a q ∈ Gi, with q on the
way from qi back to qi+1 (the minimum is sufficient since Gi ⊆ Gi+1 ⊆
. . . ⊆ Gm).

We distinguish between finite and infinite downward paths.

1. infinite downward paths π : (u1, q1, t1), (u2, q2, t2), . . . with index (π) de-
fined as the minimal j such that index (ti) = j for infinitely many ti.

2. finite downward paths π : (u1, q1, t1), . . . , (us, qs, ts) with ts = (qs, Hs, qs)
and index (π) ≡ index (ts).

A downward path violates the acceptance condition Ω if index (π) is odd.
An annotation η for a strategy tree τ is accepting if no downward path in η
violates Ω.

Theorem 2.15 ([Var98]). A 2ATA accepts an input tree iff it has a strategy
tree over the input tree and an accepting annotation of the strategy tree.

Proof Sketch. Let A = (Σ,Q, δ, q0, Ω) be a 2ATA and t : {1, . . . , k}∗ → Σ
the input tree.

For the “only if” direction, assume A accepts the input tree. By Theorem
2.14, there is an accepting strategy tree τ over t. Given two annotations η1
and η2 one can check that η1 ∩ η2 is also an annotation over τ , defined as
η1 ∩ η2(x) = η1(x) ∩ η2(x). We take η the minimal annotation, where η is
minimal if for every η′ we have that η ⊆ η′ (η(x) ⊆ η′(x) for each node x).
We prove that there is no downward path in η that violates Ω.

By contradiction, assume there is a downward path κ that violates Ω. We
distinguish between two cases:

1. κ finite, then κ : (u1, q1, t1), . . . , (us, qs, ts) with ts = (qs, Hs, qs) and
index (κ) = index (ts) = min(Hs) is odd (by definition of violation).
We can write down a path in the strategy tree by an expansion of κ.
For every (ui, qi, ti),(ui+1, qi+1, ti+1) with ti = (qi, c, qi+1), we retain
(ui, qi),(ui+1, qi+1). If ti = (qi, Hi, qi+1) then there are q1i , . . . , q

l
i and

c1i , . . . , c
l
i such that index (qji) ∈ Hi and we retain

2.2 Trees and Tree Automata 43

(ui, qi), (uic
1
i , q

1
i), . . . , (uic

1
i . . . c

l
i, q

l
i), (ui+1, qi+1) .

The last (qs, Hs, qs) is expanded likewise (and repeated infinitely). The
result is a path κ′ in the strategy tree τ , where the states qjs appear
infinitely often.
We prove that for all even i: In(κ′)∩Gi = ∅ or In(κ′)∩Gi−1 6= ∅. Take an
even i and In(κ′)∩Gi 6= ∅, then there is a qjs ∈ In(κ′) and qjs ∈ Gi. index (κ)
is odd such that the smallest element n of Hs is odd. Since n ∈ Hs, there
is a qks such that qks ∈ Gn=index (qk

s). We have that index (qjs) ≤ i, qjs ∈

G
index (qj

s), and index (qjs) ∈ Hs (by definition of qjs’s). Thus, index (qks) ≤

index (qjs) ≤ i; since index (qks) is odd and i is even this cannot be an
equality such that index (qks) ≤ i − 1. By G1 ⊆ G2 ⊆ . . . ⊆ Gm, we have
that qks ∈ Gn=index (qk

s) ⊆ Gi−1. Since qks ∈ In(κ′), In(κ′) ∩ Gi−1 6= ∅.
And thus, by definition of acceptance of paths in strategy trees, κ′ is not
accepted, contradicting that we have an accepting strategy tree and that
all paths should be accepting.

2. The proof for an infinite κ is similar.

For the “if” direction, assume τ is a strategy tree over the input tree t and
η an accepting annotation. Then no downward path in η violates Ω. Assume
η′ is the minimal annotation of τ then η′ ⊆ η and no downward path in η′

violates Ω. One can then prove that all paths in τ are accepting (by rewriting
them as downward paths and using that no downward path violates Ω), and,
by Theorem 2.14, there is an accepting input tree. ut
For a 2ATA A and an input tree, there exists a RTA An that accepts an ac-
cepting notation of a strategy tree over the input tree. Since the non-emptiness
problem for RTAs is decidable, it is, with Theorem 2.15, for 2ATAs as well.

Theorem 2.16. The non-emptiness problem for 2ATAs is decidable.

Proof Sketch. Let A be 2ATA. We construct the RTA An as the intersection
of two automata.

1. The RTA A1 checks, given a tuple (t, τ, η), that τ is a strategy tree over
t, and that η is an annotation of τ .

2. For a downward path κ : (u1, q1, t1), (u2, q2, t2), . . ., a projection of κ is
proj (κ) ≡ (q1, t1), (q2, t2), . . . A2 is then constructed in different phases.
• B is a (word10) automaton that accepts projections of downward paths

that violate the acceptance condition Ω.
• B′ is constructed from B; it reads sequences of labels from τ or η and

checks whether they contain a downward path that violates Ω.
• B′′ is the complemented determinized version of B′ such that B′′ re-

jects violated downward paths.
• The RTA A2 runs B′′ in parallel over the branches of (t, τ, η).

ut

10 A word automaton is a RTA on 1-ary trees, i.e., on strings or words.

44 2 Preliminaries

Theorem 2.17. The non-emptiness problem for 2ATAs is in exptime.

Proof Sketch. By Theorem 7 in [Var98], the number of states in the RTA
An is exponential in the number of states of the 2ATA A and the size of the
acceptance condition of An is linear in the size of the acceptance condition of
A. Since there are algorithms that solve the non-emptiness problem for RTAs
in time polynomial in the number of states but exponential in the size of the
acceptance condition [Var98, EJ00], we have, with Theorem 2.16, algorithms
that solve the non-emptiness problem for 2ATAs in time exponential in the
number of states and the size of the acceptance condition. ut

2.3 Knowledge Representation Formalisms

In this section, we introduce four knowledge representation formalisms that
will appear throughout this dissertation.

2.3.1 Answer Set Programming

Answer set programming (ASP) is a logic programming paradigm, based on
the stable model semantics for negation as failure [GL88]. In ASP, one uses
a logic program, a set of rules, to declaratively describe a domain, or, more
specifically a particular problem. The answers of the program, given by a
formally defined answer set semantics , correspond to an explicitization of the
knowledge in the described domain, or to the solutions of the problem. One
does not specify how to derive knowledge from a domain, or how to solve the
problem, one merely tries to state what the domain is, or, in which terms a
solution to a problem can be characterized: ASP is a declarative approach to
knowledge representation, reasoning, and problem solving.

The answer set methodology has been successfully applied in problem areas
such as planning [Lif02, EFL+00, EFL+02], configuration and verification
[SN99, SNTS01], diagnosis [EFLP99, VNV03], game theory [DVV99], updates
[EFST00], and database repairs [ABC00, VNV02]. Moreover, several answer
set solvers , i.e., systems that return the answer sets of the program, have
reached a mature stage of development. E.g., smodels [Sim, NS96, NS97]
and dlv [LPF, LRS97, EFLP00]. For a thorough treatment of ASP, we refer
to [Bar03].

Example 2.18 (3-colorability). Consider the 3-colorability problem, where,
given a graph and three colors, one wants to find a coloring of the graph such
that no adjacent nodes have the same color. One can encode this problem as
a logic program [Col]. The first 2 rules in the program

node(X) ← edge(X ,Y)
node(Y) ← edge(X ,Y)

colored(X , r) ∨ colored(X , g) ∨ colored(X , b) ← node(X)

2.3 Knowledge Representation Formalisms 45

say that, if there is an edge from X to Y then X and Y are nodes; the third
rule says that if X is a node then X has got to be colored with one of the
three colors, r, g, or b. We have a rule enforcing the colorability condition:

← edge(X ,Y), colored(X ,C), colored(Y ,C)

expressing that if there is an edge from X to Y and X and Y are colored with
the same color C, then we have a contradiction (the empty left hand side of
←). Finally, the graph that is to be colored is represented as the set of edges

edge(2 , 4) ← edge(2 , 3) ←
edge(3 , 5) ← edge(4 , 6) ←
edge(4 , 5) ← edge(5 , 7) ←
edge(6 , 7) ← edge(3 , 4) ←
edge(5 , 6) ←

Applying the answer set solver dlv to this program yields, among others, an
answer set that contains

{colored(2 , b), colored(3 , r), colored(4 , g), colored(5 , b),

colored(6 , r), colored(7 , g)} ,

corresponding to a valid 3-coloring of the graph.11

We define the language of ASP. A term is a constant or a variable, where
the former will be written lower-case and the latter upper-case. An atom is
of the form p(t1, . . . , tn), 0 ≤ n < ∞12, where p is an n-ary predicate name
and ti, 1 ≤ i ≤ n, are terms. A literal is an atom a or a classically negated
atom ¬a; an extended literal is a literal l or a naf-literal not l, i.e., a literal
preceded with the negation as failure symbol not.

A (logic) program (LP) is a countable set of rules

α← β

where α and β are finite sets of extended literals, respectively called the head
and body of the rule. For a rule r, we denote the head as head(r) and the body
as body(r). The body of a rule is considered to be a conjunction of extended
literals (denoted as a comma-separated list) and the head as a disjunction of
extended literals (denoted as a ∨-separated list). If α = ∅, we denote the rule
as ← β and call it a constraint . The positive part of a set of extended literals
γ is

γ+ ≡ {l | l ∈ γ, l literal} ,

11 Note that 3-colorability is an np-complete problem such that one does not need
the full power of dlv (which is Σp

2-complete due to presence of disjunction in the
heads of rules and the demand for minimality in the disjunction).

12 We thus allow for 0-ary predicates, i.e., propositions.

46 2 Preliminaries

and the negative part is

γ− ≡ {l | not l ∈ γ} .

E.g., for γ = {a, not ¬b, not c}, we have that γ+ = {a} and γ− = {¬b, c}.
A ground atom, (extended) literal, rule, or program does not contain vari-

ables. Substituting every variable in a program P with every possible constant
in P yields the ground program gr(P).

Example 2.19. Grounding a program P

p(X) ← not q(X , b)
q(X) ← not p(X , a)

yields the program
p(a) ← not q(a, b)
p(b) ← not q(b, b)
q(a) ← not p(a, a)
q(b) ← not p(b, a)

Note that a variable X in a rule should be grounded with the same constant
in that rule (either with a or with b), while it may be grounded with other
constants in other rules, i.e., the variables in a rule are considered local to the
rule. One can, e.g., replace the above program by the equivalent

p(X) ← not q(X , b)
q(Y)← not p(Y , a)

All following definitions in this section assume ground programs and
ground (extended) literals; to obtain the definitions for unground programs,
replace every occurrence of a program P by gr(P), e.g., an answer set of an
unground P is an answer set of gr(P).

The Herbrand Base BP of a program P is the set of all ground atoms
that can be formed using the language of P . For a set X of literals, we take
¬X ≡ {¬l | l ∈ X} where ¬¬a ≡ a; X is consistent if X ∩ ¬X = ∅, i.e., X
does not contain contradictory literals a and ¬a. Let LP be the set of literals
that can be formed with P , i.e., LP = BP ∪ ¬BP .

An interpretation I of P is any consistent subset of LP . For a literal l, we
write I |= l, if l ∈ I, which extends for extended literals not l to I |= not l if
I 6|= l. In general, for a set of extended literals X , I |= X if I |= x for every
extended literal x ∈ X . A rule r : α ← β is satisfied w.r.t. I, denoted I |= r,
if ∃l ∈ α · I |= l, for some extended literal l, whenever I |= β, i.e., r is applied
(∃l ∈ α ·I |= l and I |= β) whenever it is applicable (I |= β). Since a constraint
has an empty head, the previous yields that constraints cannot be applicable
if they are to be satisfied. The set of satisfied rules in P w.r.t. I is the reduct
PI .

For a simple program P (i.e., a program without not), an interpretation
I is a model of P if I satisfies every rule in P , i.e., PI = P ; it is an answer

2.3 Knowledge Representation Formalisms 47

set of P if it is a minimal model of P , i.e., there is no model J of P such that
J ⊂ I.

Example 2.20 ([Lif02]). Take the program

p ∨ q ←
¬r ← p

Then, we have 4 models13: {p,¬r}, {q,¬r}, {q}, and {p, q,¬r}. Since {q} is
a strict subset of {q,¬r} and {p, q,¬r}, we have that {p,¬r} and {q} are the
minimal models (or answer sets) of the program.

Adding a constraint ← q yields {p,¬r} as the unique answer set. Sub-
sequently adding ← p results in an inconsistent program, i.e., a program
without answer sets.

As in [Lif02], we define answer sets for programs with not in terms of a re-
duction to simple programs. The GL-reduct14 w.r.t. an interpretation I is
the simple P I , where P I contains α+ ← β+ for α ← β in P , I |= α−, and
I |= not β−. Thus, given an interpretation I of literals – the items that one
supposes true – the GL-reduct contains those rules for which the negative
part is consistent with the beliefs in I. If there is a naf-literal in the body that
is not true in I, then the rule is not in the GL-reduct since its whole body
is then false and cannot be used to deduce literals. If all naf-literals in the
body are true, the rule stays in the GL-reduct (depending on the naf-literals
in the head), but with the naf-literals removed (they are known to be true).
A similar reasoning holds for the head of a rule: if there is a naf-literal in the
head that is true w.r.t. I, we have that the rule is automatically true and can
be removed; if all naf-literals in the head are false, then we remove them and
leave the rule in the GL-reduct.

I is an answer set of P if I is an answer set of P I . Thus, given an inter-
pretation I, one calculates the GL-reduct, and checks that the minimal model
of the GL-reduct is I; an answer set is thus self-motivating or stable.

Example 2.21. Take the program P that consists of the rule p ← not p. Then
{p} is a model of this rule. However, it is not stable in the above sense: the
GL-reduct P {p} is the empty set. Indeed, the naf-literal in the body is false
w.r.t. {p}, thus the rule cannot be used to deduce p. Since the minimal model
of ∅ is ∅ 6= {p}, {p} is not an answer set. Another guess might be the empty
set: the GL-reduct w.r.t. ∅ is the rule p ← which has the minimal model {p},
again not confirming the initial guess. In fact, P has no answer sets.

Example 2.22. Take now a program P

a ← not b
b ← not a

13 Without loss of generality, we ignore models that contain literals that do not
appear in the program.

14 Named after its inventors M. Gelfond and V. Lifschitz.

48 2 Preliminaries

Consider the following four interpretations: ∅, {a}, {b}, and {a, b}. The GL-
reduct of P w.r.t. ∅ is {a←; b←} which has {a, b} as its minimal model, and
thus ∅ is not an answer set. The GL-reduct of P w.r.t. {a, b} is ∅ which has
∅ as its minimal model, and thus {a, b} is not an answer set. The GL-reduct
of P w.r.t. {a} is {a←} which has {a} as its minimal model, making {a} an
answer set. Similarly, one can deduce that {b} is an answer set.

Example 2.23 ([FL05]). Take a program consisting of the rule q ← not p, then
this program has one answer set: {q}. However, its contrapositive p ← not q
has the different answer set {p}. Thus, although those two rules are equivalent
as propositional formulas, i.e., q ← not p corresponds to the formula ¬p⇒ q
and p ← not q to the formula ¬q ⇒ p, they are not under the answer set
semantics.

We are mainly interested in the following decision problem:

Given a logic program P and a ground literal l, is there an answer set
of P that contains l?

We summarize some complexity results for this decision problem in Table 2.2.
According to [IS98], negation as failure in the head does not add any com-
putational power, such that the results are valid for both programs with and
without negation as failure in the head. In the non-disjunctive case [MT91],

Table 2.2. Complexity Results Answer Set Programming

α← β ground not ground

non-disjunctive (0 ≤ |α| ≤ 1) np-complete nexptime-complete

disjunctive (0 ≤ |α|) Σp
2-complete nexptimenp-complete

i.e. the heads of the rules are (at most) singletons, checking whether there is
an answer set of some ground non-disjunctive program is np-complete. That
the problem is in np can be seen as follows:

• guess an interpretation (hence the nondeterminism),
• compute the GL-reduct; this can be done in polynomial time, and
• check that the minimal model of the GL-reduct is equal to the guess. Since

the GL-reduct does not contain negation as failure nor disjunction this can
be done in polynomial time (by a fixed point construction).

In the non-ground case, one has to ground the program first, which may, in
the worst case, result in a ground program that has a size that is exponential
in the size of the non-ground program, hence the nexptime membership. The
disjunctive case [EG93] is similar but an extra guess is needed since the GL-
reduct now contains disjunction and one can no longer check in polynomial
time that an interpretation is a minimal model of a simple program. For more
details, we refer to [Bar03, DEGV01].

2.3 Knowledge Representation Formalisms 49

2.3.2 Description Logics

Description logics (DLs) are a family of logical formalisms based on frame-
based systems [Min85] and useful for knowledge representation; e.g., the rep-
resentation of taxonomies in certain application domains [RWRR01]. Its basic
language features include the notions of concepts and roles which are used to
define the relevant concepts and relations in some (application) domain. Dif-
ferent DLs can then be identified, among others, by the set of constructors
that are allowed to form complex concepts or roles.

Description logics originated from structural inheritance networks [Bra77]
which were defined to solve ambiguities in semantic networks and frames, and
were first implemented in the Kl-One system [BS85] [BCM+03]. Three ideas
drove the development of description logics [BCM+03]:

• The basic syntactic building blocks of a description logic are atomic con-
cepts, atomic roles, and individuals, basically corresponding respectively
to unary predicates, binary predicates and constants.

• One tries to balance expressivity and decidability/complexity by consider-
ing only a basic set of constructors that can be used to construct complex
concept expressions.

• Implicit knowledge can be inferred with the help of sound and complete
inference procedures that check, e.g., satisfiability of concepts.

Since Kl-One, reasoners for expressive DLs have emerged, e.g., racer
[HM01] and fact [Hor98]. The combination of a formal well-understood se-
mantics and the availability of practical reasoners, has led to the adoption of
DLs as the formal underpinning of ontology languages on the Semantic Web.

The “Semantic Web” [BLHL01] seeks to improve on the current World
Wide Web, making knowledge not only viewable and interpretable by humans,
but also by software agents. Ontologies play a crucial role in the realization
of this next generation web, by providing a “shared understanding” [UG96]
of certain domains. In order to describe ontologies, one can use ontology lan-
guages, such as DAML+OIL, OIL [BGH01, FHvH+00, FvHH+01], or, more
recently, OWL [BvHH+]. For example, the OIL language is built on three
roots [HFB+00]:

• the concrete syntax is based on web languages such as XML and RDF
[LS99, DvHB+00],

• a frame-based language that provides the basic modeling primitives: frames
(classes) with attributes,

• by mapping the language to a suitable description logic, one obtains a
precise semantics and associated inference procedures.

A DL can then be used to express the formal semantics of an ontology
written in an ontology language like OIL, but also provide some basic reason-
ing services such as checking whether an instance is of a certain type, whether
classes are subclasses of other classes, . . . [BS00, HST99].

50 2 Preliminaries

The semantics of DLs is given by interpretations I = (∆I , ·I) where ∆I

is a non-empty domain and ·I is an interpretation function. For a set of data
types D, we associate with each d ∈ D a set dD ⊆ ∆D where∆D is the domain
of all data types (the concrete domain, see [FH91]). We give an overview of the
most commonly used concept/role constructors, together with their definition
in terms of an interpretation I. The basic building blocks are the following:

• Concept names A are interpreted as a subset of the domain: AI ⊆ ∆I ,
i.e., A is intuitively a set of domain elements that are of the same type.
E.g., Workers is a concept such that WorkersI are those domain elements
in ∆I that are considered to be among the workers in a company. The set
of available concept names is denoted C.

• We distinguish between two types of role names :
– Abstract role names P are interpreted as a relation on the domain:

P I ⊆ ∆I ×∆I , i.e., P relates domain elements. E.g., boss is a relation
indicating which domain elements are considered to be the boss of other
domain elements. The set of available abstract role names is denoted
RA.

– Concrete role names T relate domain elements to concrete domain el-
ements: T I ⊆ ∆I × ∆D. E.g., shoesize could relate domain elements
representing persons to a particular integer. The set of available con-
crete role names is denoted Rd.

• Nominals (individuals) {o} represent particular identified entities in the
DL. Their interpretation is such that {o}I ⊆ ∆I and |{o}I | = 1. E.g.,
{john} is a nominal representing John. We will assume the unique name
assumption – if {o1} 6= {o2} then {o1}

I 6= {o2}
I – which ensures that

different individuals are interpreted as different domain elements. Note
that OWL does not have the unique name assumption [SWM04], and thus
different individuals can point to the same resource. However, the open
answer set semantics, see Chapter 3, gives a Herbrand interpretation to
constants, i.e. constants are interpreted as themselves, and for consistency
we assume that also DL nominals are interpreted this way.

• For an abstract role P , we can define its inverse role P−, which is inter-

preted as the inverse of the interpretation of P : P−
I

= {(y, x)|(x, y) ∈

P I}. We assume the ·
−

operator is also defined for inverse roles such that

for a role name P : (P−)
−

= P . Unless specified otherwise, we denote with
roles either inverted role names or just role names.

Based on those building blocks, we define concept expressions as follows:

• Every concept name is a concept expression.
• Every nominal is a concept expression.
• A concept conjunction C uD15 is a concept expression that is interpreted

as the conjunction of the interpretations of C and D: (CuD)I = CI∩DI .
E.g., Management uWorkers are the managers that are also workers.

15 In the following, we assume C and D are concept expressions.

2.3 Knowledge Representation Formalisms 51

• A concept disjunction C tD is a concept expression that is interpreted as
the disjunction of the interpretations of C and D: (C tD)I = CI ∪DI .
E.g., ManagementtWorkers is the set of elements that are either managers
or workers.

• A negation ¬C is a concept expression that is interpreted as the comple-
ment of C w.r.t. ∆I : (¬C)I = ∆I \CI . E.g., ¬Management is everything
in the domain that is not a manager.

• An exists restriction ∃R.C is a concept expression and its interpreta-
tion consists of those elements x that relate via R to some element in
C:(∃R.C)I = {x | ∃y : (x, y) ∈ RI and y ∈ CI}. E.g., ∃boss .Management
are those elements that are the boss of some manager.

• A value restriction ∀R.C is a concept expression and its interpretation
consists of those elements x such that, if there is a relation via R with
an element y, then y belongs to C: (∀R.C)I = {x | ∀y : (x, y) ∈ RI ⇒
y ∈ CI}. E.g., ∀take orders.Management are those elements that if they
take orders from someone, then they only take orders from a manager.

• A qualified at least restriction ≥ nS.C, where S is a role expression (defined
below) and n is a nonnegative integer, is a concept expression that indicates
all those elements that have at least n S-successors that belong to C:
(≥ nS.C)I = {x | #{y | (x, y) ∈ SI and y ∈ CI} ≥ n}. An unqualified
at least restriction ≥ nS is a concept expression such that (≥ nS)I =
{x | #{y | (x, y) ∈ SI} ≥ n}.

• A qualified at most restriction ≤ nS.C, where S is a role expression (de-
fined below) and n is a nonnegative integer, is a concept expression that
indicates all those elements that have at most n S-successors that be-
long to C: (≤ nS.C)I = {x | #{y | (x, y) ∈ SI and y ∈ CI} ≤ n}. An
unqualified at most restriction ≤ nS is a concept expression such that
(≤ nS)I = {x | #{y | (x, y) ∈ SI} ≤ n}. We refer to (un)qualified number
restrictions for either the at least or at most versions.

• A data type exists restriction ∃T.d, where T is a concrete role and d a
datatype, consists of those elements x that relate via T to some concrete
domain element in d:(∃T.d)I = {x | ∃y : (x, y) ∈ T I and y ∈ dD}. E.g.,
∃shoesize.int are those elements that have an integer shoe size.

• A data type value restriction ∀T.d, where T is a concrete role and d a
datatype, consists of those elements x such that, if there is a relation
via T with a concrete domain element y, then y belongs to d: (∀T.d)I =
{x | ∀y : (x, y) ∈ T I ⇒ y ∈ dD}. E.g., ∀shoesize.int are those elements
that if they have a shoe size then that shoesize is an integer.

(Abstract) role expressions are defined as follows:

• Every role or inverted role name is a role expression.
• A role conjunction R u S, with R and S role expressions, is a role expres-

sion. It is interpreted as the conjunction of the interpretations of R and S:
(RuS)I = RI ∩SI . E.g., boss u older is the role expression that contains
all (x, y) such that x is the boss of y and x is older than y.

52 2 Preliminaries

• A role disjunction RtS, with R and S role expressions, is a role expression.
It is interpreted as the disjunction of the interpretations of R and S: (Rt
S)I = RI ∪ SI . E.g., boss t older is the role expression that contains all
(x, y) such that x is either the boss of y or is older than y.

We summarize the constructs with their interpretation in Table 2.3.

Table 2.3. Syntax and Semantics of DL Constructs

construct name syntax semantics

atomic concept C A AI ⊆ ∆I

abstract role R RI ⊆ ∆I ×∆I

inverse abst. role R− (R−)I = {(x, y) | (y, x) ∈ RI}
concrete role T T I ⊆ ∆I ×∆D

nominals I {o} {o}I ⊆ ∆I , |{o}|I = 1

data types D d dD ⊆ ∆D

role conjunction R u S (R u S)I = RI ∩ SI

role disjunction R t S (R t S)I = RI ∪ SI

concept conj. C uD (C uD)I = CI ∩DI

concept disj. C tD (C tD)I = CI ∪DI

negation ¬C (¬C)I = ∆I \ CI

exists restriction ∃R.C (∃R.C)I = {x | ∃y : (x, y) ∈ RI and y ∈ CI}
value restriction ∀R.C (∀R.C)I = {x | ∀y : (x, y) ∈ RI ⇒ y ∈ CI}
atleast restriction ≥ nS.C (≥ nS.C)I = {x | #{y | (x, y) ∈ SI and y ∈ CI} ≥ n}
atmost restriction ≤ nS.C (≤ nS.C)I = {x | #{y | (x, y) ∈ SI and y ∈ CI} ≤ n}
data type exists ∃T.d (∃T.d)I = {x | ∃y : (x, y) ∈ T I and y ∈ dD}
data type value ∀T.d (∀T.d)I = {x | ∀y : (x, y) ∈ T I ⇒ y ∈ dD}

A DL knowledge base is a set of axioms, where an axiom is of one of the
following three types, respectively indicating subset relations between concept
expressions, subset relations between role expressions, and transitivity of roles.

• terminological axioms C v D with C and D concept expressions,
• role axioms R v S where R,S may be inverse roles with the underlying

roles both abstract or both concrete, and
• transitivity axioms Trans(R) for an (inverse) abstract role.

We often write A ≡ B if both A v B and B v A hold in a knowledge
base. If the knowledge base contains an axiom Trans(R), we call R transitive.
For the role axioms in a knowledge base, we define v∗ as the transitive closure
of v. A simple role R in a knowledge base is a role that is not transitive nor
does it have any transitive subroles (w.r.t. to reflexive transitive closure v∗ of
v). Note that, if the particular DL allows for inverted roles, for R v S a role
axiom with (possibly inverted) abstract roles, we always assume R− v S− is
also present in the knowledge base; similarly, if Trans(R) is in the knowledge
base, we assume Trans(R−) is as well.

2.3 Knowledge Representation Formalisms 53

Traditionally, a knowledge base contains also assertional statements like
C(a) (or R(a, b)) which intuitively means that the individual a is an instance
of C (a is related to b by means of the role R). However, in the presence of
individuals, we can simulate the assertions with terminological axioms:

C(a)⇔ {a} v C

R(a, b)⇔ {a} v ∃R.{b}

Terminological and role axioms express a subset relation: an interpretation I
satisfies an axiom C1 v C2 (R1 v R2) if CI1 ⊆ CI2 (RI1 ⊆ RI2). An interpre-
tation satisfies a transitivity axiom Trans(R) if RI is a transitive relation. An
interpretation is a model of a knowledge base Σ if it satisfies every axiom in
Σ. A concept C is satisfiable w.r.t. Σ if there is a model I of Σ such that
CI 6= ∅. The number restrictions (at most and at least) are always such that
the role R in, e.g., ≥ nR.C, is simple; this in order to avoid undecidability of
satisfiability checking (see, e.g. , [HST99]).

Example 2.24. The human resources department specifies the company’s struc-
ture: (a) Personnel consists of Management , Workers and john , (b) john is
the boss of some manager, and (c) managers only take orders from other
managers and are the boss of at least three Workers . This corresponds to the
following knowledge base Σ1:

Personnel ≡ Management tWorkers t {john}
{john} v ∃boss .Management

Management v (∀take orders .Management) u (≥ 3 boss .Workers)

A model of this knowledge base is I = ({j, w1, w2, w3,m}, ·
I), with ·I de-

fined by WorkersI = {w1, w2, w3}, ManagementI = {m}, {john}I = {j},
PersonnelI = {j, w1, w2, w3,m}, bossI = {(j,m), (m,w1), (m,w2), (m,w3)},
and take ordersI = ∅.

A particular DL is ALC: the DL where concept expressions may be formed us-
ing atomic concepts, concept conjunction and disjunction, negation of concept
expressions, exists restrictions, and value restrictions. Satisfiability checking
of ALC concept expressions w.r.t. a knowledge base containing only termino-
logical axioms is exptime-complete [Tob01].

If ALC knowledge bases allow for transitivity axioms, we speak of S;
adding support for role axioms leads to the DL SH and, subsequently adding
inverse roles gives the DL SHI. The DL SHI extended with qualified num-
ber restrictions is SHIQ, where satisfiability checking of SHIQ concept ex-
pressions w.r.t. SHIQ knowledge bases (i.e., with terminological, role, and
transitivity axioms) is exptime-complete [Tob01].

Adding nominals to SHIQ gives the DL SHOIQ where reasoning, i.e.
satisfiability checking as above, is nexptime-complete [Tob01]. The DL cor-
responding to the ontology language OWL DL, a fragment of the language

54 2 Preliminaries

OWL, is SHOIN (D), i.e., SHOIQ, with, instead of qualified number re-
strictions, unqualified number restrictions (N instead of Q), and with added
support for data types (the D); reasoning in OWL DL is nexptime-complete
[HPS04a].

A final DL that we mention is ALCHOQ(t,u) as it plays an important
role in Chapter 6.ALCHOQ(t,u) differs from the DL SHOIN (D) by its lack
of inverted roles, data types (D) and transitivity of roles (which distinguishes
S from ALC); it adds qualified number restrictions and the role constructs t
and u though.

As we noted above, OWL does not have the unique name assumption. How-
ever, this may lead to unintuitive results as noted in [dBPLF05]. E.g., assume
we have assertions hasPassenger(seat1 ,mary) and hasPassenger(seat1 , john)
together with an axiom16

> v (≤ 1 hasPassenger)

which indicates the hasPassenger role is functional. In OWL, this yields to the
conclusion that John and Mary are the same person, while with the unique
name assumption this gives a contradiction.

2.3.3 Computation Tree Logic

Temporal logics [Eme90] are widely used for expressing properties of nonter-
minating programs. Transformation semantics, such as Hoare’s logic, are not
appropriate here since they depend on the program having a final state that
can be verified to satisfy certain properties. Temporal logics on the other hand
have a notion of (infinite) time and may express properties of a program along
a time line, without the need for that program to terminate. E.g., formulas
may express that from each state a program should be able to reach its initial
state: AGEFinitial .

Two well-known temporal logics are linear temporal logic (LTL) [Eme90,
SC85] and computation tree logic (CTL) [Eme90, EH82, CES86], which,
among others, differ in their interpretation of time: the former assumes that
time is linear, i.e., for every state of the program there is only one successor
state, while time is branching for the latter, i.e., every state may have different
successor states, corresponding to nondeterministic choices for the program.

We introduce in this subsection the temporal logic CTL. Let AP be the
finite set of available proposition symbols. Computation tree logic (CTL) for-
mulas are defined as follows:

• every proposition symbol P ∈ AP is a formula,
• if p and q are formulas, so are p ∧ q and ¬p,
• if p and q are formulas, then EXp, E(p U q), AXp, and A(p U q) are formulas.

16 > is the universal concept, i.e., for any interpration I, >I = ∆I .

2.3 Knowledge Representation Formalisms 55

The semantics of a CTL formula is given by (temporal) structures. A structure
K is a tuple (S,R,L) with S a countable set of states, R ⊆ S × S a total
relation in S, i.e., ∀s ∈ S · ∃t ∈ S · (s, t) ∈ R, and L : S → 2AP a function
labeling states with propositions. Intuitively, S is a set of states, R indicates
the permitted transitions between states, and L indicates which propositions
are true at certain states.

A path π in K is an infinite sequence of states (s0, s1, . . .) such that
(si−1, si) ∈ R for each i > 0. For a path π = (s0, s1, . . .), we denote the
element si with πi. For a structure K = (S,R,L), a state s ∈ S, and a for-
mula p, we inductively define when K is a model of p at s, denoted K, s |= p:

• K, s |= P iff P ∈ L(s) for P ∈ AP ,
• K, s |= ¬p iff not K, s |= p,
• K, s |= p ∧ q iff K, s |= p and K, s |= q,
• K, s |= EXp iff there is a (s, t) ∈ R and K, t |= p,
• K, s |= AXp iff for all (s, t) ∈ R, K, t |= p,
• K, s |= E(p U q) iff there exists a path π in K with π0 = s and ∃k ≥ 0 ·

(K,πk |= q ∧ ∀j < k ·K,πj |= p),
• K, s |= A(p U q) iff for all paths π in K with π0 = s we have ∃k ≥ 0 ·

(K,πk |= q ∧ ∀j < k ·K,πj |= p).

Intuitively, K, s |= EXp (K, s |= AXp) can be read as “there is some neXt
state where p holds” (“p holds in all next states”), and K, s |= E(p U q)
(K, s |= A(p U q)) as “there is some path from s along which p holds Until q
holds (and q eventually holds)” (“for all paths from s, p holds until q holds
(and q eventually holds)”).

Some common abbreviations for CTL formulas are EFp = E(true U p)
(there is some path on which p will eventually hold), AFp = A(true U p)
(p will eventually hold on all paths), EGp = ¬AF¬p (there is some path
on which p holds globally), and AGp = ¬EF¬p (p holds everywhere on all
paths). Furthermore, we have the standard propositional abbreviations p∨q =
¬(¬p ∧ ¬q), p⇒ q = ¬p ∨ q, and p⇔ q = (p⇒ q) ∧ (q ⇒ p).

A structure K = (S,R,L) satisfies a CTL formula p if there is a state
s ∈ S such that K, s |= p; we also call K a model of p. A CTL formula p is
satisfiable iff there is a model of p.

Example 2.25. Consider the expression of absence of starvation t ⇒ AFc
[CES86] for a process in a mutual exclusion problem17 . The formula de-
mands that if a process tries (t) to enter a critical region, it will eventually
succeed in doing so (c) for all possible future execution paths.

17 In the mutual exclusion problem, we have two or more processes that want to
access a critical section of code, but cannot do this at the same time. The problem
is then how to model the behavior of the processes (or the concurrent program in
general), such that this mutual exclusion is never violated. For more details, we
refer to, e.g., [EC82, Eme90, CES86, AE01, HR00, MW84].

56 2 Preliminaries

We will usually represent structures by diagrams as in Figure 2.16, where
states are nodes, transitions between nodes define R, and the labels of the
nodes contain the propositions true at the corresponding states. E.g., take
the structure K = (S,R,L) with

• S = {s0, s1, s2},
• R = {(s0, s0), (s0, s1), (s1, s2), (s2, s0)}, and
• L(s0) = L(s1) = t, L(s2) = c,

which is represented by Figure 2.16. This structure does not satisfy t⇒ AFc
at s0 since on the path (s0, s0, . . .) the proposition c never holds. We have,
however, K, s1 |= t ⇒ AFc: t holds at s1 such that we must have that on
all paths from s1 the proposition c must eventually hold; since the only path
from s1 leads to s2 where c holds, t⇒ AFc holds at s1. We also have K, s2 |=
t⇒ AFc, since t 6∈ L(s2).

s2

t t c

s0 s1

Fig. 2.16. Example Structure t⇒ AFc

Satisfiability checking of CTL formulas is exptime-complete.

Theorem 2.26 ([Eme90]). The problem of testing satisfiability for CTL is
complete for deterministic exponential time.

Proof Sketch. Membership in exptime is based on a tableau construction
from which a model can be generated [Eme90, EC82]. The tableau can be
constructed in time that is exponential in the size of the formula such that
membership follows. Hardness can be shown by a reduction from alternating
polynomial-space bounded TMs [Eme90]. ut

2.3.4 Fixed Point Logic

Extensions of first-order logic (FOL) that allow for the expression of recursive
procedures are well-investigated in finite model theory, see e.g., [Mos74]. Also
in the presence of infinite models, so-called fixed point logic (FPL) proves
to be an interesting logic [Flu99]. E.g., a decidable subclass of FPL is the
guarded fixed point logic [GW99], which lifts propositional µ-calculus [Koz83]
to a first-order setting.

We assume FOL interpretations are represented as pairs (U,M) where M
is an interpretation over the domain U . Furthermore, we consider FOL with
equality such that equality is always interpreted as the identity relation over
U .

2.3 Knowledge Representation Formalisms 57

We define fixed point logic (FPL) along the lines of [GW99], i.e., as an
extension of first-order logic, where formulas may additionally be fixed point
formulas of the form

[LFP WX.ψ(W,X)](X) or [GFP WX.ψ(W,X)](X) , (2.1)

where W is an n-ary predicate variable, X is an n-ary sequence of distinct
variables, ψ(W,X) is a (FPL) formula with all free variables contained in X
and W appears only positively in ψ(W,X).18

For an interpretation (U,M) and a valuation χ of the free predicate vari-
ables, except W , in ψ, we define the operator ψ(U,M),χ : 2U

n

→ 2U
n

on sets
S of n-ary tuples

ψ(U,M),χ(S) ≡ {x ∈ Un | (U,M), χ ∪ {W → S} |= ψ(W,x)} , (2.2)

where χ ∪ {W → S} is the valuation χ extended such that the extension of
W is assigned to S. If ψ(W,X) contains only the predicate variable W , we
often omit the valuation χ and write just ψ(U,M). By definition, W appears
only positively in ψ such that ψ(U,M),χ is monotonic on sets of n-ary U -tuples
and thus has a least and greatest fixed point [Tar55], which we denote by
LFP(ψ(U,M),χ) and GFP(ψ(U,M),χ) respectively. Finally, we have that

(U,M), χ |= [LFP WX.ψ(W,X)](x) ⇐⇒ x ∈ LFP(ψ(U,M),χ) , (2.3)

and similarly for greatest fixed point formulas. We call an FPL sentence (i.e.,
an FPL formula without free variables) alternation-free if it does not contain
subformulas ψ ≡ [LFP TX.ϕ](X) and θ ≡ [GFP SY.η](Y) such that T occurs
in η and θ is a subformula of ϕ, or S occurs in ϕ and ψ is a subformula of η. We
can eliminate greatest fixed point formulas from a formula, by the equivalence:

[GFP WX.ψ] ≡ ¬[LFP WX.¬ψ[W/¬W]] , (2.4)

where ¬ψ[W/¬W] is ¬ψ with W replaced by ¬W . If we thus remove great-
est fixed point predicates, and if negations appear only in front of atoms or
least fixed point formulas, then a formula is alternation-free iff no fixed point
variable W appears in the scope of a negation.

As in [Grä02a], we define

ψ(U,M) ↑ 0 ≡ ∅

ψ(U,M) ↑ α+ 1 ≡ ψ(U,M)(ψ(U,M) ↑ α) for ordinals α

ψ(U,M) ↑ β ≡
⋃

α<β

(ψ(U,M) ↑ α) for limit ordinals β

18 A formula ψ is in negation-normal form if the only used connectives are ∧, ∨, and
¬, and ¬ only appears in front of atoms. Let ψ be a formula in negation-normal
form. A predicate p appears then only positively in ψ if there is no ¬p in ψ.

58 2 Preliminaries

Furthermore, since ψ(U,M) is monotone, we have that ψ(U,M) ↑ 0 ⊆ ψ(U,M) ↑
1 ⊆ . . . and there exists a (limit) ordinal α such that ψ(U,M) ↑ α =
LFP(ψ(U,M)).

Example 2.27. Take the conjunction of the following formulas, i.e., the infinity
axiom19 from [GW99]:

∃X,Y · F (X,Y) (2.5)

∀X,Y · (F (X,Y)⇒ (∃Z · F (Y, Z))) (2.6)

∀X,Y · F (X,Y)⇒ [LFP WX.∀Y · F (Y,X)⇒W (Y)](X) (2.7)

A model of these formulas contains at least one F (x, y) (by formula (2.5)),
which then leads to a F -chain by formula (2.6). Formula (2.7) ensures that
each element x is on a well-founded chain (and thus formula (2.6) actually
generates an infinite chain).

For example, take an infinite interpretation (U,M) with U = {x0, x1, . . .}
and M = {F (x0, x1), F (x1, x2), . . .}). Clearly, this model satisfies formulas
(2.5) and (2.6). Denote ψ ≡ ∀Y · F (Y,X) ⇒ W (Y), then we calculate
LFP(ψ(U,M)) as follows:

ψ(U,M) ↑ 0 = ∅

ψ(U,M) ↑ 1 = {x0}

ψ(U,M) ↑ 2 = {x0, x1}

...

Indeed, ψ(U,M) ↑ 1 = ψ(U,M)(∅) such that ψ is reduced to ∀Y · F (Y,X) ⇒
false, or, equivalently, ¬∃Y · F (Y,X), i.e., we want those X ’s that have no
predecessor, which is exactly x0. In the next step, we deduce again x0 plus
all successors of x0, yielding {x0, x1}. Finally, we have that LFP(ψ(U,M)) =
{x0, x1, x2, . . .} such that formula (2.7) is also satisfied by (U,M).

Moreover, no finite model can satisfy the above formulas. First, note that
a model (U,M) cannot contain loops, i.e., {F (x0, x1), . . . , F (xn, x0)} ⊆ M is
not possible. Assume otherwise. By formula (2.7), xn ∈ LFP(ψ(U,M)), and
thus there is some ordinal α such that xn ∈ ψ(U,M) ↑ α. By the definition
of ψ(U,M) ↑ α, we then have that xn−1 ∈ ψ(U,M) ↑ α − 1. Since we have
a loop, one can continue this way and eventually deduce for some xi that
xi ∈ ψ(U,M) ↑ 0 = ∅, a contradiction. Thus M does not contain loops.

By the first formula, we need some F (X,Y) ∈ M if M is to be a model.
Since M does not contain loops, we have some F (x0, x1) ∈M . Formula (2.6)
then calls for some X such that F (x1, X) ∈M . Since M cannot contain loops,
X must be different from x0 and from x1 and we need some new x2. One can
continue this way, and the loop-freeness of M will impose the deduction of an
infinite number of domain elements.
19 An infinity axiom is a formula that has only infinite models (if it has models).

2.3 Knowledge Representation Formalisms 59

Finally, note that reasoning in FPL is undecidable as FPL is an extension
of the undecidable FOL.

3

Open Answer Set Programming

We define the open answer set semantics for logic programs in Section 3.1
and show in Section 3.2 that for unrestricted programs satisfiability checking
for this semantics is undecidable. In Section 3.3, we introduce the notion of
inverted predicates and we define an accompanying inverted world assump-
tion. Section 3.4 identifies different syntactical subclasses of logic programs
for which reasoning is shown to be decidable by a reduction to 2ATAs. We
indicate in Section 3.5 how the restricted programs are still suitable to do
conceptual modeling, in particular we show how to simulate a large part of
Object-Role Modeling constructs. Finally, in Section 3.6, we discuss related
work.

3.1 Open Answer Set Programming

Logic programs are defined as in Section 2.3.1. We additionally assume the
existence of binary predicates = and 6=, where t = s is considered as an atom
and t 6= s is shorthand for not t = s. E.g., for α = {X 6= Y, Y = Z}, we
have α+ = {Y = Z} and α− = {X = Y }. We call an atom for which the
predicate is not equality or inequality, a regular atom. We further forbid the
appearance of equality atoms in the positive head of a rule. The Herbrand
Base of a program is modified such that it is now the set of ground regular
atoms that can be formed using the language of the program, i.e., we do not
allow = in the Herbrand Base.

Regarding the semantics, we interpret = directly, i.e., for an atom s = t
and an interpretation I, we have that I |= s = t if s and t are equal terms.
The other definitions in Section 2.3.1 remain unmodified.

For a program P , let cts(P) be the constants in P , vars(P) its variables,
preds(P) its predicates, upreds(P) its unary predicates, and bpreds(P) its
binary predicates.

Definition 3.1. A universe U for a program P is a non-empty countable su-
perset of the constants in P : cts(P) ⊆ U . We call PU the ground program

62 3 Open Answer Set Programming

obtained from P by substituting every variable in P by every possible element
from U .

Computing the (normal) answer sets of a program amounts to grounding the
program P with the universe cts(P), resulting in Pcts(P). In the following, a
program P is, unless specified otherwise, assumed to be a finite set of rules;
infinite programs will only appear as byproducts of grounding a finite program
with an infinite universe.

Definition 3.2. An open interpretation of a program P is a pair (U,M) where
U is a universe for P and M is an interpretation of PU . An open answer set
of P is an open interpretation (U,M) of P where M is an answer set of PU .

Example 3.3. Take a program P :

p(X) ← not q(X)
q(a) ←

Then cts(P) = {a} such that the universes for P have to be countable
supersets of {a}. Some possible universes are {a}, {a, b}, and {a, x1, x2, . . .}
where the latter is an infinite one. Grounding P with {a, x1, x2, . . .} yields the
program

p(a) ← not q(a)
p(x1)← not q(x1)
p(x2)← not q(x2)

...
q(a) ←

which has an answer set {q(a), p(x1), p(x2), . . .} such that

({a, x1, . . .}, {q(a), p(x1), . . .})

is an open answer set of P . The open answer set that corresponds to the
normal answer set is ({a}, {q(a)}).

The main reasoning procedures we consider for the open answer set semantics
are satisfiability checking, consistency checking, and query answering.

Definition 3.4. A program P is consistent if it has an open answer set. For
an n-ary predicate p, appearing in P , p is satisfiable w.r.t. P if there exists
an open answer set (U,M) of P and a x ∈ Un such that p(x) ∈M .

Note that the program P in Example 3.3 is consistent, and that p is satisfiable.
This example also shows that the open and normal answer set semantics yield
different conclusions: in the normal, closed world, answer set semantics one
concludes that the predicate p is not satisfiable since there is no answer set
that contains a p-literal. In some settings, however, this may not be desirable:
assume the rule p(X) ← not q(X) plays the role of a schema constraint and

3.1 Open Answer Set Programming 63

q(a) ← is the particular data against which to check the schema constraint.
One wants to conclude that p is satisfiable, i.e., the schema constraint makes
sense, since there are indeed cases, for other data, where p can be populated.
The open answer set semantics gives you this desired behavior.

Consistency checking can be reduced to satisfiability checking.

Theorem 3.5. Let P be a program. P is consistent iff p is satisfiable w.r.t.
P ∪ {p(X) ∨ not p(X)←}, where p is a unary predicate not appearing in P .

Proof. For the “only if” direction, assume P is consistent, then there is an
open answer set (U,M) of P . Take the open interpretation (U,M ∪ {p(x)})
for some x ∈ U (U is non-empty by definition of a universe). Then ((P ∪
{p(X) ∨ not p(X) ←})U)M∪{p(x)} = PMU ∪ {p(x) ←}, and, since M is an
answer set of PMU , we have that M ∪{p} is an answer set of PMU ∪{p←}, and
thus (U,M ∪ {p(x)}) is an open answer set of P ∪ {p(X)∨ not p(X)←} that
contains p.

For the “if” direction, assume p is satisfiable w.r.t. P ∪{p(X)∨not p(X)←
}, then there is an answer set (U,M) of P ∪ {p(X) ∨ not p(X)←} such that
p(x) ∈ M for some x ∈ U . Take (U,M ′ ≡ M \{p(y) | y ∈ U}), then M ′ is
indeed an answer set of PU such that (U,M ′) is an open answer set of P . ut

For a ground literal α, we define P |= α if for all open answer sets (U,M)
of P , α ∈ M . Checking whether P |= α is called query answering. We can
reduce query answering to consistency checking.

Theorem 3.6. Let P be a program. P |= α iff P ∪ { ← α} is not consistent.

Proof. For the “only if” direction, assume, by contradiction, that P ∪{ ← α}
is consistent, then there is an open answer set (U,M) of P ∪{ ← α} such that
α 6∈M . Since (U,M) is also an open answer set of P , we have a contradiction.

For the “if” direction, assume, by contradiction, that there is some open
answer set (U,M) of P such that α 6∈M . Then, (U,M) is an open answer set
of P ∪ { ← α} such that the latter is consistent, a contradiction. ut

There are programs such that a predicate is only satisfiable w.r.t. that
program by an infinite open answer set. We call such programs infinity pro-
grams .

Example 3.7. Take the program

r1 : restore(X)← crash(X), y(X ,Y), backSucc(Y)
r2 : backSucc(X)← ¬crash(X), y(X ,Y),not backFail(Y)
r3 : backFail(X) ← not backSucc(X)
r4 : ← y(Y1 ,X), y(Y2 ,X),Y1 6= Y2

r5 : y(X ,Y) ∨ not y(X ,Y)←
r6 : crash(X) ∨ not crash(X) ←
r7 : ¬crash(X) ∨ not ¬crash(X) ←

64 3 Open Answer Set Programming

Rule r1 represents the knowledge that a system that has crashed on a particu-
lar day X (crash(X)), can be restored on that day (restore(X)) if a backup of
the system on the day Y before (y(X ,Y) – y stands for yesterday) succeeded
(backSucc(Y)). Backups succeed, if the system does not crash and it cannot
be established that the backups at previous dates failed (r2) and a backup
fails if it does not succeed (r3). Rule r4 ensures that for a particular today
there can be only one tomorrow. Rules r5, r6, and r7 allow to freely introduce
y, crash, and ¬crash literals. Indeed, take, e.g., crash(x) in an interpretation;
the GL-reduct w.r.t. that interpretation contains then the rule crash(x) ←
which motivates the presence of the crash literal in an (open) answer set. If
there is no crash(x) in an interpretation then the GL-reduct removes the rule
r5 (more correctly, its grounded version with x). Below, we formally define
rules of such a form as free rules in correspondence with the intuition that
they allow for a free introduction of literals.

Every open answer set (U,M) of this program that makes restore satisfi-
able, i.e., such that there is a restore(x) ∈ M for some x ∈ U , must be infinite.
An example of such an open answer set M is (we omit U if it is clear from
M)

{restore(x), crash(x), backFail(x), y(x, x1),

backSucc(x1),¬crash(x1), y(x1, x2)

backSucc(x2),¬crash(x2), y(x2, x3), . . .}

One sees that every backSucc literal with element xi enforces a new y-successor
xi+1 since none of the previously introduced universe elements can be used
without violating rule r4, thus enforcing an infinite open answer set.

Indeed, assume restore is satisfiable w.r.t. P . Then, there must be a x0 in
the universe U of some open answer set (U,M) such that restore(x0) ∈ M .
With r1, we must have that crash(x0) ∈ M , and there must be some x1 ∈ U
such that y(x0 , x1) ∈ M and backSucc(x1) ∈ M , and thus, with rule r2,
¬crash(x1) ∈ M , y(x1 , x2) ∈M and backFail(x2) 6∈M . With crash(x0) ∈M
and ¬crash(x1) ∈ M , we are sure that x1 6= x0. With r3, one must have
that backSucc(x2) ∈M such that x2 6= x0 for the same reason. Furthermore,
x2 6= x1, since otherwise y(x0 , x1) ∈M and y(x1 , x1) ∈M : with x0 6= x1 this
is a contradiction with r4. Thus, summarizing, x2 6= x1 and x2 6= x0. One can
continue this way, and one will be obliged to introduce new xi’s ad infinitum.

We can, without loss of generality, restrict ourselves in the rest of this disser-
tation, as in [LPV01], to programs without classical negation ¬.

Theorem 3.8. Let P be a program. Then,

• (U,M) is an open answer set of P iff (U, (M ∪ {p′(x) | ¬p(x) ∈ M})\
{¬p(x)}) is an open answer set of P ′, and

• (U,M) is an open answer set of P ′ iff (U, (M ∪ {¬p(x) | p′(x) ∈ M})\
{p′(x)}) is an open answer set of P ,

3.1 Open Answer Set Programming 65

where P ′ is P with every occurrence of ¬p(t) replaced by a new p′(t) and the
constraint ← p(X), p′(X) added.

Proof. In answer set programming, a classically negated atom is basically
treated as a new atom, while making sure that contradicting literals a and
¬a do not appear together in an interpretation. This is exactly what the
construction of P ′ encodes. ut

For an open answer set (U,M) of a ground program P and an arbitrary
universe U ′ for P , we have that (U ′,M) is also an open answer set, i.e., for
ground programs the universe does not matter and one can stick to cts(P)
such as in the normal answer set semantics.

Theorem 3.9. Let P be a ground program. (U,M) is an open answer set of
P iff ∀U ′ · (U ′,M) is an open answer set of P , where U ′ is a universe for P .

Proof. This follows from ∀U ′ · PU ′ = P . ut

The groundness is necessary for Theorem 3.9 to hold.

Example 3.10. Take the unground program

q(a) ← not p(X)
p(a) ←

Then ({a, x}, {p(a), q(a)}) is an open answer set, while ({a}, {p(a), q(a)}) is
not.

A type of rules that we will use frequently are free rules, i.e., rules of the form
q(t) ∨ not q(t)← for a tuple t of terms; they enable a choice for the inclusion
of atoms. A predicate p is free if there is a free rule p(t) ∨ not p(t)←. Satis-
fiability checking of a free n-ary predicate p w.r.t. P can always be reduced
to satisfiability checking of a new non-free n-ary predicate.

Theorem 3.11. Let P be a program and p a free n-ary predicate. Then, p is
satisfiable w.r.t. P iff p′ is satisfiable w.r.t. P ∪ {p′(X) ← p(X)}. Moreover,
this is a linear reduction.

Proof. For the “only if” direction, assume p is satisfiable w.r.t. P , then there
is an open answer set (U,M) of P such that p(x) ∈ M for an n-ary x ∈ Un.
Define

M ′ ≡M ∪ {p′(t) | p(t) ∈M} .

One can see that (U,M ′) is an open answer set of P ′ ≡ P ∪{p′(X)← p(X)}.
For the “if” direction, assume p′ is satisfiable w.r.t. P ′, then there is an

open answer set (U ′,M ′) of P ′ that contains some p′(x) and, by the minimality
of M ′ and the rule p′(X)← p(X), also p(x). Define

M ≡M ′\{p′(t)} .

Then, (U ′,M) is an open answer set of P that satisfies p. ut

66 3 Open Answer Set Programming

In order to be able to define an immediate consequence operator , we restrict
ourselves in the rest of this dissertation to programs where rules α ← β are
such that |α+| ≤ 1. This restriction ensures that the GL-reduct contains no
disjunction in the head anymore, i.e., the head will be an atom or it will
be empty. This property of the GL-reduct allows us to define an immediate
consequence operator [vEK76] T that computes the closure of a set of literals
w.r.t. a GL-reduct.

For a program P and an open interpretation (U,M) of P , T
(U,M)
P : BPU

→
BPU

is defined as T (B) = B ∪ {a | a ← β ∈ PMU ∧ B |= β}. Additionally, we
define T 0(B) = B, and T n+1(B) = T (T n(B)).1

Example 3.12. Take the program P :

a(X) ← not b(X), c(X)
c(X) ∨ not c(X)←

For an open interpretation (U,M) = ({x}, {c(x)}), PMU is the program

a(x) ← c(x)
c(x)←

Such that T 1 = {c(x)} and T 2 = {c(x), a(x)}.

Although we allow for infinite universes, we can motivate the presence of
atoms in open answer sets in a finite way, where the motivation of an atom is
formally expressed by the immediate consequence operator.

Theorem 3.13. Let P be a program and (U,M) an open answer set of P .
Then, ∀a ∈M · ∃n <∞ · a ∈ T n.

Proof. 2 Assume ∃a1 ∈M · ∀n <∞ · a1 6∈ T
n.

• We write down all ri11 : a1 ← βi11 ∈ P
M
U such that M |= βi11 and such that

there exists a regular atom ai11j1 ∈ β
i1
1 such that ∀n <∞ · ai11j1 6∈ T

n. There

always exists such an ri11 , because otherwise3 , we would have that for all r :
a1 ← β, M 6|= β or M |= β and for all regular bi ∈ β ∃nbi

<∞ · bi ∈ T
nbi .

Assume the latter, then a1 ∈ T
maxnbi

+1 with maxnbi
+ 1 finite, which is

impossible. So for all r : a1 ← β, M 6|= β, but then is M \ {a1} a model of
PMU , which is also a contradiction (by the minimality of M).

1 We omit the sub- and superscripts (U,M) and P from T
(U,M)
P if they are clear

from the context and, furthermore, we will usually write T instead of T (∅).
2 Alternatively, one can show that T is finitizable, i.e., T (B) = ∪B′⊆B,|B′|<∞T (B′)

(see, e.g., [EG05]). Together with the monotonicity of T , the theorem follows.
3 Note that there is a rule r ∈ PM

U with head a1, otherwise M \{a1} would be a
model of PM

U , contradicting the minimality of M .

3.2 Undecidability of Open Answer Set Programming 67

• Next, we write down all ri1i21j1
: ai11j1 ← βi1i21j1

∈ PMU such that M |= βi1i21j1

and such that there exists a regular atom ai1i21j1j2
∈ βi1i21j1

such that

∀n <∞ · ai1i21j1j2
6∈ T n. There always exists such an ri1i21j1

, because other-

wise, we would have that for all r : ai11j1 ← β, M 6|= β or for all regular

bi ∈ β ∃n <∞ · bi ∈ T n. Assume the latter, then ai11j1 ∈ Tmaxn+1 with

maxn+ 1 finite, which is impossible. So for all r : ai11j1 ← β, M 6|= β, but

then is M \ {ai11j1} a model, which is also a contradiction.
• Continue this ad infinitum.

Let M2 = M \ {a1, a
i1
1j1
, ai1i21j1j2

, . . . |i1, i2, . . . , j1, . . .}. Clearly, M2 ⊂ M .

Furthermore,M2 is a model of PMU . Indeed, take an arbitraryR : c← β ∈ PMU
with M2 |= β. Because M is a model we have that c ∈M .

Assume c ∈ {a1, a
i1
1j1
, ai1i21j1j2

, . . . |i1, i2, . . . , j1, . . .}.

• Take c = a1. If, for all i1, β 6= βi11 , then (sinceM2 |= β, we haveM |= β) for
all regular bi ∈ β we have that ∃n <∞ · bi ∈ T n. Then a1 ∈ Tmaxn+1 with
n finite, which is impossible. And thus there is a i1, β = βi11 , but M2 6|= βi11
(since the regular ai11j1 6∈M2), and thus M2 6|= β. A contradiction.

• More general, take c = ai1...ik1j1...jk
. If, for all ik+1, β 6= β

i1...ik+1

1j1...jk
, then for all

bi ∈ β we would have that ∃n <∞ · bi ∈ T n. Then ai1...ik1j1...jk
∈ Tmaxn+1

with n finite, which is impossible. And thus there is a ik+1, β = β
i1...ik+1

1j1...jk
,

but M2 6|= β
i1...ik+1

1j1...jk
, and thus M2 6|= β. A contradiction.

Thus c 6∈ {a1, a
i1
1j1
, ai1i21j1j2

, . . . |i1, i2, . . . , j1, . . .}, and as a consequence c ∈M2.
We conclude that M2 is a model, in contradiction with the minimality of M .

ut

3.2 Undecidability of Open Answer Set Programming

We show the undecidability of open answer set programming for unrestricted
programs by a reduction from the undecidable origin constrained domino
problem (see Corollary 2.6, pp. 30). 4

Let D = (D,H, V) be a domino system where D = {d1, . . . , dk}. We define
the corresponding domino program [D] as in Table 3.1. The rules in the N×N

part of the table encode the plane: h (v) makes sure that every point in N×N

4 Undecidability can be shown by a reduction from (undecidable fragments of)
first-order logic as well. E.g., take the undecidable class of formulas of the
form ψ ≡ ∀X1∀X2 . . .∀Xj∃Yφ(X1, . . . ,Xj ,Y) for natural numbers j (see, e.g.,
[BGG97], pp. 10). In these formulas, φ is a first-order logic formula that contains
no unary predicates, at most one binary predicate and no predicates of higher
arity. Furthermore, it contains no function symbols, no equality and no constants.
Rewriting ψ as ¬∃X1 . . .∃Xj¬∃Yφ(X1, . . . ,Xj ,Y), we have the corresponding
rules

68 3 Open Answer Set Programming

Table 3.1. Domino Program

N× N h : ← h(U ,V1), h(U ,V2),V1 6= V2

v : ← v(U ,V1), v(U ,V2),V1 6= V2

s : ← h(U ,X), v(X ,V1), v(U ,Y), h(Y ,V2),V1 6= V2

hh : hh(U)← h(U ,X)

hv : hv(U)← v(U ,X)

hhc : ← not hh(U)

hvc : ← not hv(U)

f1 : h(U ,V) ∨ not h(U ,V)←

f2 : v(U ,V) ∨ not v(U ,V)←

Domino Conditions d i,j
1 : ← di(U), dj (V), h(U ,V) for (di, dj) 6∈ H

d i,j
2 : ← di(U), dj (V), v(U ,V) for (di, dj) 6∈ V

d3 : ← not d1 (X), . . . , not dk (X)

d i,j
4 : ← di(X), dj (X) for i 6= j

f i
3 : di(U) ∨ not di (U)← for 1 ≤ i ≤ k

has only one horizontal right (vertical upper) successor, s ensures that going
up vertically and then horizontally right is the same as going horizontally
right and then vertically up. hh encodes a horizontal has-successor relation
such that hhc makes sure that every element in the domain has a horizontal
successor, and similarly for hv and hvc in the vertical case. Finally, f1 and f2
are free rules; they can be used to introduce the h and v atoms.

The domino conditions ensure that we can construct a valid tiling out of
an open answer set of the domino program: di,j1 (di,j2) ensure that horizontally
(vertically) adjacent domino types are allowed according to H (V), d3 ensures
that every position in the grid is assigned to some domino, and di,j4 ensures
that at most 1 domino type is assigned to each position. Finally, f i3 introduces
the dominoes itself.

Theorem 3.14. Let D be a domino system and d a domino in D. Then, D
tiles the plane N×N such that d is present in the tiling iff d is satisfiable w.r.t.
[D].

ψ ← not ψ′

ψ′ ← ψ′′(X1 , . . . ,Xj)
ψ′′(X1 , . . . ,Xj) ← not ψ′′′(X1 , . . . ,Xj)
ψ′′′(X1 , . . . ,Xj) ← φ(X1 , . . . ,Xj ,Y)

The translation can be trivially completed by adding rules that define φ (where
one can assume that φ is in disjunctive normal form) and assuming the predicate
in φ is defined by a free rule, ensuring the correspondence with first-order logic.

3.2 Undecidability of Open Answer Set Programming 69

Proof. For the “only if” direction, assume D tiles the plane such that d is
present in the tiling τ . Define U ≡ N× N, and

M ≡ {d(u) | τ(u) = d}

∪ {h((x, y), (x+ 1, y)) | x, y ∈ N} ∪ {v((x, y), (x, y + 1)) | x, y ∈ N}

∪ {hh(u), hv(u) | u ∈ N× N} .

We have that d is satisfied inM : d is present in the tiling τ , such that there is a
(x, y) ∈ N×N with τ(x, y) = d. By definition ofM , we have that d(x, y) ∈M5.
It remains to show that (U,M) is an open answer set of [D].

• M is a model of [D]MU . We check satisfiability of every rule in [D]MU .
– The free rules are satisfied.
– Take r : ← h(u, v1), h(u, v2) ∈ [D]MU , originating from h (and thus

v1 6= v2), and assume M |= body(r), then u = (x, y), v1 = (x + 1, y),
and v2 = (x+ 1, y) such that v1 = v2, a contradiction.

– Constraints originating from v can be checked similarly.
– Take r : ← h(u, z1), v(z1 , v1), v(u, z2), h(z2 , v2) ∈ [D]MU , originating

from s (and thus v1 6= v2), with M |= body(r). Then u = (x, y),
z1 = (x+1, y), v1 = (x+1, y+1), z2 = (x, y+1), and v2 = (x+1, y+1),
such that v1 = v2, a contradiction.

– Take hh(u) ← h(u, x), originating from hh. We have that hh(u) ∈ M
for all u ∈ U .

– The rules originating from hv can be done similarly.
– For all u ∈ U , we have that hh(u) ∈ M such that no constraint origi-

nating from hhc is in [D]MU .
– The constraint hvc can be done similarly.
– Take di,j1 : ← di(u), dj (v), h(u, v). Assume M |= body(di,j1), then

u = (x, y) and v = (x + 1, y) for some (x, y) ∈ N × N. Since di(u) ∈
M , we have that τ(x, y) = di, and, with dj(v) ∈ M , we have that
τ(x+ 1, y) = dj . Thus, since τ is a tiling, (di, dj) ∈ H , a contradiction.

– The rules di,j2 can be done similarly.
– τ is a function, thus for every (x, y) ∈ N × N there is a d such that

τ(x, y) = d. Then, for every u ∈ U , there is a d(u) ∈ M , such that
[D]MU does not contain constraints originating from d3.

– Take di,j4 : ← di(u), dj (u) with M |= body(di,j4), then τ(u) = di and
τ(u) = dj with di 6= dj ; this is a contradiction, since τ is a function.

• M is a minimal model of [D]MU . Assume not, then there is a N ⊂M , model
of [D]MU , such that there is some l ∈M \N . We distinguish between some
cases:
– l = d(u). Since d is free, we have that d(u)←∈ [D]MU , such that d(u) ∈

N since N is a model of [D]MU , a contradiction.
– l = h(u, z). Since h is free, this can be done similarly, as can the case

l = v(u, z).

5 We assume d(x, y) is shorthand for d((x, y))

70 3 Open Answer Set Programming

– l = hh(u). Then, there is some h(u, z) ∈M and with hh(u)← h(u, z) ∈
[D]MU and l 6∈ N , we have that h(u, z) 6∈ N such that h(u, z) 6∈ M (by
the freeness of h), a contradiction. The case for hv is similar.

For the “if” direction, assume that (U,M) is an open answer set of [D]
containing a d(u0) for u0 ∈ U . For each (x, y) ∈ N × N, define τ such that
τ(x, y) ≡ d if there is a sequence

h(u0, s1), h(s1, s2), . . . , h(sx−1, sx), v(sx, t1), v(t1, t2), . . . , v(ty−1, ty)

in M such that d(ty) ∈ M ; one thus assigns d to position (x, y) if for the
element ty ∈ U that is obtained by “moving” horizontally x times with h and
vertically y times with v, we have that d(ty) ∈ M (thus ty corresponds with
(x, y)).

First, we show that τ is well-defined:

• Every element in N×N has an image through τ . Indeed, take (x, y) ∈ N×N.
We have that u0 ∈ U . And thus hh(u0) ∈M such that h(u0, s1) ∈M (by
minimality ofM). With a similar reasoning, we can thus deduce a sequence
h(u0, s1), h(s1, s2), . . . , h(sx−1, sx), v(sx, t1), v(t1, t2), . . . , v(ty−1, ty) in M .
With d3, we then have that there is some di such that di(ty) ∈ M , and
thus τ(x, y) = di, per definition of τ .

• An element (x, y) ∈ N× N has at most one image: assume not, i.e., there
are di and dj for i 6= j such that τ(x, y) = di and τ(x, y) = dj . We have
then two sequences

h(u0, s1), h(s1, s2), . . . , h(sx−1, sx), v(sx, t1), v(t1, t2), . . . , v(ty−1, ty)

and

h(u0, s
′
1), h(s

′
1, s
′
2), . . . , h(s

′
x−1, s

′
x), v(s

′
x, t
′
1), v(t

′
1, t
′
2), . . . , v(t

′
y−1, t

′
y)

with di(ty) ∈ M and dj(t
′
y) ∈ M . Using the functionality of predicates

h and v in M (with constraints h and v), one can deduce that si = s′i,
1 ≤ i ≤ x, and ti = t′i, 1 ≤ i ≤ y. Such that di(ty) ∈ M and dj(ty) ∈ M

for i 6= j, a contradiction with di,j4 .

Next, we show that

• (τ(x, y), τ(x + 1, y)) ∈ H , and
• (τ(x, y), τ(x, y + 1)) ∈ V .

We only check the first condition (the second condition is similar). Take di ≡
τ(x, y) and dj ≡ τ(x + 1, y). By definition of τ , we have that

h(u0, s1), h(s1, s2), . . . , h(sx−1, sx), v(sx, t1), v(t1, t2), . . . , v(ty−1, ty) ∈M

and

3.2 Undecidability of Open Answer Set Programming 71

h(u0, s
′
1), h(s

′
1, s
′
2), . . . , h(s

′
x−1, s

′
x), h(s

′
x, s
′
x+1), v(s

′
x+1, t

′
1), v(t

′
1, t
′
2), . . . ,

v(t′y−1, t
′
y) ∈M

with di(ty) ∈ M and dj(t
′
y) ∈ M . We show that h(ty, t

′
y) ∈ M , which leads,

with di,j1 , to the conclusion that (di, dj) ∈ H .
With the functionality of h, we can deduce that si = s′i, 1 ≤ i ≤ x. Thus,

we have that v(sx, t1) ∈ M , h(sx, s
′
x+1) ∈ M , and v(s′x+1, t

′
1) ∈ M . We have

that for t1, there is some h(t1, t
′′
1) ∈M (every element has a successor in M).

Then, with constraint s, we have that t′′1 = t′1, and h(t1, t
′
1) ∈M .

We then have that v(t1, t2) ∈ M , h(t1, t
′
1) ∈ M , and v(t′1, t

′
2) ∈ M . We

have that for t2, there is some h(t2, t
′′
2) ∈ M (every element has a successor

in M). Then, with constraint s, we have that t′′2 = t′2 and h(t2, t
′
2) ∈M .

Continuing this way, eventually, leads to h(ty, t
′
y) ∈ M . Figure 3.1 il-

lustrates the two used sequences; one can use rule s to subsequently prove
h(t1, t

′
1) ∈M, . . . , h(ty, t

′
y) ∈M .

s′x+1s′1 s′2
s2 sx

s′x
u0

t1

t2 t′2

ty t′y

t′1

s1

Fig. 3.1. Checking the Tiling Conditions

Finally, we have that d is present in the tiling τ : we have that d(u0) ∈M
and thus τ(0, 0) = d by definition of τ . ut

With a similar proof, we can reduce the unconstrained domino problem to
consistency checking.

Theorem 3.15. Let D be a domino system. Then, D tiles the plane N×N iff
[D] is consistent.

Corollary 3.16. Satisfiability checking is undecidable.

Proof. This is an immediate consequence of Corollary 2.6 and Theorem 3.14.
ut

Corollary 3.17. Consistency checking is undecidable.

Proof. This is an immediate consequence of the undecidability of the uncon-
strained domino problem (pp. 30) and Theorem 3.15. ut

72 3 Open Answer Set Programming

3.3 The Inverted World Assumption

We restrict ourselves in the remainder of this chapter and in the following
chapter to programs with unary and binary predicates only. This allows us

to introduce, similar to some DLs (see Section 2.3.2), inverted predicates f i

for a binary predicate f .6 For a set X of binary (possibly inverted) predicate

names, X i ≡ {f i | f ∈ X} where f ii ≡ f . We call atoms f i(s, t), where f is a
predicate, inverted atoms. The Herbrand Base is still the set of ground regular
atoms that can be formed from the language in P , but a language includes

now the inverted predicates that can be formed: if there is a binary f i or a
binary f in the program, the Herbrand Base contains atoms with predicate

f i and f . We further have that bpreds(P) includes both f and f i for a f or

f i in P .

Example 3.18. Take the ground program P :

q(a) ← f (a, b)

q(a) ← gi(a, b)

The Herbrand Base BP is

{q(a), q(b), f(a, b), f(b, a), f(a, a), f(b, b), f i(b, a), f i(a, b), f i(a, a), f i(b, b),

g(a, b), g(b, a), g(a, a), g(b, b), gi(b, a), gi(a, b), gi(a, a), gi(b, b)} .

Possible interpretations of P are then subsets of BP as before7 and bpreds(P) =

{f, f i, g, gi}. The set of predicates in a program P is then preds(P) =
upreds(P) ∪ bpreds(P).

Intuitively, f i(x, y) is defined, like in DLs, as the inverse of f . We formally
capture this using an inverted world assumption (IWA):

Definition 3.19. Let P be a ground program and M an interpretation of P .
Then IWA(P,M) is the formula

∀f ∈ bpreds(P) · f(x, y) ∈M ⇐⇒ f i(y, x) ∈M . (3.1)

We define open answer sets under IWA by defining, for ground programs
P , an interpretation M under IWA of P as an interpretation M of P such
that IWA(P,M) holds. Models, minimal models, and answer sets under IWA
of ground program P are then defined as usual but with interpretations under
IWA, instead of just interpretations.

6 We deviate from the convention in DLs to denote inverted roles as f−, and instead

denote them with f i, this to avoid confusion with the negative part β− of a body
β in (open) answer set programming.

7 Remember that we assumed the absence of classical negation.

3.3 The Inverted World Assumption 73

Definition 3.20. An open interpretation under IWA of a program P is a pair
(U,M) where U is a universe for P and M is an interpretation under IWA
of PU . An open answer set under IWA of P is an open interpretation under
IWA (U,M) of P with M an answer set under IWA of PU . For an n-ary
predicate p, 1 ≤ n ≤ 2, appearing in P , p is satisfiable under IWA w.r.t. P if
there exists an open answer set under IWA (U,M) of P and a x ∈ Un such
that p(x) ∈M . Consistency checking under IWA and query answering under
IWA can be defined accordingly.

Example 3.21. Modify the program of Example 3.7 by removing classical nega-
tion and adding inverted predicates to obtain the program

r1 : restore(X)← crash(X), y(X ,Y), backSucc(Y)
r2 : backSucc(X)← not crash(X), y(X ,Y),not backFail(Y)
r3 : backFail(X) ← not backSucc(X)

r4 : ← yi(X ,Y1), yi(X ,Y2),Y1 6= Y2

r5 : y(X ,Y) ∨ not y(X ,Y)←
r6 : crash(X) ∨ not crash(X) ←

We replaced ← y(Y1 ,X), y(Y2 ,X),Y1 6= Y2 by its counterpart

← yi(X ,Y1), yi(X ,Y2),Y1 6= Y2 with inverses, and replaced ¬crash(X) by
not crash(X). An open answer set under IWA M that satisfies P is (we omit
U if it is clear from M):

{restore(x), crash(x), backFail(x), y(x, x1), y
i(x1, x),

backSucc(x1), y(x1, x2), y
i(x2, x1)

backSucc(x2), y(x2, x3), y
i(x3, x2), . . .} .

One can reduce consistency checking under IWA and query answering under
IWA to satisfiability checking under IWA.

Theorem 3.22. Let P be a program.

• P is consistent under IWA iff p is satisfiable under IWA w.r.t. P ∪{p(X)∨
not p(X)←}, where p is a unary predicate not appearing in P .

• P |=iwa α iff P ∪{ ← α} is not consistent under IWA, where |=iwa denotes
“query answering under IWA”.

Proof. Similar to the proofs of Theorem 3.5 and Theorem 3.6 (pp. 63). ut

Satisfiability under IWA does not imply (normal) satisfiability.

Example 3.23. Take the program P :

q(X) ← f (X ,Y)

f i(X ,Y) ∨ not f i(X ,Y)←

74 3 Open Answer Set Programming

Then q is satisfiable under IWA by the open answer set

({x, y}, {q(x), f(x, y), f i(y, x)}) .

However, there are no rules with an f -atom in the head such that q is not
satisfiable.

The other way around, we have that satisfiability does not imply satisfiability
under IWA either.

Example 3.24. Take the program P :

f (X ,Y)←
p(X) ← not q(X)

q(X) ← f i(X ,Y)

f i(X ,Y) ∨ not f i(X ,Y)←

Then p is satisfiable by the open answer set

({x, y}, {f(x, y), f(y, x), f(x, x), f(y, y), p(x), p(y)}) .

However, p is not satisfiable under IWA: the rule f (X ,Y) ← introduces all
possible groundings of f(X,Y), which then leads, by the IWA, to all possible

groundings of f i(X,Y), such that all possible groundings of q(X) are in an
open answer set under IWA. With the rule p(X) ← not q(X) one then has
that p is never satisfiable.

If we allow for a modification of the program, we can, nevertheless reduce
satisfiability checking under IWA to satisfiability checking.

Theorem 3.25. Let P be a program and p a predicate in P . Then, p is satis-
fiable under IWA w.r.t. P iff p is satisfiable w.r.t. P ′, where P ′ is P with all

f i replaced by f ′ and the following rules added:

f ′(X ,Y)← f (Y ,X)
f (X ,Y)← f ′(Y ,X)

Proof. Intuitively, the added rules ensure that a f ′(x, y) is in an open answer
set if f(y, x) is (and similarly for a f(x, y)). Note that one still needs to

motivate either f or f ′ with other rules (just as is the case with f i and f).
For the “only if” direction, assume (U,M) is an open answer set under

IWA of P . Define (U,M ′) with

M ′ ≡ (M \{f i(x, y)}) ∪ {f ′(x, y) | f i(x, y) ∈M}

One can show that (U,M ′) is an open answer set of P ′ that satisfies p.
For the “if” direction, assume (U,M) is an open answer set of P . Define

(U,M ′) with

3.3 The Inverted World Assumption 75

M ′ ≡ (M \{f ′(x, y)}) ∪ {f i(x, y) | f ′(x, y) ∈M}

One can show that (U,M ′) is an open answer set under IWA of P that satisfies
p. ut

For programs that do not contain inverted predicates satisfiability is equiv-
alent to satisfiability under IWA.

Theorem 3.26. Let P be a program without inverted predicates and p a n-ary
predicate, 1 ≤ n ≤ 2. Then, p is satisfiable w.r.t. P iff p is satisfiable under
IWA w.r.t. P .

Proof. For the “only if” direction, assume p is satisfiable w.r.t. P . Then there
is an open answer set (U,M) of P such that p(x) ∈M . Define

M ′ ≡M ∪ {f i(x, y) | f(y, x) ∈M} .

Clearly, (U,M ′) is an open interpretation under IWA. We prove that (U,M ′)
is an open answer set under IWA of P ; it satisfies p since p(x) ∈M ′.

• M ′ is a model under IWA of PM
′

U . Take a rule α+ ← β+ ∈ PM
′

U originating
from α ← β ∈ PU with M ′ |= α− and M ′ |= not β−. Assume M ′ |= β+.
We have then that α+ ← β+ ∈ PMU and M |= β+ since α ← β does not
contain inverted predicates. Thus, ∃l ∈ α+ ·M |= l, and M ′ |= l.

• M ′ is a minimal model under IWA of PMU . Assume not, then there is a

N ′ ⊂M ′, with N ′ a model under IWA of PM
′

U . Define N ≡ N ′\{f i(x, y)}.
Then, N ⊂ M : N ⊆ M follows immediately, furthermore, we have that
there is some l ∈ M ′\N ′. Thus l 6∈ N . From l ∈ M ′, we have that l ∈ M

or l = f i(x, y) for f(y, x) ∈M . In the former case, we are done, since then

l ∈M \N ; in the latter case, we have that f i(x, y) 6∈ N ′, such that by the
IWA, f(y, x) 6∈ N , and thus f(y, x) ∈M \N .
We additionally have that N is a model of PMU which leads to a contra-
diction with the minimality of M .

For the “if” direction, assume p is satisfiable under IWA w.r.t. P . Then, there
is an open answer set under IWA (U,M) of P such that p(x) ∈M . Define

M ′ ≡M \{f i(x, y)} .

One can show that (U,M ′) is an open answer set of P that satisfies p. ut

Corollary 3.27. Satisfiability checking under IWA is undecidable.

Proof. The domino program in Table 3.1 (pp. 68) contains only unary and
binary predicates and no inverted predicates such that Theorem 3.26 is ap-
plicable. The result follows from the undecidability of satisfiability checking
that was established in Corollary 3.16. ut

76 3 Open Answer Set Programming

Theorem 3.28. Let P be a program without inverted predicates. Then, P is
consistent iff P is consistent under IWA.

Proof. P is consistent iff p is satisfiable w.r.t. P ∪{p(X)∨not p(X)←}, where
p is a unary predicate not appearing in P (by Theorem 3.5). The latter holds
iff p is satisfiable under IWA w.r.t. P ∪ {p(X) ∨ not p(X) ←} (by Theorem
3.26) iff P is consistent under IWA (by Theorem 3.22). ut

Corollary 3.29. Consistency checking under IWA is undecidable.

Proof. The domino program in Table 3.1 (pp. 68) contains only unary and
binary predicates and no inverted predicates such that Theorem 3.28 is appli-
cable. The result follows from the undecidability of consistency checking that
was established in Corollary 3.17. ut

We define a modified immediate consequence operator for programs with in-
verted predicates. For a program P and an open interpretation under IWA

(U,M) of P , T i(U,M)

P : BPU
→ BPU

is defined as T i(B) = B ∪ {a, ai | a ←

β ∈ PMU ∧ B |= β}, where ai ≡ a if a is a unary atom and f(s, t)
i ≡ f i(t, s)

otherwise. Additionally, we have T i0(B) = B8, and T in+1
(B) = T i(T in(B)).

We can still motivate the presence of literals in open answer sets under
the IWA in a finite way.

Theorem 3.30. Let P be a program and (U,M) an open answer set under

IWA of P . Then, ∀a ∈M · ∃n <∞ · a ∈ T in.

Proof. Assume ∃a1 = a ∈M · ∀n <∞ · a1 6∈ T in.

• We write down all ri11 : a′1 ← βi11 ∈ P
M
U with a′1 = a1 or a′1 = a1

i such that
M |= βi11 and such that there exists a regular atom ai11j1 ∈ β

i1
1 such that

∀n <∞ · ai11j1 6∈ T
in. There always exists such an ri11 , because otherwise,

we have that for all r : a′1 ← β, M 6|= β or M |= β and for all regular bi ∈ β

∃n <∞ · bi ∈ T in. Assume the latter, then a′1 ∈ T
imaxn+1

with n finite,

which is impossible (because then a1 ∈ T
imaxn+1

). So for all r : a′1 ← β,

M 6|= β, but then is M \ {a1, a1
i} a model under IWA, which is also a

contradiction (by the minimality of M).

• Next, we write down all ri1i21j1
: a′

i1
1j1 ← βi1i21j1

∈ PMU with a′
i1
1j1 = ai11j1

or a′
i1
1j1 = ai11j1

i
such that M |= βi1i21j1

and such that there exists a regular

ai1i21j1j2
∈ βi1i21j1

such that ∀n <∞ · ai1i21j1j2
6∈ T in. There always exists such an

ri1i21j1
, because otherwise, we would have that for all r : a′

i1
1j1 ← β, M 6|= β

8 We omit the sub- and superscripts (U,M) and P from T i(U,M)

P if they are clear

from the context and, furthermore, we will usually write T i instead of T i(∅).

3.4 Decidable Open Answer Set Programming under the IWA using 2ATAs 77

or M |= β and for all regular bi ∈ β ∃n <∞ · bi ∈ T in. Assume the latter,

then a′
i1
1j1 ∈ T imaxn+1

with n finite, which is impossible (because then

ai11j1 ∈ T
in+1

). So for all r : a′
i1
1j1 ← β, M 6|= β, but then is M \{ai11j1 , a

i1
1j1

i
}

a model under IWA, which is also a contradiction.
• Continue this ad infinitum.

Let M2 ≡M \ {a1, a1
i, ai11j1 , a

i1
1j1

i
, ai1i21j1j2

, ai1i21j1j2

i
, . . . |i1, i2, . . . , j1, . . .}.

Clearly, M2 ⊂ M . Furthermore, M2 is a model under IWA of PMU . Indeed,
take an arbitrary R : c← β ∈ PMU with M2 |= β (then M |= β), and, because
M is a model under IWA, c ∈M .

Assume c ∈ {a1, a1
i, ai11j1 , a

i1
1j1

i
, ai1i21j1j2

, ai1i21j1j2

i
, . . . |i1, i2, . . . , j1, . . .}.

• Take c = a1 or c = a1
i. If, for all i1, β 6= βi11 , then (because M |= β) for

all regular bi ∈ β we have that ∃n <∞ · bi ∈ T in. Then a1 ∈ T imaxn+1

(or a1
i ∈ T imaxn+1

) with n finite, which is impossible. And thus there is
a i1, β = βi11 , but M2 6|= βi11 , and thus M2 6|= β. A contradiction.

• More general, take c = ai1...ik1j1...jk
or c = ai1...ik1j1...jk

i
. If, for all ik+1, β 6=

β
i1...ik+1

1j1...jk
, then (because M |= β) for all bi ∈ β we have ∃n <∞ · bi ∈ T in.

Then ai1...ik1j1...jk
∈ T imaxn+1

(or ai1...ik1j1...jk

i
∈ T imaxn+1

) with n finite, which

is impossible. And thus there is a ik+1 such that β = β
i1...ik+1

1j1...jk
, but M2 6|=

β
i1...ik+1

1j1...jk
, and thus M2 6|= β. A contradiction.

Thus c 6∈ {a1, a1
i, ai11j1 , a

i1
1j1

i
, ai1i21j1j2

, ai1i21j1j2

i
, . . . |i1, i2, . . . , j1, . . .}, and as a

consequence c ∈ M2. We conclude that M2 is a model, in contradiction with
the minimality of M . ut

3.4 Decidable Open Answer Set Programming under the
IWA using 2ATAs

In this subsection, we identify an expressive class of programs, so-called con-
ceptual logic programs (CoLPs), for which reasoning is decidable.

Inspired by modal logics (and DLs in particular), we restrict arbitrary
programs to CoLPs as to obtain programs such that if a unary predicate is
satisfied by an open answer set, it can be satisfied by an open answer set with
a tree structure, i.e., CoLPs have the tree model property. In [Var97], this tree
model property is held responsible for the robust decidability of modal logics.
Confirming this, the tree model property proves to be of significant importance
to the decidability of satisfiability checking in CoLPs; it allows the reduction
of satisfiability checking w.r.t. a CoLP to checking non-emptiness of a 2ATA.

78 3 Open Answer Set Programming

3.4.1 Conceptual Logic Programs

Recall the program in Example 3.7 (pp. 63), which has an open answer set
(U,M) with U ≡ {x, x1, . . .} and

M ≡ {restore(x), crash(x), backFail(x), y(x, x1),

backSucc(x1),¬crash(x1), y(x1, x2)

backSucc(x2),¬crash(x2), y(x2, x3), . . .} .

One can rewrite this open answer set as an open answer set (U ′,M ′) such
that U ′ is a tree: take U ′ ≡ {ε, 1, 11, 111, 1111, . . .} and

M ′ ≡ {restore(ε), crash(ε), backFail(ε), y(ε, 1),

backSucc(1),¬crash(1), y(1, 11)

backSucc(11),¬crash(11), y(11, 111), . . .} .

Then (U ′,M ′) is clearly also an open answer set of the program.
Observe that this open answer set can be encoded as a labeled tree t :

U ′ → 2preds(P): it maps nodes to a set of unary or binary predicates such
that, for unary predicates a in P and binary predicates f in P :

• a(x) ∈M ′ iff a ∈ t(x), and
• f(x, y) ∈M ′ iff y = x · i ∧ f ∈ t(y).

Intuitively, unary literals a(x) can be encoded in the label of node x and
binary literals f(x, x · i) can be encoded in the label of x · i. A particular f
in the label of a node x · i indicates that f(x, x · i) ∈ M since each node x · i
has the unique predecessor x. The open answer set (U ′,M ′) can be encoded
as the tree in Figure 3.2.

{y, backSucc,¬crash}

{restore, crash, backFail}

{y, backSucc,¬crash}

Fig. 3.2. Backup Example Tree

If we consider open answer sets under the IWA, we can also encode literals
f(x · i, x), where the first argument is a successor of the second argument.
Indeed, by the IWA we know that open answer sets under the IWA that

contain f(x · i, x) also contain f i(x, x · i). Similarly as above, we place f i in

3.4 Decidable Open Answer Set Programming under the IWA using 2ATAs 79

the label of x · i. Since x · i has only one predecessor, x, such a label uniquely

identifies f i(x, x · i) and thus also f(x · i, x).

Similarly, we can encode f i(x · i, x) in open answer sets under the IWA
since f(x, x · i) is present in the open answer set under the IWA: place f in
the label of x · i.

Example 3.31. Modify the program in Example 3.21 by adding the rule

tomor(Y ,X)← y(X ,Y) .

The modified program has then an open answer set under IWA (U,M) with
U ≡ {ε, 1, 11, 111, 1111, . . .} and

{restore(ε), crash(ε), backFail(ε), y(ε, 1), yi(1, ε), tomor(1, ε), tomori(ε, 1),

backSucc(1), y(1, 11), yi(11, 1), tomor(11, 1), tomori(1, 11),

backSucc(11), y(11, 111), yi(111, 11), tomor(111, 11), tomori(11, 111), . . .} ,

i.e., for every y(u, v) ∈ M ′, add tomor(v, u), and make sure the IWA holds.
One can encode this open answer set under IWA as the labeled tree t in Figure
3.3.

{tomori, y, backSucc}

{restore, crash, backFail}

{tomori, y, backSucc}

Fig. 3.3. Modified Backup Example Tree

Such a labeling function t maps nodes to a set of unary and/or (possibly in-
verted) binary predicates such that, for unary predicates a in P and (possibly
inverted) binary predicates f in P :

• a(x) ∈M ′ iff a ∈ t(x),

• f(x, y) ∈M ′ iff y = x · i ∧ f ∈ t(y) or x = y · i ∧ f i ∈ t(x).

Further note that the encoded trees in both of the above examples are minimal,
in the sense that for every node z · i in the tree-shaped universe there is some
f(z, z · i) in the open answer set under the IWA where f is possibly inverted.
Intuitively, the tree cannot contain dangling nodes.

80 3 Open Answer Set Programming

Example 3.32. Take an open answer set under IWA ({ε, 1}, {a(ε), b(1)}) of
some program P . Node 1 is dangling, since there is no binary literal connecting
ε and 1 in the open answer set.

A unary predicate p is tree satisfiable under IWA if there is an open answer
set under the IWA (U,M) that can be encoded as a tree, as described above,
and such that p(ε) ∈M , i.e., the predicate p is in the label of the root.

Definition 3.33. Let P be a program. A p ∈ upreds(P) is tree satisfiable
under IWA w.r.t. P if there exists

• an open answer set under IWA (U,M) of P such that U is a tree of bounded
arity, and

• a labeling function t : U → 2preds(P) such that
– p ∈ t(ε) and t(ε) does not contain (possibly inverted) binary predicates,

and
– z · i ∈ U , i > 0, iff there is some f(z, z · i) ∈ M where f is possibly

inverted, and
– for y ∈ U , q ∈ upreds(P), f ∈ bpreds(P),
· q(y) ∈M iff q ∈ t(y), and

· f(x, y) ∈M iff y = x · i ∧ f ∈ t(y) or x = y · i ∧ f i ∈ t(x), where f
is possibly an inverted predicate.

We call such a (U,M) a tree model (under IWA) and a program P has the tree
model property (under IWA) if the following property holds: if p ∈ upreds(P)
is satisfiable under IWA w.r.t. P then p is tree satisfiable under IWA w.r.t.
P . The label L(z) of a node z ∈ U is L(z) ≡ {q | q ∈ t(z), q ∈ upreds(P)}.

We will often denote a set like, e.g., {a(X), not b(X)} as α(X) with
α = {a, not b}; similarly for sets of binary (possibly inverted) literals, e.g.,

{f(X,Y), not gi(X,Y)} will be denoted as α(X,Y) for α = {f, not gi}. If
we only write α(X), without specifying α, it is assumed that α is a (possibly
empty) set of unary predicate names, possibly preceded with the negation as
failure symbol, and similarly for α(X,Y).

We next identify a syntactical class of programs such that every program
of that type has the tree model property.

Definition 3.34. A conceptual logic program (CoLP) is a program with only
unary and binary predicates, without constants, and such that any rule is of
one of the following types,

• free rules a(X) ∨ not a(X) ← or f (X ,Y) ∨ not f (X ,Y)← , where f is
possibly inverted (similarly for the subsequent rule types),

• unary rules

r : a(X)← β(X),
⋃

1≤m≤k

γm(X ,Ym),
⋃

1≤m≤k

δm(Ym), ψ

where

3.4 Decidable Open Answer Set Programming under the IWA using 2ATAs 81

1. ψ ⊆
⋃

1≤i6=j≤k{Yi 6= Yj} and {=, 6=} ∩ γm = ∅ for 1 ≤ m ≤ k,

2. ∀Yi ∈ vars(r) · γ+
i 6= ∅, i.e., for variables Yi there is a positive atom

that connects Yi and X.
• binary rules f (X ,Y)← β(X), γ(X ,Y), δ(Y) with γ+ 6= ∅, {=, 6=}∩γ = ∅,
• constraints ← a(X) or ← f (X ,Y).

The term conceptual logic program refers to the ability of CoLPs to repre-
sent and reason with a diversity of conceptual knowledge, see, e.g., Section 3.5.

Intuitively, unary rules

r : a(X)← β(X),
⋃

1≤m≤k

γm(X ,Ym),
⋃

1≤m≤k

δm(Ym), ψ

allow to deduce a(X) if β(X) hold, and for all neighbors Ym, γm(X,Ym) as well
as δm(Ym) hold. Furthermore, one can impose that some of those neighbors
must be different. E.g., a rule

a(X)← f (X ,Y1), f (X ,Y2),Y1 6= Y2

deduces a at X if X has 2 different neighbors Y1 and Y2. We speak of neigh-
bors in the following sense. For a tree model (U,M) with associated labeling
function t, we have that an a(x) ∈M corresponds to an a ∈ t(x). In order to
deduce a at node x, one can use, e.g., the above rule: there must be different
y1 and y2 such that f(x, y1) ∈ M and f(x, y2) ∈ M . Since (U,M) is a tree
model, we must have that y1 = x · i, i.e., a successor of x or y1 = x · −1, the
predecessor of x. In the former case, we have that y2 can be x · −1 or x · j
with j 6= i. In the latter case, we have that y2 is some x · i. Thus y1 and y2
are indeed neighbors of x. We then have the following cases for the labeling
function associated with (U,M):

1. y1 = x · i, y2 = x · −1, f ∈ t(y1), f i ∈ t(x),
2. y1 = x · i, y2 = x · j, f ∈ t(y1), f ∈ t(y2), and

3. y1 = x · −1, y2 = x · i, f i ∈ t(x), f ∈ t(y2).

The restriction
∀Yi ∈ vars(r) · γ+

i 6= ∅

is necessary to have the tree model property. E.g.,

q(X)← not f (X ,Y),not q(Y)

is not a valid CoLP rule. Intuitively, one cannot transform an open answer set
under IWA to a tree model: we have that ({x, y}, {q(x)}) is an open answer
set under IWA, however, it is impossible to make a tree out of it since we need
at least two domain elements x and y to make q satisfiable, but we cannot
connect them through a binary predicate.

A similar restriction, γ+ 6= ∅, holds for binary rules. E.g., a rule

82 3 Open Answer Set Programming

f (X ,Y)← v(X)

is not a valid CoLP rule; a true v(x) may impose connections between x and
y without y being a successor of x.

The idea of ensuring such connectedness of models in order to have de-
sirable properties, like decidability, is similar to the motivation behind the
guarded fragment of predicate logic [ANB98]. In fact, in Chapter 5, we take
the correspondence between the guarded fragment and syntactical classes of
programs a step further.

A unary rule

r : a(X)← β(X),
⋃

1≤m≤k

γm(X ,Ym),
⋃

1≤m≤k

δm(Ym), ψ

is a live rule if there is a γm 6= ∅. A unary predicate a is live if there is a
live rule r with a in head(r) and a is not free. The intuition behind a live
predicate a is that a new individual y might need to be introduced in order
to make a(x) true for an existing x. We denote the set of live predicates for
a CoLP P with live(P). A degree for the liveliness of a rule r, i.e., how many
new individuals might need to be introduced to make the head true, is

degree(r) ≡ |{m | γm 6= ∅}| . (3.2)

The degree of a live predicate a in P is

degree(a) ≡ max{degree(r) | a ∈ head(r)} . (3.3)

The rank of a CoLP P is the sum of the degrees of the live predicates in P :
∑

a∈live(P)

degree(a) . (3.4)

Intuitively, given a node in an encoded tree with a certain label that contains
some unary predicates9, every live unary predicate in the node appears in the
head of some rule and its degree indicates precisely those neighboring nodes
that need to be present to motivate the predicate in the node. The sum of
those degrees corresponds then to the maximum branching of the tree at that
node. The rank of a program is the maximum number of successor nodes one
may need to introduce at any time.

Example 3.35. Take a program P that contains, for predicates a, b, and c, the
following rules:

r1 : a(X) ← f (X ,Y)
r2 : a(X) ← g(X ,Y1), g(X ,Y2)
r3 : b(X) ← h(X ,Y)
r4 : c(X)← a(X)

9 The binary predicates do not introduce new nodes in a tree – all variables of the
body appear in the head.

3.4 Decidable Open Answer Set Programming under the IWA using 2ATAs 83

Then, degree(r2) = 2, degree(r1) = degree(r3) = 1 and degree(r4) = 0, such
that {a, b} ⊆ live(P) and degree(a) = 2 and degree(b) = 1. The rank of P is 3.
Intuitively, for {a(x), b(x)} ⊆M , where (U,M) is some open answer set, one
needs to motivate the presence of a and b in the label of x in the corresponding
tree. One needs a rule with applicable body and head predicate a (r1 or r2)
and a rule with applicable body and head predicate b (r3). Motivating a in x
with r1 may introduce one new successor y of x by the true f(x, y); r2 may
introduce two new successors y1 and y2. In the worst case, this leads to the
introduction of at most 2 new successors of x to motivate a. For b at x, one
needs an applicable body of r3 which introduces at most one new successor
y. Combining this – a and b are present in x – yields that one may need to
introduce 3 new successors of x to motivate both a and b at x. Of course, this
is only in the worst case, in practice one can often reuse successors and/or the
predecessor.

Theorem 3.36. Conceptual logic programs have the tree model property.

Proof. Take a CoLP P and p ∈ upreds(P) s.t. p is satisfiable under IWA, i.e.,
there exists an open answer set (U,M) under IWA with p(u) ∈ M . Let n be
the rank of P .

We first define θ : {1, . . . , n}∗ → U , a mapping from the complete n-
ary tree to the domain U . Intuitively, θ associates some of the nodes in the
complete tree with elements in the domain.

Initially, assume θ is undefined for the whole tree {1, . . . , n}∗. If θ is defined
on some node x, we will call the node x defined. θ is constructed as follows:

• Define θ(ε) = u.
• Assume we have considered, as in [Var98], every node in {1, . . . , n}k, for

some k, as well as every successor node of the defined z′ ∈ fr({1, . . . , n}k)
until10 z ·m for some defined z ∈ fr({1, . . . , n}k). Consequently, we have
considered the nodes z · 1, . . . , z ·m.
Since θ is defined on z, we have that θ(z) ∈ U . For every q(θ(z)) ∈ M ,

there is, by Theorem 3.13, some l <∞ s.t. q(θ(z)) ∈ T il. By definition of
the immediate consequence operator, we have that there is a rule11

rq(θ(z)) : q(θ(z)) ← β+[] ∈ PMU

with M |= β+[], originating from r : q(X) ∨ α← β ∈ P such that
– M |= α−[],

10 By saying “until”, we assume that there is an ordering from left to right in the
graphical representation of the tree.

11 For objects o (rules, (sets of) literals, . . .), we denote with o[Y1|y1, . . . , Yd|yd], the
grounding of o where each variable Yi is substituted with yi. Equivalently, we may
write o[Y|y] for Y = Y1, . . . , Yd and y = y1, . . . , yd, or o[] if the grounding sub-
stitution is clear from the context, or if it does not matter what the substitution
exactly looks like.

84 3 Open Answer Set Programming

– M |= not β−[],

and T il−1
|= β+[]. If r is not live, we do nothing. Else, the body of rq(θ(z))

is of the form
γ+(θ(z)),

⋃

i

γ+
i (θ(z), yi),

⋃

i

δ+i (yi)

with at least one γ+
i 6= ∅. Without loss of generality, we can assume that for

all i, γ+
i 6= ∅. If there is a z · j ∈ {z ·−1, z · 1, . . . , z ·m, . . . , z · (m+ i− 1))}

with θ(z · j) = yi then θ remains undefined on z · (m + i), otherwise
θ(z · (m+ i)) = yi. Intuitively, if θ is already defined on a neighbor of z as
equal to yi, there is no need to define θ on another successor as equal to
yi.

Define a labeled tree t : dom(θ)→ 2preds(P), where dom(θ) are those elements
for which θ is defined, as follows12:

• t(ε) ≡ {q | q(u) ∈M},
• t(z·i) ≡ {q | q(θ(z·i)) ∈M}∪{f | f(θ(z), θ(z·i)) ∈M, f possibly inverted}.

Define the open interpretation (V,N) such that V ≡ dom(θ) and

N ≡ {q(z) | q ∈ t(z)}

∪ {f(z, z · i), f i(z · i, z) | f ∈ t(z · i), f possibly inverted} .

We have to check that (V,N) is a tree model under IWA satisfying p according
to Definition 3.33; it is easy to see that (V,N) is indeed an open interpretation
under IWA.

• (V,N) is an open answer set of P such that V is a tree of bounded arity.
The universe V is indeed a tree of bounded arity such that remains to
show that N is a minimal model under IWA of PNV .
Note that, for z ∈ V ,
– q(z) ∈ N iff q(θ(z)) ∈M ,
– f(z, z · i) ∈ N iff f(θ(z), θ(z · i)) ∈M ,
– f(z · i, z) ∈ N iff f(θ(z · i), θ(z)) ∈M , and
– f(x, y) ∈ N then f(θ(x), θ(y)) ∈M .
We show that N is a minimal model under IWA of PNV .
– N is a model under IWA of PNV . Rules in PNV that originate from a

free rule in P are satisfied. Binary rules and constraints can be easily
checked.
Take a unary rule r : a(x) ← β+(x), γ+

m(x , ym), δ+m(ym) ∈ PNV origi-
nating from
a(X)← β(X), γm (X ,Ym), δm(Ym),Yi 6= Yj ∈ P 13 with β−(x) ∩N =
γ−m(x, ym) ∩N = δ−m(ym) ∩N = ∅ and yi 6= yj for Yi 6= Yj .
Assume body(r) ⊆ N . We have that

12 In the following, we assume the i in z · i is such that i > 0.
13 We use a shorthand notation for rules.

3.4 Decidable Open Answer Set Programming under the IWA using 2ATAs 85

· β−(θ(x)) ∩M = δ−m(θ(ym)) ∩M = ∅.
· γ−m(θ(x), θ(ym))∩M = ∅. Indeed, assume g(θ(x), θ(ym)) ∈M . Since

γ+
m is not empty, there is some f(x, ym) ∈ γ+(x, ym) ⊆ N , and

thus ym is successor of x or vice versa. But then we have that
g(x, ym) ∈ N , a contradiction.

· β+(θ(x)), γ+
m(θ(x), θ(ym)), δ+m(θ(ym)) ⊆M .

· θ(ym) 6= θ(yk) if ym 6= yk. Indeed, both ym and yk are in V , thus θ is
defined on both ym and yk. Since γ+

m and γ+
k are not empty, we have

that ym and yk are among the successors of x or the predecessor of
x. By construction of θ, we then have that θ(ym) 6= θ(yk).

Thus r′ : a(θ(x))← β+(θ(x)), γ+
m (θ(x), θ(ym)), δ+m(θ(ym)) ∈ PMU with

body(r′) ⊆M , such that a(θ(x)) ∈M and thus a(x) ∈ N .
– N is a minimal model under IWA of PNV . Assume not, then there is a

model N ′ ⊂ N of PNV . We show per induction that

· if q(z) ∈ N and q(θ(z)) ∈ T in
M , then q(z) ∈ N ′,

· if f(z, z · i) ∈ N and f(θ(z), θ(z · i)) ∈ T in
M , then f(z, z · i) ∈ N ′,

and
· if f(z · i, z) ∈ N and f(θ(z · i), θ(z)) ∈ T in

M , then f(z · i, z) ∈ N ′.

· Take n = 1, and assume q(z) ∈ N and q(θ(z)) ∈ T i1
M , then there

is a q(θ(z))← ∈ PMU
· originating from a q(X) ∨ not q(X)←∈ P , such that q(z)←∈

PNV and thus q(z) ∈ N ′, or
· originating from a rule

r : a(X)← β(X), γm(X,Ym), δm(Ym), Yi 6= Yj ∈ P

with body(r)
+

= ∅. We have that there can be no Yi in the
body of r, otherwise γi

+ should be non-empty, which is not
possible. We have that β−(z) ∩N = ∅ such that q(z)←∈ PNV ,
and thus q(z) ∈ N ′.

The binary cases can be done similarly.
· Assume it is true for n− 1 (IH).
· For n, there is a rule

r′ : q(θ(z))← β+(θ(z)), γ+
m (θ(z), ym), δ+m(ym) ∈ PMU

with body(r′) ⊆ T in−1

M , β−(θ(z)) ∩ M = γ−m(θ(z), ym) ∩ M =
δ−m(ym) ∩ M = ∅, and yi 6= yj if Yi 6= Yj in the originating
rule. Assume r′ is the rule we took in the construction of θ for
q(θ(z)) ∈ T in

M .
By the construction of θ we have for every m where γm 6= ∅, a z ·mi

such that θ(z ·mi) = ym. Note that mi may be equal to −1.
We have that β−(z)∩N = ∅, and, γ−m(z, z·mi)∩N = δ−m(z·mi)∩N =
∅. Moreover, we have that z ·mi 6= z · kj if ym 6= yk. For the latter,

86 3 Open Answer Set Programming

assume z ·mi = z ·kj, then, since θ is a function, θ(z ·mi) = θ(z ·kj)
and thus ym = yk, a contradiction.
Thus a(z) ← β+(z), γ+

m (z , z ·mi), δ
+
m(z ·mi) ∈ PNV , with a body

true in N ′ by induction, and a(z) ∈ N ′.
The binary cases are similar.

Since N ′ ⊂ N , there must be a(z) ∈ N \N ′ or f(z, v) ∈ N \N ′, such
that, by the previous, we have a contradiction.

• t is a labeling function such that
– p ∈ t(ε), and t(ε) does not contain (possibly inverted) predicates. Im-

mediate from the definition of t.
– z · i ∈ V , i > 0, iff there is some f(z, z · i) ∈ N where f is possibly

inverted. If z · i ∈ V , θ is defined on z · i, and there is some y ∈ U such
that θ(z · i) = y for some f(θ(z), θ(z · i) ∈ M . By definition of N , we
then have that f(z, z · i) ∈ N .

– for y ∈ V , q ∈ upreds(P), f ∈ bpreds(P),
· q(y) ∈ N iff q ∈ t(y). By the definition of N .

· f(x, y) ∈ N iff y = x · i ∧ f ∈ t(y) or x = y · i ∧ f i ∈ t(x), where f
is possibly an inverted predicate. By the definition of N .

ut

3.4.2 Decidability of Conceptual Logic Programs

For a given conceptual logic program with a unary predicate to test for satis-
fiability, we construct a 2ATA such that we can reduce satisfiability checking
under IWA to checking non-emptiness of the automaton.

We define the notion of well-behaved trees . Well-behaved trees are trees
with certain basic properties that make the definition of the main 2ATA for
a CoLP less cumbersome:

• The root cannot contain binary predicates since a binary predicate in a
label indicates that there is a connection in the open answer set with the
predecessor (and the root has no predecessor).

• We allow for nodes that are labeled with {dummy} and make sure that all
successors of such nodes are labeled likewise. The dummy nodes allow us
to construct infinite trees from finite open answer sets.

Definition 3.37. An infinite k-ary tree t : T → 2preds(P) ∪ {{dummy}} for a
program P with rank k is well-behaved if

• The root label does not contain binary predicates (possibly inverted) from
P ,

• If the label of a node is {dummy}, the labels of all its successors are
{dummy}.

One can easily construct a 2ATA that accepts exactly the set of well-behaved
trees of a program P ; call this the well-behaved automaton of P .

3.4 Decidable Open Answer Set Programming under the IWA using 2ATAs 87

Let P be a CoLP with rank k and p a unary predicate in P . We define the
2ATA Ap,P as the intersection of the well-behaved automaton of P and the
2ATA (Σ,Q, δ, q0, Ω):

The Alphabet Σ

The alphabet of the automaton is 2preds(P) ∪ {{dummy}}, i.e., the label of a
node of the input tree is either a set of unary and binary (possibly inverted)
predicates or the dummy label {dummy}.

The Transition Function δ

Instead of first defining the states, we immediately define the transition func-
tion and assume the states we introduce in this definition are also defined in
Q.

• The transition for the initial state q0 is

δ(q0, n) = p ∈ n ∧ (0, q1) . (3.5)

for any n ∈ 2preds(P) ∪ {{dummy}}. In the initial state, we check whether
p is in the label n, i.e., we ensure that the infinite tree corresponds to an
open interpretation that makes p satisfiable. We next enter the state q1,
which will check every node of our tree for conditions that make sure that
the tree corresponds to an open answer set.

• The transition for the recurring state q1 is

δ(q1, n) =
(∧

a∈n

(0, qa) ∧
∧

a6∈n

(0, qa) ∧
∧

c constraint

(0, qc) ∧
∧

1≤i≤k

(i, q1)
)

∨ (n = {dummy}) (3.6)

where a ∈ preds(P). In state q1, the 2ATA needs to motivate the presence
of every predicate a in the label by means of the state qa, i.e., there must
be some rule in the program that forces a to be there. On the other hand,
if there is some predicate a that is not in the label, qa motivates this as
well, i.e., there may be no rule that forces a to be in the label. It checks
in every node that the constraints c are satisfied by entering the state qc,
and it does the same check for the entire tree by entering q1 again for all
its successors, unless the label is the dummy label in which case it does
not perform any more checks.

• We define a function free : preds(P) → {true, false} such that free(q)
returns true if q (or its inverse) is free. For unary predicates a ∈ preds(P)
and binary (possibly inverted) predicates f ∈ preds(P), we have the tran-
sitions:

88 3 Open Answer Set Programming

δ(qa, n) = a ∈ n ∧

free(a) ∨
∨

r:a(X)←β

(0, qr)

 (3.7)

and

δ(qf , n) = f ∈ n ∧

free(f) ∨

∨

r:f(X,Y)←β

(0, qr) ∨
∨

r:fi(X,Y)←β

(0, q
ri

)

 .

(3.8)
The transitions qa and qf need to motivate the presence of a and f in the
label. They each start by checking that a and f respectively are indeed in
the label. If a (or f) is free, the presence of a (or f) is vacuously motivated.
Otherwise, there has to be some rule r with a (respectively f) in the head
such that the body of the rule can be made true; the latter happens by
entering the state qr. For binary predicates f , we have that f may also be

introduced by rules with f i in the head, hence the presence of q
ri

.

• Consider a unary rule

r : a(X)← β(X), γm (X ,Ym), δm(Ym), ψ .

A multi-set I = {iYi
| Yi ∈ body(r), iYi

∈ {0, . . . , k}} satisfies ψ if the
following holds:

∀iYi
, jYj

∈ I · Yi 6= Yj ∈ ψ ⇒ iYi
6= jYj

.

Intuitively, such a multi-set I indicates the allowed directions of the au-
tomaton making sure that none of the inequalities in ψ are violated: if
Yi 6= Yj then the direction iYi

cannot be equal to jYj
. The transition for r

is then

δ(qr, n) = (0, qβ) ∧ ∃I satisfies ψ ·

∧

mYm∈I

(mYm
, q′γm

) ∧ (m′Ym
, qδm

)

 ,

(3.9)
with

q′γm
=

{

q
γm

i if mYm
= 0

qγm
else

and

m′Ym
=

{

−1 if mYm
= 0

mYm
else .

Intuitively, when reading a label with a at node X , one has to verify that
β holds at the current node X (hence the 0-direction). One also has to pick
a multi-set I corresponding to a set of directions that does not violate ψ
and check γm and δm. If a direction mYm

is such that 0 < mYm
, i.e., down

3.4 Decidable Open Answer Set Programming under the IWA using 2ATAs 89

the tree, then one has to check γm in the label of the successor mYm
. E.g.,

if f(X,Ym) ∈ γm(X,Ym) and mYm
= 2, the 2ATA moves to the second

successor X · 2 of X and checks whether f is in the label of X · 2 (recall
that a f in a label of z · i indicates a connection f(z, z · i)).
If mYm

= 0, we assume the Ym is the predecessor of X and we check

that γm
i holds at X itself and we go one node up (direction −1) to check

δm. E.g., assume f(X,Ym) ∈ γm(X,Ym) and b(Ym) ∈ δm, with mYm
= 0.

Then, we check that f i is in the label of X and b is in the label of the

predecessor Ym of X (recall that a f i in a label of z indicates a connection

f i(z · −1, z) or f(z, z · −1)).
• The transition function for a binary rule

r : f (X ,Y)← β(X), γ(X ,Y), δ(Y)

comprises
δ(qr, n) = (−1, qβ) ∧ (0, qγ) ∧ (0, qδ) (3.10)

and
δ(q

ri
, n) = (−1, qδ) ∧ (0, q

γi
) ∧ (0, qβ) . (3.11)

Intuitively, in the former transition, to motivate f at node Y , we need
to go up and check β at the predecessor X , and γ and δ at the current
node. The latter transition follows from the equivalence of f (X ,Y) ←

β(X), γ(X ,Y), δ(Y) and f i(Y ,X)← β(X), γi(Y ,X), δ(Y).
• For a set γ ⊆ preds(P) and a qγ as introduced in one of the previous steps

(γ contains possibly inverted predicates), we have the transition

δ(qγ , n) =
∧

a∈γ

(0, qa) ∧
∧

not a∈γ

a 6∈ n (3.12)

where a is unary or (possibly inverted) binary. Intuitively, motivating pos-
itive predicates amounts to recursively motivating each positive predicate.
The negative predicates can be directly checked in the node label: this
corresponds to the GL-reduct strategy where naf-literals are removed ac-
cording to their trueness w.r.t. some open interpretation.

• This concludes the definition of the transition function for positive states,
i.e., states that motivate the presence of predicates in a label. Next, we
define the states qa that motivate the lack of a predicate in a label. Intu-
itively, there can be no applicable rule with a in the head. The transition
function for qa is then basically the De Morgan rules applied to the tran-
sitions for qa.
For unary predicates a ∈ preds(P) and binary (possibly inverted) predi-
cates f ∈ preds(P), we have the transitions:

δ(qa, n) = a 6∈ n ∧

¬free(a) ∧
∧

r:a(X)←β

(0, qr)

 (3.13)

90 3 Open Answer Set Programming

and

δ(qf , n) = f 6∈ n ∧

¬free(f) ∧

∧

r:f(X,Y)←β

(0, qr) ∧
∧

r:fi(X,Y)←β

(0, q
ri

)

(3.14)
• For a unary rule

r : a(X)← β(X), γm(X ,Ym), δm(Ym), ψ

we have the transition

δ(qr, n) = (0, qβ) ∨ ∀I satisfies ψ ·

∨

mYm∈I

(mYm
, qγm

′) ∨ (m′Ym
, qδm

)

(3.15)
with

qγm

′ =

{

q
γm

i if mYm
= 0

qγm
else

and

m′Ym
=

{

−1 if mYm
= 0

mYm
else .

• The transition function for a binary rule

r : f (X ,Y)← β(X), γ(X ,Y), δ(Y)

comprises
δ(qr, n) = (−1, qβ) ∨ (0, qγ) ∨ (0, qδ) (3.16)

and
δ(q

ri
, n) = (−1, qδ) ∨ (0, q

γi
) ∨ (0, qβ) . (3.17)

• For a set γ ⊆ preds(P) and a qγ as introduced in one of the previous steps
(γ contains possibly inverted predicates), we have the transition

δ(qγ , n) =
∨

a∈γ

(0, qa) ∨
∨

not a∈γ

a ∈ n (3.18)

where a is unary or (possibly inverted) binary.
• For constraints c : ← a(X), we have

δ(qc, n) = a 6∈ n . (3.19)

A constraint c is thus satisfied if a is not in the current label of the node.

3.4 Decidable Open Answer Set Programming under the IWA using 2ATAs 91

• For constraints c1 : ← f (X ,Y) and c2 : ← f i(X ,Y), we have

δ(qc1 , n) = δ(qc2 , n) = f 6∈ n ∧ f i 6∈ n (3.20)

A constraint ci is thus satisfied if neither f nor f i is in the current label
of the node.

Note that we do not need qualifiers in the transition function definitions
(3.9) and (3.15); we can rewrite them as boolean formulas.

The States Q

Take the states Q as introduced above. Denote with Q+ the set of all states
qa for unary and (possibly) inverted predicates a.

The Acceptance Condition Ω

Take Ω = (Q+, Q). Then, an infinite path π is accepting if In(π)∩Q 6= ∅ and
In(π) ∩Q+ = ∅. Since the former is trivially satisfied for all paths, the latter
condition boils down to forbidding the infinite occurrence of positive states.
Intuitively, positive states qa were used to motivate the presence of predicates
in a label by checking that there was some rule with a body that again could
be motivated by positive states. Since, by the minimality of open answer sets,
this must eventually end we forbid the infinite occurrence of positive states.
E.g., a rule a(X)← a(X), would amount to a path with qa appearing infinitely
often, which we disallow in accordance with the open answer set semantics
where the above rule has an empty open answer set only.

Theorem 3.38. Let P be a CoLP and p ∈ upreds(P). p is satisfiable under
IWA w.r.t. P iff L(Ap,P) 6= ∅.

Proof. For the “only if” direction, assume p is satisfiable under IWA w.r.t. P ,
then, by Theorem 3.36, p is tree satisfiable under IWA w.r.t. P . By Definition
3.33 (pp. 80), there exists an open answer set under IWA (U,M) such that
U is a tree with branching at most k, with k the rank of P , and there is a
labeling function t : U → 2preds(P) such that

• p ∈ t(ε) and t(ε) does not contain (possibly inverted) predicates, and
• z ·i ∈ U , i > 0, iff there is some f(z, z ·i) ∈M where f is possibly inverted,

and
• for y ∈ U , q ∈ upreds(P), f ∈ bpreds(P),

– q(y) ∈M iff q ∈ t(y), and

– f(x, y) ∈ M iff y = x · i ∧ f ∈ t(y) or x = y · i ∧ f i ∈ t(x), where f is
possibly an inverted predicate.

The tree U may be finite, however, a 2ATA demands for an infinite tree
input. We thus take the infinite complete k-ary tree U ′ and define t′ : U ′ →
2preds(P) ∪ {{dummy}} as follows:

92 3 Open Answer Set Programming

• for x ∈ U , t′(x) ≡ t(x),
• for x ∈ U ′\U , t′(x) ≡ {dummy}.

Intuitively, we fill up all the holes in the tree t and subsequently make it
infinite; those new nodes are all labeled with the dummy label. Clearly, this
is a well-behaved tree.

We then check that t′ is accepted by Ap,P such that L(Ap,P) 6= ∅. We
construct a run r on t′ by starting with a root ε with r(ε) = (ε, q0) and
subsequently defining the successors.

• We define one successor 1 for ε such that r(1) = (ε, q1). Since p ∈ t′(ε),
this is in accordance with transition (3.5).

• Next, inductively, for every node x in the run with r(x) = (y, q1), we
distinguish between two cases:
– If t′(y) = {dummy}, we do not define any successors for x: all paths

passing through x thus end (and are accepting since they are finite).
– Otherwise, we introduce |preds(P)|+ |{ constraints }|+ k. Looking at

transition (3.6), we introduce |preds(P)| successors to accommodate
for all a ∈ t(y) and all a 6∈ t(y), |{ constraints }| successors for all the
constraints and finally k successors to recursively enter state q1.
In correspondence with the above introduction of successors xi, we
define r(xi) = (y, qa) for a ∈ t(y), r(xi) = (y, qa) for a 6∈ t(y), r(xi) =
(y, qc) for a constraint c, r(xij) = (yj, q1) for k successors yj of y.
· For r(xi) = (y, qa), we have that a ∈ t(y), and thus a(y) ∈ M and

a(y) ∈ T in for some finite n. We then have that a is free or there is

a rule a(y)← body+ ∈ PMU with body+ ⊆ T in−1
originating from a

unary rule:

r : a(X)← β(X), γm(X ,Ym), δm(Ym), ψ .

In the former case, we are done (and the path through xi is finite
and thus accepting). In the latter case, we define a successor xi1 of
xi and define r(xi1) = (y, qr). This is in accordance with transition
(3.7).

We have body+ ⊆ T in−1
, assume the Yi are grounded with yi. Every

yi is a successor or the predecessor of y. If yi = y · j, 1 ≤ j ≤ k,
take iYi

= j, if yi = y · −1, take iYi
= 0. Take I the multi-set of

such constructed iYi
, then I satisfies ψ. Introduce 2×|I| successors

xi1j of xi1 for which r can be defined in accordance with transition
(3.9) with I as defined.
We can then define successors in accordance with transition (3.12)
and fall again in a case where nodes are labeled with states qa but

this time the corresponding a-atom will be in a lower T in−1
. The

negative predicates are checked immediately to be true and do not
introduce any successors. Thus, the subtree of the run with label
(y, qa) is a finite one such that all paths through xi are accepting.

3.4 Decidable Open Answer Set Programming under the IWA using 2ATAs 93

· For r(xi) = (y, qa), we can use a similar reasoning but this time the
generated subtree need not to be finite. However, no positive states
qb appear in labels of the subtree such that every path trough xi is
accepting.

· For r(xi) = (y, qc) and a constraint c, the transition can be imme-
diately verified to be true (without the introduction of new succes-
sors), the paths through such xi are thus finite and accepting.

· For r(xij) = (yj, q1) for k successors yj of y, we can repeat the
above construction and case analysis. Since q1 may occur infinitely,
we have that all paths in the constructed run are accepting, making
the run itself accepting.

For the “if” direction, assume t : T → 2preds(P)∪{{dummy}} is an infinite
labeled k-ary tree that is accepted by Ap,P . Denote the corresponding run
with r. Define (U,M) with U ≡ {x|x ∈ T, t(x) 6= {dummy}} and

M ≡ {q(x) | q ∈ t(x) ∩ upreds(P)}

∪ {f(x, x · i), f i(x · i, x) | f ∈ t(x · i) ∩ bpreds(P)} .

We have that (U,M) is an open interpretation under IWA w.r.t. P . Since
r(ε) = (ε, q0) and by the definition of a run and transition (3.5) which says
that δ(q0, t(ε)) = p ∈ t(ε)∧ (0, q1), we have that p ∈ t(ε). By the definition of
M , we then have that p(ε) ∈ M . It remains to show that (U,M) is an open
answer set under IWA of P .

• M is a model under IWA of PMU . We check satisfiability of the different
types of rules in a CoLP.
– A rule in PMU that originates from a free rule in P is always satisfied.
– Take a unary rule r : a(x) ← β+(x), γ+

m(x , ym), δ+m(ym) ∈ PMU origi-
nating from s : a(X)← β(X), γm (X ,Ym), δm(Ym),Yi 6= Yj ∈ P with
β−(x) ∩ M = γ−m(x, ym) ∩ M = δ−m(ym) ∩ M = ∅ and yi 6= yj for
Yi 6= Yj .
Assume body(r) ⊆ M and assume, by contradiction, a(x) 6∈ M . Then
a 6∈ t(x). Since x ∈ U , we have that t(x) 6= {dummy}, and thus there
always is a node in the run with label (x, q1). Since a 6∈ t(x), there is
a node in the run with label (x, qa). By transition (3.13), we have that
(x, qs) is in the label of some node in the run. According to transition
(3.15) there are two possibilities:
· (x, qβ) is in the label of some node in the run. Then, either there

is some b ∈ β such that (x, qb) in the run and thus b 6∈ t(x) and
b(x) 6∈ M , or there is a not b ∈ β such that b ∈ t(x) and thus
b(x) ∈ M . Both lead to a contradiction with body(r) ⊆ M and
β−(x) ∩M = ∅.

· For all I that satisfy the inequalities ψ in s, we have one of the
following:

94 3 Open Answer Set Programming

1. There is a mYm
∈ I such that (x ·mYm

, qγm

′) is in the label of
the run.

2. There is a mYm
∈ I such that (x ·m′Ym

, qδm
) is in the label of

the run.
Assume an Yi in s is grounded with yi from r, and take iYi

≡ 0 if
yi is a predecessor of x or iYi

≡ j if yi is a successor x · j of x.14 An
I consisting of those iYi

satisfies ψ such that one of the above must
hold. One can see that both cases lead to a contradiction (similar
to the above).

– Binary rules and constraints can be treated similarly.
• M is a minimal model under IWA of PMU . Assume this is not true, then

there is a model N ⊂ M of PMU , and there is some a(x) ∈ M \N or
f(x, y) ∈M \N .
– Assume a(x) ∈ M \N . Then, a ∈ t(x) such that (x, qa) is the label of

some node in the accepting run. Since positive states qb may not appear
infinitely, we have that the subtree at the node with label (x, qa) is finite
(the negative states cannot appear in this subtree by definition of δ).
One can then show, by induction on the depth of this tree, that for
a node with label (z, qb) in this subtree b(z) ∈ N for a unary b and
b(z · −1, z) ∈ N for a binary b. Consequently, a(x) ∈ N , which is a
contradiction.

– Assume f(x, y) ∈M \N . This case can be done similarly.
ut

The non-emptiness problem for 2ATAs can be decided in exponential time
in the number of states (Theorem 2.17, pp. 44), such that, with Theorem
3.38, we have an exponential upper bound (in the size of the program) for
satisfiability checking under IWA w.r.t. CoLPs as well.

Theorem 3.39. Satisfiability checking under IWA w.r.t. CoLPs is decidable
and in exptime.

Proof. With Theorem 3.38, we have that p is satisfiable w.r.t. a CoLP P iff
L(Ap,P) 6= ∅. The latter can be decided in time exponential in the size of the
number of states of Ap,P . One can see that the number of states of Ap,P is
polynomial in the size of P such that the result follows. ut

In Chapter 6, we will establish an exptime lower bound for satisfiability
checking under IWA w.r.t. CoLPs, by reducing satisfiability checking in the
DL SHIQ to satisfiability checking under IWA w.r.t. CoLPs. Satisfiability
checking w.r.t. CoLPs is thus exptime-complete, which makes it more efficient
than normal (closed world) answer set programming for arbitrary programs,
which is nexptime-complete if the head contains at most one positive literal,
see [DEGV01].

14 yi is always either a successor or the predecessor of x.

3.4 Decidable Open Answer Set Programming under the IWA using 2ATAs 95

Theorem 3.40. Consistency checking under IWA w.r.t. CoLPs is decidable
and in exptime.

Proof. We can reduce consistency checking under IWA to satisfiability check-
ing under IWA by Theorem 3.22 (pp. 73). Since P ∪ {p(X)∨ not p(X)←} is
a CoLP for a CoLP P , the result then follows from Theorem 3.39. ut

Theorem 3.41. Satisfiability checking and consistency checking w.r.t. CoLPs
without inverted predicates is decidable and in exptime.

Proof. By Theorems 3.26 and 3.28, satisfiability checking and consistency
checking coincides with their versions under IWA. Theorems 3.39 and 3.40
yield the desired result. ut

A final note regarding the formal properties of CoLPs is that the syntax of
CoLPs can be loosened up without loss of generality. Consider, for example,
the following rule, expressing that a top film is a film that did well at the box
office and received a good review of an expert magazine.

topFilm(Film) ← film(Film), boxOffice(Film,Number), high(Number),

goodReview(Film,Reviewer),

writes(Reviewer ,Magazine), expert(Magazine)

In Figure 3.4, one sees that this rule has a tree structure if one maps variables
to nodes in the tree. It is easy to rewrite such a tree rule to a pair of equivalent

boxOffice

F ilm

goodReview

Number Reviewer

Magazine

writes

Fig. 3.4. Tree Rule

valid unary CoLP rules

topFilm(Film) ← film(Film), boxOffice(Film,Number), high(Number),

goodReview(Film,Reviewer), tmp(Reviewer)

and

tmp(Reviewer)← writes(Reviewer ,Magazine), expert(Magazine) .

Intuitively, we recursively replace that part of the rule that goes deeper than
one tree level, yielding CoLP rules in the end. Vice versa, such tree rules can be

96 3 Open Answer Set Programming

seen as CoLP rules where the body is unfolded. In the following, we usually
assume CoLP rules may have a tree structure if they can be equivalently
rewritten as a set of CoLP rules in the sense of Definition 3.34. Consequently,
we also allow for constraints ← β where β is a body as in a unary or binary
CoLP rule. Such general constraints can be easily rewritten as the CoLP rules:

a(X) ← β
← a(X)

in the unary case, or as

f (X ,Y)← β
← f (X ,Y)

in the binary case.

3.5 Application: Conceptual Modeling

Conceptual logic programming can be used as a language for conceptual mod-
eling, hence its naming. We illustrate the translation of a particular object-role
modeling (ORM) [Hal01] model to a CoLP.15 The translated CoLPs can be
used to detect and signal inconsistencies in the conceptual model, thus sup-
porting a continuous quality assessment during the conceptual design phase.
Advantages of using CoLP for conceptual modeling include modularity: rules
can be added independently, e.g., to express complex constraints, while the
consistency of the updated schema can be verified automatically.

Object-role modeling (ORM) is a mature conceptual modeling approach,
comparable to Entity Relationship Modeling (EER) in its use. Its advantages
include a rigorous methodology for building conceptual models, an easy to
understand graphical notation, and a translation from conceptual ORM mod-
els to relational database models. Conceptual ORM models consist of object
types and the roles they play, with in addition several constraints, such as
mandatory or uniqueness constraints, enabling engineers to express a wide
variety of knowledge. Instead of explaining ORM in its full detail, we high-
light some basic features16 of the graphical notation with the example in
Figure 3.5. The boxes indicate the roles object types play. For instance, pub-
lications might have some co-author, and accordingly an author might be the
co-author of a publication, as stated by “has co-author/is co-author of” be-
low the corresponding role boxes. Uniqueness constraints are added as arrows

15 Note that we do not claim a complete translation of ORM constructs to CoLP;
we only use ORM, a standard modeling approach, to provide anecdotal evidence
of the usefulness of CoLPs for conceptual modeling.

16 Note that we do not consider so-called lexical object types and associated refer-
ence schemes; furthermore, we restrict ourselves to binary roles as roles of larger
arity cannot be captured withing the CoLP framework.

3.5 Application: Conceptual Modeling 97

is reviewed by/reviews

Name

Author

Title

Pub

has main author/is main author of

has co−author/is co−author of

has/belongs to has/belongs to

Conf

Paper is a Pub that is submitted for some Conf.

"PubConf"

"PubCoAuthor"

"AuthorName"

"PaperRev" "PaperAccRev"

"PubTitle"

"PubAuthor"

is submitted for/has submission

Paper

Reviewer

is accepted by/accepts

≥ 2

Fig. 3.5. ORM Example

over role boxes, e.g., there is at most one main author for each publication,
but there may be more than one co-author. Mandatory constraints are indi-
cated by big black dots, such that every publication must have a main author,
while it does not need to have a co-author. Additionally, a Paper is a subtype
of Pub(lication), defined by “a Paper is a Pub that is submitted for some
Conf(erence)”. An exclusion constraint , a circle with a cross, indicates that
no main author of a publication is also a co-author of that publication and
vice versa. We have named not only roles but also the relationships they cor-
respond to, “PubConf” is the relationship between Pub and Conf with the
associated roles is submitted for and has submission. The example also shows
a subset constraint , with a dashed arrow, saying that every paper accepted by

98 3 Open Answer Set Programming

a reviewer must also have been reviewed by that same reviewer. Finally, we
also have an occurrence frequency ≥ 2 over the role is reviewed by indicating,
in combination with the mandatory constraint, that every paper is reviewed
by at least two reviewers.

To improve succinctness of the CoLP translation, we introduce abbrevia-
tions for certain CoLP rules that can be used to represent commonly occurring
constructions.

Rule type Abbreviation

a(X) ∨ not a(X)← ftype a

a(X,Y) ∨ not a(X,Y)← frel a

frel r

rel r(a1 r1 , a2 r2)

r1(X)← r(X,Y)

r2(X)← ri(X,Y)

← r1(X), not a1(X)

← r2(X), not a2(X)

← a(X), not b1(X) mandatory a(X) :

. . . b1(X), . . . , bn(X)

← a(X), not bn(X)

← a(X,Y), not b1(X,Y) mandatory a(X ,Y) :

. . . b1(X,Y), . . . , bn(X,Y)

← a(X,Y), not bn(X,Y)

← a(X), not b1(X), . . . , not bn(X) mandatory a(X) :

b1(X) or . . . or bn(X)

← a(X,Y), mandatory a(X ,Y) :

not b1(X,Y), . . . , not bn(X,Y) b1(X,Y) or . . . or bn(X,Y)

← a(X,Y), b(X,Y) impossible a(X ,Y) and b(X ,Y)

← a(X), b(X) impossible a(X) and b(X)

← f(X,Y1), f(X,Y2), Y1 6= Y2 functional f

b(X)← f(X,Y1), . . . ,

f(X,Yn), Y1 6= Y2, . . .

with ← f(X,Y), not b(X) at-least f (X ,n)

with ← f(X,Y), b(X) at-most f (X , (n − 1))

• ftype a defines a to be an object type, i.e., a unary predicate that may
be populated (subject to further rules in the program).

3.5 Application: Conceptual Modeling 99

• frel defines a relationship type; rel r(a1 r1 , a2 r2) indicates that r is
a relationship type with two associated roles r1 and r2 with respective
domains a1 and a2.

• mandatory a(X) : b1 (X), . . . , bn(X) can for example be used for an ob-
ject type a and roles bi to indicate that every object of type a must play
the roles bi.

• mandatory a(X) : b1 (X) or . . . or bn(X) is similar but now only one of
the roles bi must be played.

• impossible provides a notational variant for constraints.
• functional f asserts that a binary predicate f is functional, i.e., if an x

plays the first role in f , then x does not appear elsewhere playing the first
role.

• The “at-least f (X ,n)” and “at-most f (X ,n)” constructions correspond
to ORM occurrence frequencies “≥ n” and “≤ n” on the first role of f ,
and as such they mean that if there is an f(x, y) then there are at least
(resp. at most) n f(x, yi) with different yi , i.e. if x plays the first role in
f , it plays it at least (resp. at most) n times.

Using those abbreviations, the translation of the ORM model of Figure 3.5
to CoLP is straightforward. The result is shown in Table 3.2, where we
renamed some of the role names, e.g., has is hasTitle or hasName depending
on the accompanying object type (Title or Name respectively).

Taking a look at the rules of the CoLP in Table 3.2, one sees that in (1) we
define the different object types in the ORM model. Secondly, we define the
relationship types with their corresponding roles and associated object types.
For example

rel PubAuthor(Pub hasMain,Author isMain)

indicates that PubAuthor is a relationship with roles hasMain and isMain
that are played respectively by Pub and Author. Specifying that object types
(that are not related through subtyping) are mutually exclusive is done by
constraints like in (3).

We then add the mandatory constraints in (4), and the implicit mandatory
constraints as in (5), i.e., if an object type is attached to only one role it must
play that role, and if an object type is attached to several roles but without
an explicit dot indicating mandatoriness, objects of that type must play one
of the attached roles (a disjunctive mandatory constraint). Next, we consider
the uniqueness constraints, by declaring the appropriate relationships to be
functional in (6), saying, for example, that an author has at most one name,
and that no two authors have the same name. Together with the mandatory
constraints this allows to identify authors with their name.

The exclusion constraint, the subset constraint, and subtyping can be ex-
pressed as in (7), (8), and (9), with the subtyping rules in (9) expressing that
every paper is exactly a publication that is submitted for a conference. Finally,

100 3 Open Answer Set Programming

Table 3.2. Translated CoLP from ORM Example

ftype Author ,ftype Conf ,ftype Paper ,ftype Pub,ftype Name,ftype Title (1)

rel PubConf (Pub isSubFor ,Conf hasSub) (2)

rel PubCoAuthor(Pub hasCo,Author isCo)

rel PubAuthor(Pub hasMain,Author isMain)

rel PubTitle(Pub hasTitle,Title TitleBelTo)

rel PaperRev(Paper isRevBy ,Reviewer Reviews)

rel PaperAccRev(Paper isAccBy ,Reviewer Accepts)

rel AuthorName(Author hasName,Name NameBelTo)

impossible Author(X) and Conf (X), . . . (3)

mandatory Pub(X) : hasMain(X),hasTitle(X) (4)

mandatory Author(X) : hasName(X)

mandatory Paper(X) : isRevBy(X)

mandatory Title(X) : TitleBelTo(X) (5)

mandatory Name(X) : NameBelTo(X)

mandatory Reviewer(X) : Reviews(X) or Accepts(X)

mandatory Conf (X) : hasSub(X)

functional PubAuthor , functional PubTitle, functional PubConf , (6)

functional AuthorName , functional AuthorName i

impossible PubAuthor(X ,Y) and PubCoAuthor(X ,Y) (7)

mandatory PaperAccRev(X ,Y) : PaperRev(X ,Y) (8)

mandatory Paper(X) : isSubFor(X) (9)

mandatory isSubFor(X) : Paper(X)

at-least PaperRev(X , 2) (10)

the occurrence frequency, saying that a paper has at least two reviewers, can
be written as in (10).

Creating an ORM model, one of the main questions that continually arises
is “Can the model be populated?”, or more specifically, whether it is possible
to maintain information about authors that wrote a publication, or to keep
track of publications submitted to a conference. For small conceptual mod-
els these may seem like trivial checks, however, when models become larger,
a formalization of the ORM model and associated reasoning procedures be-
comes a necessity. For the example ORM model, Table 3.2 provides such a
formalization.

Having a translation of an ORM model, one can use CoLP satisfiability
checking to verify that the various object types can be populated, that other

3.5 Application: Conceptual Modeling 101

derived properties do (not) hold etc. As an example consider Figure 3.6. The

A B

role1/

role2/

Fig. 3.6. No eXclusion with a Subset constraint

so-called Theorem NXS [Hal01] (No eXclusion with a Subset constraint) does
not allow such constructions in a valid ORM model. The reason is that role2
cannot be populated without the two constraints contradicting each other,
i.e., on the one hand every object participating in role2 must participate in
role1 by the subset constraint, but the exclusion constraint forbids exactly
this.

If the modeler is not aware of Theorem NXS, or if the error is not as easy
to spot, the CoLP translation can be used to detect the inconsistency. Indeed,
the translated CoLP contains, among others, the two constraints

mandatory role2 (X) : role1 (X) and impossible role1 (X) and role2 (X)

and there exists no open answer set that contains a role2(a), for an object a,
or in other words, role2 is not satisfiable w.r.t. the translated CoLP.

Note that consistency checking in CoLP, i.e., checking whether there exists
an open answer set for the program, is less interesting in the context of con-
ceptual modeling, where the main issue is whether roles can be populated or
not. The latter corresponds to satisfiability checking of unary (role-)predicates
in the CoLP framework.

Besides checking whether particular roles (or object types) can be pop-
ulated, one can also query the conceptual model for the effect of possi-
ble future extensions. Assume the intention to add an object type “Re-
vAuthor” corresponding to authors that are also reviewers. Before adding
such object types, with all necessary constraints, one can simply add a rule
RevAuthor(X) ← Reviewer(X),Author(X) to the CoLP and check satisfiabil-
ity of RevAuthor in order to see whether defining a reviewing author makes
sense, i.e., whether, according to the current model, it is possible for some-
one to be both a reviewer and an author. CoLPs also allow for a modular
extension of the conceptual model with additional constraints. For example,
one may decide to include the business rule that every title of a publication
should be unique. This is easily accomplished by making the inverted PubTitle

functional by adding functional PubTitlei to the CoLP.

102 3 Open Answer Set Programming

3.6 Related Work

3.6.1 Domain Assumptions

The main difference between open answer set programming and normal answer
set programming is the lack of a domain closure axiom in the former, i.e.,
our universe is an arbitrary non-empty countable superset of the Herbrand
Universe (the set of constants in the program). Independently from the answer
set semantics, definitions of universes different from Herbrand Universes have
been investigated in literature. In [VS93], several axioms have been defined
that constrain the allowed universes for a program. We repeat these axioms
and explain how our concept of universe relates to them. The described axioms
are defined for programs with function symbols . Terms in a program are then
either constants, variables, or (recursively) of the form f(t1, . . . , tn) for terms
ti, 1 ≤ i ≤ n, for an n-ary function symbol f . The other definitions (atoms,
literals, . . .) remain defined as before, with the modified definition of term.

In our overview of the axioms constraining the allowed universes of a pro-
gram, we fix an example program with one constant a and a unary function
g. We then define a first-order formula as in [VS93]

φH(x) ≡ (x = a) ∨ ∃y · (x = g(y) ∧ h(y)) . (3.21)

The domain closure axiom (dca) is the second-order formula:

dca ≡ ∀R · φH [h/R] ⊆ R⇒ ∀y · R(y) . (3.22)

This axiom enforces universes of the program to be a minimal closure of con-
stants and function symbols in the program: if one has a set R that is closed
under constants and function symbol applications (φH [h/R] ⊆ R) then every
y in the universe must be an element of that R. The universe is the minimal
set that is closed under φH , i.e., the ground terms that can be formed using
the language of the program. Note that, if function symbols are present in the
program, this always leads to an infinite universe. In the absence of function
symbols, the domain closure axiom amounts to a universe that contains ex-
actly the constants in the program. This differs from our definition of universe
as we allow for anonymous elements, i.e., elements that are not constants.

One can augment a program with a rule [VRS91, VS93]

p#(g#(a#))← p#(g#(a#)) (3.23)

where p#, g#, and a# are new symbols not appearing in the original program.
If φH is defined w.r.t. to the language of the augmented program, the domain
closure axiom is denoted as dca#. Note that the added rule does not change
the semantics, it only adds a predicate, function symbol, and constant to the
language of the program in order to guarantee the presence of an infinite
number of objects that are not named in the original program, and can thus

3.6 Related Work 103

be considered anonymous. The difference with our definition of universe is
that such an augmented rule always yields infinite universes, while in our
case universes can be both finite and infinite. Similarly as the dca# is the
assumption in [Kun87] that a countable infinite set of function symbols of
each arity is present.

A first-order approximation of the domain closure axiom [VS93] is

dcafo ≡ ∀x · φH [h/true](x) . (3.24)

Each element in the universe is thus either a constant or in the range of a
function symbol. For the φH in Equation (3.21), we have that dcafo reduces
to

(x = a) ∨ ∃y · (x = g(y)) .

dcafo thus allows for elements g(x) where x is a new anonymous element.
One can again define a variant dcafo# by adding rule (3.23). In the absence

of function symbols, dcafo enforces universes to be the set of constants in the
program. The augmented variant again adds an infinite number of anonymous
objects.

Finally, [VS93] introduces a domain foundation axiom (dfa)

dfa ≡ ∀R · φw[w/R] ⊆ R⇒ ∀y ·R(y) (3.25)

with
φw(x) ≡ ∀y · (x = g(y)⇒ w(y)) (3.26)

for the considered program. Intuitively, the universe may contain anything
but the terms containing function symbols are finite. In the absence of func-
tion symbols, the universes that dfa enforces are exactly as our universes (in
the assumption that constants are interpreted according to a unique name
assumption, or, equivalently, as themselves).

3.6.2 k-Belief Sets

Specifically for the answer set semantics, [GP93] extends the language L0 of
a program P with an infinite sequence of new constants c1, . . . , ck, . . . such
that Lk is the expansion of L0 with c1, . . . , ck. A pair 〈k,B〉 for a nonnegative
integer k and a set of ground literals B in Lk is then a k-belief set of a program
P (without function symbols) iff B is an answer set of Pk, where Pk is the
grounding of P in the language Lk. Our definition of open answer sets is more
general in the sense that also infinite universes are allowed, while a k-belief
set is always finite. Nonetheless, the other direction is valid: every k-belief set
can be written as an open answer set.

Theorem 3.42. Let P be a program. Then, 〈k,B〉 is a k-belief set of P iff
(cts(P) ∪ {c1, . . . , ck}, B) is an open answer set of P .

104 3 Open Answer Set Programming

Proof. 〈k,B〉 is a k-belief set of P iff B is an answer set of Pcts(P)∪{c1,...,ck}

iff (cts(P) ∪ {c1, . . . , ck}, B) is an open answer set of P . ut

Defining k-belief sets easily leads to undecidability as was argued for k-
belief sets in [Sch93]. Interestingly, [Sch93] shows that reasoning becomes de-
cidable again under the well-founded semantics . Since for stratified programs
this semantics coincides with the answer set semantics, one has decidability of
reasoning for k-belief sets of stratified programs. However, trying to extend the
language of stratified programs with an extra stratum below all others, con-
taining disjunctions of positive literals, leads to undecidability again [Sch93].
This construction, disjunctions with a stratified program on top, resembles
the structure of CoLPs where we allow for special types of disjunctions (free
rules) together with a set of rules that have a tree structure. However, in
contrast with [Sch93], this gives decidable reasoning, and thus emphasizes the
importance of the tree model property.

In [Sch95], an arbitrary infinite universe is assumed. Such answer set pro-
gramming with an infinite universe can then define relations that are π1

1-
definable, i.e., relations that are definable by a formula ∀Pφ where φ is a
first-order formula and P is a list of predicate variables, see, e.g., [EG97]. Ev-
ery answer set w.r.t. such an infinite universe corresponds to an open answer
set since we allow for both finite and infinite universes. The open answer set
semantics thus generalizes both the approach in [GP93], where one extends the
domain with a finite number of new constants, and the approach in [Sch95],
where the domain is extended with an infinite number of new constants.

One may wonder whether one actually needs the capability of representing
infinite domains; is a finite extension of the domain not enough? However, as
illustrated in Example 3.7 (pp. 63), there are programs that have only infinite
answer sets. Again the question remains: do we really need such infinity?
Avoiding to answer this question, we “need” infinity in the sense that when
one allows for certain constructs in a program, e.g., 6=, one can construct
programs that have only infinite answer sets and, if one were to prohibit
infinite extensions of the domain, one would get wrong answers regarding the
satisfiability of predicates: under an open but finite answer set semantics the
predicate restore in Example 3.7 is not satisfiable while it is satisfiable under
the open and possibly infinite answer set semantics.

Similarly, the question rises whether one needs the finite extensions of the
domain, is an infinite extension not enough? We claim one needs the possibility
of finite and infinite answer sets. Take, for example, the program

← not q(X)
q(a) ←

If one would assume an infinite universe (and an infinite universe only),
this program has no answer sets: there are an infinite number of constraints
← not q(x) and no q(x) can be deduced. On the other hand if we allow for
arbitrary supersets of the constants in the program, we have that this program

3.6 Related Work 105

has indeed an open answer set ({a}, {q(a)}). The latter is the desired behav-
ior17 as there are indeed cases (read open answer sets) where the expressed
knowledge makes sense, i.e., in the absence of any anonymous elements.

3.6.3 Finitary Programs

Another approach to infinite reasoning is presented in [Bon04], where function
symbols are included in the language. Finitary programs are identified as
a class for which ground query answering is decidable, and lead to elegant
formulations of, e.g., plans with unbounded planning length.

In [Bon04], program rules have the form a← β for an atom a and β a set
of extended literals (not containing equality, inequality, or ¬) where function
symbols are allowed. Call such programs normal logic programs. Terms are
constants, variables, or of the form f(t1, . . . , tn) for n-ary function symbols f
where t1, . . . , tn in turn are finite terms. The Herbrand Universe, denotedHP ,
for a normal logic program is the set of ground terms that can be formed using
the language of P ; BP is the set of ground atoms that can be formed using
the language of P (where the definition of terms takes into account function
symbols). The grounding gr(P) of P is then w.r.t. the Herbrand Universe,
i.e., gr(P) = PHP

.
An atom dependency graph of such a program is a directed graph having

the atoms from BP as nodes. There is a positive edge from a ground atom
a to a ground atom b if there is a rule in gr(P) with head a and b in the
positive body. There is a negative edge from a ground atom a to a ground
atom b if there is a rule in gr(P) with head a and b in the negative body, i.e.,
not b in the body. A ground atom a depends on a ground atom b if there is a
path of (positive or negative) edges from a to b in the dependency graph. An
odd-cycle in such a graph is a cycle with an odd number of negative edges.
A ground atom is then odd-cyclic if it appears on an odd-cycle. A program
is finitely recursive if each ground atom depends (negatively or positively)
only on a finite number of ground atoms. A program is finitary if it is finitely
recursive and there are only a finite number of odd-cycles in its dependency
graph.

CoLPs and finitary programs are basically incomparable. Finitary pro-
grams that contain function symbols are not CoLPs since the language of the
latter does not allow for function symbols, and vice versa, there are CoLPs
that are not finitary.

Example 3.43. Take (part of) a CoLP P

a(X) ← f (X ,Y),not b(Y)
b(X)← a(X)

17 Of course, this mostly depends on the situation at hand and is hard to defend
formally, but in the context of conceptual reasoning we argue that this is indeed
the desired behavior.

106 3 Open Answer Set Programming

If we ground this program with an infinite universe18, one gets an infinite
number of ground rules

a(x) ← f (x , x),not b(x)
b(x) ← a(x)

and thus an infinite number of odd-cycles a(x) → b(x) → a(x), where the
first edge is a negative edge and the second edge is a positive one: the CoLP
is not a finitary program.

A comparison between CoLPs and finitary programs is, as the previous ex-
ample illustrates, quite artificial.

Concerning decidability, query answering w.r.t. a finitary program is decid-
able: queries can be answered by reasoning with a finite portion of gr(P). We
did not consider decidability of query answering for CoLPs since CoLPs do not
contain constants such that it does not make sense to perform ground queries.
However, unground query answering (i.e., satisfiability checking) w.r.t. fini-
tary programs is only semi-decidable (and thus undecidable), where semi-
decidable in this case means that one can countably enumerate all ground
queries and then check whether this ground query holds. As was shown in
Theorem 3.39, satisfiability checking w.r.t. CoLPs is decidable. For concep-
tual reasoning, where satisfiability checking of predicates is a key reasoning
procedure, CoLPs seem to be advantageous over finitary programs, at least
from a decidability viewpoint.

An additional difficulty for finitary programs is that checking whether a
program is finitary is undecidable [Bon04], while checking whether a program
is a CoLP is decidable; a CoLP is just a syntactically restricted finite set of
rules, while the conditions for a finitary program impose restrictions on the
infinite ground program.

3.6.4 Open Predicates

Open Logic Programming

Open Logic Programming as described in [VB97] is a framework that inte-
grates classical first-order logic with logic programming. To this end, it allows
for classical first-order reasoning for a designated set of predicates in the
program, while retaining closed world reasoning for the other predicates. In-
tuitively, the semantics of a logic program with such a designated set of predi-
cates, the open predicates , is given by taking a first-order interpretation for the
open predicates, and, with the interpretation of those open predicates fixed,
calculating the model of the logic program according to some pre-supposed

18 One can also ground with a finite universe in the open answer set semantics, but
in order to make a comparison between CoLPs and finitary programs, we ground
with an infinite universe, as the Herbrand Universe is always infinite for finitary
programs with function symbols.

3.6 Related Work 107

logic programming semantics. Additionally, open logic programming allows
for the specification of a set of first-order sentences that should be true in the
obtained model.

Definition 3.44 (cf. Definition 2.3.1 in [VB97]). Syntactically, an open
logic program (OLP) T = 〈P,O,C〉 consists of

• P : A set of normal clauses (a normal logic program19).
• O: A set of open (abducible, undefined) predicates.
• C: A set of general first-order sentences.

Open predicates have no definition, i.e., they cannot occur in the head of any
clauses.

To make a comparison with our approach possible, we assume function sym-
bols are not allowed. For hierarchical programs, i.e., programs where no pred-
icate depends on itself in a predicate dependency graph20, [VB97] gives the
semantics by means of an extension of Clark’s completion semantics [Cla87].
Instead of defining this formally, we take an example from [VB97] and explain
the difference with Clark’s traditional completion.

Example 3.45 ([VB97]). Take the open logic program 〈P,O,C〉, with P the
program

q(a,Y)← p(Y)
r(X ,Y)← not q(X ,Y)

and O = {p}, i.e., p is an open predicate, and C = {¬r(a, b)}. The semantics
is given by the first-order theory

∀X,Y · q(X,Y) ⇐⇒ p(Y) ∧X = a

∀X,Y · r(X,Y) ⇐⇒ ¬q(X,Y)

¬r(a, b)

a 6= b

Intuitively, we provide rules that say exactly when something belongs to the
extension of q and r, we insert the theory C such that models of the first
two rules must also satisfy C, and, finally, we add a 6= b to ensure that a is
interpreted differently from b (first-order logic does not have the unique name
assumption). The important part is that in Clark’s completion semantics, we
would also have a rule for p, i.e., in this case, ∀X · p(X) ⇐⇒ false, since
there are no rules with p in the head. In an open setting, however, we do not
include rules for the open predicates, such that we effectively get a first-order
interpretation for them.

19 One could allow for inequality or inequality, but for simplicity we do not.
20 A predicate dependency graph is defined similarly as the atom dependency graph

in Section 3.6.3, but with predicates instead of ground atoms, i.e., there is an
edge from predicate p to q iff there is a rule with p in the head and q in the body.

108 3 Open Answer Set Programming

Note that one can embed first-order logic in open logic programming. For
an arbitrary first-order logic theory T , take the open logic program 〈∅, O, T 〉,
with O all the predicates in T , i.e., all predicates are open. As such, open logic
programming is undecidable in the general case. Instead of the completion
semantics, [VB97] also defines a version of the well-founded semantics [VRS91]
for open logic programs with an associated sound (but incomplete in general)
proof procedure SLDNFA (see also [DDS98]).

Adapting an answer set semantics for open logic programming, accord-
ing to the intuition of open predicates in [VB97], can be done by using a
translation to our open answer set semantics.

Definition 3.46. Let R = 〈P,O,C〉 be an OLP. A pair (U,M) is an OLP
answer set of R if

• (U,M) is an open answer set of P ∪ {p(X) ∨ not p(X) ← | p ∈
O, p and X n-ary}, and

• (U,M) is a first-order model of C.

The open predicates give rise to free rules, indicating that one may choose
their extension. The second condition ensures that every open answer set
satisfies the sentences in C. We can then reuse our decidability results for the
open answer set semantics.

Theorem 3.47. Let R = 〈P,O, ∅〉 be an OLP with P a CoLP without inverted
predicates. Then, satisfiability checking and consistency checking w.r.t. R21 is
decidable in exptime.

Proof. This follows from Definition 3.46, the fact that P∪{p(X) ∨ not p(X)←
| p ∈ O, p and X n-ary} is a CoLP without inverted predicates for a CoLP P
without inverted predicates (since P is part of an OLP), and Theorem 3.41
(pp. 95). ut

Finitary Open Logic Programs

Another approach to logic programming with open predicates can be found
in [Bon03], which defines an open program as a tuple 〈P, F,O〉 where P is
a normal logic program, F is a set of function symbols and constants not
appearing in P , and O is a set of predicate symbols, the open predicates. We
define a variant of open programs where, instead of a set F for each open
program, we assume that there is a globally available infinite set of constants
Sk not appearing in P ; an open program is then just a tuple 〈P,O〉 where P is
a normal logic program without function symbols. Intuitively, in the original
definition F is used to allow for the construction of an infinite set of anonymous
elements, however, since we do not allow for function symbols and in order to

21 Satisfiability checking and consistency checking for OLPs can be defined as one
would except – replace “open answer set” by “OLP answer set”.

3.6 Related Work 109

enable a comparison with the open answer set semantics, we assume such an
infinite set of anonymous elements is always given. A completion [Bon03] of
an open program 〈P,O〉 is a normal logic program P ′ (possibly infinite), such
that

• P ′ ⊇ P ,
• the constants of P ′ occur in P or in Sk ,
• if r ∈ P ′\P , then the predicate in head(r) is in O.

We callM a B-answer set22 of 〈P,O〉 if M is an answer set of some completion
of 〈P,O〉.

Intuitively, the choice of a P ′ corresponds to the choice for a universe (one
basically adds a subset of Sk to the language of P) and a definition for the
open predicates since the added rules have open predicates in their head.

Theorem 3.48. Let R = 〈P,O〉 be an open program. Then, M is a B-answer
set of R iff (U,M) is an open answer set of P ∪ {p(X) ∨ not p(X) ← | p ∈
O, p and X n-ary} for some universe U = cts(P) ∪X with X ⊆ Sk.

Proof. Denote {p(X) ∨ not p(X)← | p ∈ O, p and X n-ary} with Q.
For the “only if” direction, assume M is a B-answer set of R. Then there

exists a completion P ′ such that M is an answer set of P ′ = P ∪ F with
F = P ′\P . Define U ≡ cts(P ′). Then U = cts(P) ∪X with X ⊆ Sk and U is
a universe for P ∪Q. We check that (U,M) is an open answer set of P ∪Q.

• M is a model of (P ∪ Q)MU . We have that M is a model of PMU since
U = cts(P ′). The rules in QMU originate from free rules such that M is a
model of QMU too.

• M is a minimal model of (P ∪ Q)MU . Assume not, then there is a model

N ⊂ M of (P ∪ Q)MU . We show that N is a model of P ′
M
U , which is a

contradiction with the minimality of M . Indeed, N is a model of PMU ; it
remains to show that N is a model of FMU . Take p(t) ← β+ ∈ FMU with
N |= β+. Then M |= β+ such that p(t) ∈ M , and p(t)←∈ QMU . Since N
is a model of the latter, we have that p(t) ∈ N .

For the “if” direction, assume (U,M) is an open answer set of P ∪ Q where
U = cts(P)∪X with X ⊆ Sk . Then, M is an answer set of (P ∪Q)MU . Define
P ′ as P with the following rules added:

• p(x , . . . , x)← u(x), for all x ∈ U , p ∈ O, and u a new unary predicate not
in P ,

• p(t)← for p(t) ∈M and p ∈ O.

Intuitively, the first type of rules introduces the universe U in P ′ (the rules
themselves are never applicable in M). The second type of rules corresponds
to the rules in QMU (originating from free rules).

The program P ′ is a completion of 〈P,O〉 such that it remains to check
that M is an answer set of P ′. Note that cts(P ′) = U .

22 B for Bonatti.

110 3 Open Answer Set Programming

• M is a model of P ′
M
U . We have that M is a model of PMU . Take a

p(x , . . . , x) ← u(x). Since u(x) 6∈ M , this rule is satisfied. Finally, for
p(t)←∈ P , we have, by definition of P ′, that p(t) ∈M .

• M is a minimal model of P ′
M
U . Assume not, then there is a model N ⊂M

of P ′
M
U . We show that N is a model of (P ∪Q)MU , which is a contradiction

with the minimality of M . N is a model of PMU . Take p(t)←∈ QMU . Then,

p(t) ∈M such that p(t)←∈ P ′MU and p(t) ∈ N .
ut

One can reduce B-satisfiability checking w.r.t. open programs (i.e., with B-
answer sets) to satisfiability checking in our setting.

Theorem 3.49. Let R = 〈P,O〉 be an open program and p a unary pred-
icate in R. Then, p is B-satisfiable w.r.t. R iff p is satisfiable w.r.t. P ∪
{p(X) ∨ not p(X)← | p ∈ O, p and X n-ary}.

Proof. Denote {p(X) ∨ not p(X)← | p ∈ O, p and X n-ary} with Q.
For the “only if” direction, assume M is a B-answer set of R such that

there is some p(x) ∈M . Then, by Theorem 3.48, there is an open answer set
(U,M) of P ∪Q with U = cts(P) ∪X and X ⊆ Sk , such that p is satisfiable
w.r.t. P ∪Q.

For the “if” direction, assume (U,M) is an open answer set of P ∪Q such
that p(x) ∈ M . We cannot immediately apply Theorem 3.48 since we need
the additional condition that U = cts(P) ∪X with X ⊆ Sk . One can obtain
this by mapping the elements of U \cts(P) to elements of Sk ; we name the
resulting universe U ′. Since U is a countable superset of cts(P) and Sk is a
countable set, this can be easily done, and (U ′,M) is an open answer set of
P ∪Q. With Theorem 3.48 the result follows. ut

A similar result holds for consistency checking.

Theorem 3.50. Let R = 〈P,O〉 be an open program. R is B-consistent23 iff
P ∪ {p(X) ∨ not p(X)← | p ∈ O, p and X n-ary} is consistent.

Proof. Similar as the proof of Theorem 3.49. ut

From our decidability results for CoLPs, we can then deduce some decidability
results for open programs.

Theorem 3.51. Let R = 〈P,O〉 be an open program with P a CoLP without
inverted predicates. Then, B-satisfiability checking and B-consistency check-
ing w.r.t. R is decidable in exptime.

Proof. This follows from Theorems 3.49 and 3.50, the fact that the program
P ∪{p(X) ∨ not p(X)← | p ∈ O, p and X n-ary} is a CoLP without inverted
predicates for a CoLP P without inverted predicates (since P is part of an
open program), and Theorem 3.41. ut

23 An open program is B-consistent if there exists a B-answer set of R.

3.6 Related Work 111

In [Bon03], a special class of open programs was identified. Finitary open
programs extend the concept of finitary, as described in Section 3.6.3, for open
programs. Keeping in mind that we consider not the original open programs
with function symbols but with an infinite set of extra constants Sk , finitary
open programs are open programs 〈P,O〉 where the ground PSk is finitary.
The same remarks apply then as in Section 3.6.3: detecting whether an open
program is finitary is undecidable in general, ground query answering w.r.t. a
finitary open program is decidable, but B-satisfiability checking is only semi-
decidable.

3.6.5 ASP-EX

In [CI05], logic programs are extended with external predicates, capable of
querying external sources of computation. The resulting framework is called
ASP-EX. Since such external predicates may have infinite extensions, e.g.,
there are an infinite number of pairs (x, y) such that y is the square of x,
[CI05] uses the open answer set semantics as their base semantics.

In the absence of external predicates, the open semantics in [CI05] co-
incides with our open answer set semantics. While we have decidability by
imposing a tree structure on the rules, [CI05] shows decidability by imposing
safeness of rules. A rule is safe if every variable in the rule appears in an
atom in the positive body. Decidability is then guaranteed by the property
that answer sets with as universe the constants of the program, i.e., the normal
answers sets, coincide with the answer sets with as universe a superset of the
program. Safeness thus ensures decidability as the open answer set semantics
coincides with the normal answer set semantics for safe programs, however,
the need for an open answer set semantics in safe programs (without external
predicates though) is questionable.

Note that CoLPs are not safe in general, e.g., free rules are not safe since
the body is empty while the head contains variables. Similarly, unary rules in
a CoLP do not have to be safe either: a(X)← not b(X) has an empty positive
body. Binary rules in a CoLP are safe since every positive body contains some
f(X,Y) for variables X and Y in the head.

However, despite the limited usefulness of an open domain semantics for
safe programs without external predicates, in the presence of external predi-
cates [CI05] detects interesting conditions on variables used in such external
predicates for decidable reasoning, e.g., weakly safe programs.

3.6.6 ω-Restricted Logic Programs

Another class of logic programs with function symbols are the ω-restricted
programs from [Syr01]. The Herbrand Universe of ω-restricted programs is
possibly infinite (in the presence of function symbols), however, answer sets
are guaranteed to be finite, exactly by the structure of ω-restricted programs.
Informally, an ω-restricted program consists of a stratified part and a part

112 3 Open Answer Set Programming

that cannot be stratified (the ω-stratum). Rules are such that every variable
in a rule is “guarded” by an atom of which the predicate is defined in a lower
stratum. The answer sets of ω-restricted programs can then be computed by
instantiating the strata from the bottom up.

For the predicate dependency graph of a normal logic program, we say
that a path from predicate p1 to a predicate p2 is negative if there is a neg-
ative edge in it; otherwise, the path is positive. An ω-stratification of a pro-
gram P is then a function S : preds(P) → N ∪ {ω} such that, if there is a
positive path from p1 to p2 in the predicate dependency graph of P , then
S(p1) ≥ S(p2). In case of a negative path, we must have that S(p1) > S(p2)
or S(p1) = ω. It is assumed that n < ω for all n ∈ N. The ω-valuation
of a rule r : a ← β under an ω-stratification S is the function Ω(r,S) =
S(preds(a))24. The ω-valuation of a variable X in a rule r : a ← β under S is
Ω(X, r,S) = min ({S(preds(l)) | l ∈ β+ ∧X ∈ vars(l)} ∪ {ω}). Finally, a rule
is ω-restricted w.r.t. a ω-stratification S of P iff ∀X ∈ vars(r) ·Ω(X, r,S) <
Ω(r,S); a normal logic program is ω-restricted if its rules are ω-restricted
w.r.t. an ω-stratification.

We extend the definition of universe for programs that contain function
symbols. A universe U for a normal logic program P is a non-empty countable
superset of the Herbrand Universe HP of P . Thus, a universe U is equal to
HP ∪ X for some countable X ; as usual, we call the elements from U \HP
anonymous .

For ω-restricted programs, the open answer set semantics coincides with
the normal answer set semantics.

Theorem 3.52. Let P be an ω-restricted program and U a universe for P .
(U,M) is an open answer set of P iff M is an answer set of P .

Proof. We show this in 3 steps:

1. An answer set M of PU does not contain atoms with anonymous elements
(and thus M is an interpretation of PHP

).
2. Rules in PU that contain anonymous elements are never applicable w.r.t.

an interpretation M of PHP
.

3. M is an answer set of PU iff M is an answer set of PHP
.

1. Assume M includes a p(t) which contains some x ∈ U \HP . Thus there
is a p(t) ← β ∈ PU with β+ ⊆ M and β− ∩M = ∅. Furthermore, this
rule originates from a rule r with a variable X in its head and, by the
ω-restrictedness of P , Ω(X, r,S) < Ω(r, S) = S(p) for the ω-stratification
of P , thus there must be a q(s) ∈ β+ ⊆M where s contains an anonymous
element x and S(q) < S(p).
Either S(p) = ω or there is a n < ω such that S(p) = n. In the latter
case, we deduce a contradiction by induction on n.

24 preds(a) is the underlying predicate of a

3.6 Related Work 113

If n = 1, we immediately have a contradiction as there is no lower stratum.
By induction, assume we can deduce a contradiction for S(q) ≤ n− 1 and
q(s) ∈ M where s contains some anonymous element. If S(p) = n, then
we deduced above that there is a q with S(q) < S(p), in other words,
S(q) ≤ n − 1, which allows to deduce a contradiction by the induction
hypothesis.
For S(p) = ω, we find a q(s) ∈ β+ ⊆ M where s contains an anonymous
element and S(q) < S(p) and thus there is a k < ω such that S(q) = k
which leads to a contradiction as in the previous case.

2. Assume p(t) ← β is a rule in PU , applicable w.r.t. M , i.e., β+ ⊆ M and
β− ∩M = ∅, and it contains anonymous elements. The rule originates
from some rule r : head ← body and thus contains some variable X that
is grounded with an anonymous element x. Since Ω(X, r,S) < Ω(r,S),
there is an atom containing X in body+ such that there is a q(s) ∈ β+

with x ∈ s. But since β+ ⊆ M , q(s) ∈ M , a contradiction with M being
an interpretation of PHP

.
3. For the “only if” direction, assume M is an answer set of PU .
• M is a model of PMHP

. Immediate, by 1., and since PMHP
⊆ PMU .

• M is a minimal model of PMHP
. Assume not, thenN ⊂M is some model

of PMHP
. Take an arbitrary a ← β+ ∈ PMU with β+ ⊆ N , then a ← β

is applicable w.r.t. N in PU , such that, by 2., a ← β does not contain
anonymous elements, and thus a ← β ∈ PHP

and a ← β+ ∈ PMHP
.

Since N is a model of PMHP
, we have that a ∈ N . Thus N is a model

of PMU , which contradicts with the minimality of M .
For the “if” direction, assume M is an answer set of PMHP

.

• M is a model of PMU . Take an arbitrary a ← β+ ∈ PMU with β+ ⊆M ,
then a ← β is applicable w.r.t. M in PU , such that, by 2., a ← β
does not contain anonymous elements, and thus a ← β ∈ PHP

and
a ← β+ ∈ PMHP

. Since M is a model of PMHP
, we then have that a ∈M .

Thus M is a model of PMU .
• M is a minimal model of PMU . Assume not, then N ⊂M is some model

of PMU . But then N is a model of PMHP
, since PMHP

⊆ PMU . ut

Since checking whether there exists an answer set of an ω-restricted pro-
gram is in general 2-nexptime-complete [Syr01], we have, with Theorem 3.52,
2-nexptime-completeness for consistency checking under the open answer set
semantics for ω-restricted programs.

Theorem 3.53. Consistency checking w.r.t. ω-restricted programs is
2-nexptime-complete.

Proof. Immediately with Theorem 3.52. ut

Furthermore, since reasoning with ω-restricted programs is implemented in
the smodels reasoner [Sim], Theorem 3.52 implies an implementation of the
open answer set semantics for ω-restricted programs as well.

4

Bounded Finite Model Property in Open
Answer Set Programming

In Section 4.1, we introduce the forest model property and define a syntac-
tically restricted class of programs, forest logic programs (FoLPs), satisfying
this property. We show in Section 4.2 that a particular type of FoLPs, local
FoLPs, has the bounded finite model property, which enables a reduction to
finite ASP. A type that can be reduced to local FoLPs are the acyclic FoLPs
from Section 4.3. Section 4.4 identifies an upper bound for the complexity of
reasoning. Finally, in Section 4.5, we extend FoLPs with an arbitrary finite
set of rules that can only be grounded with constants present in the pro-
gram, resulting in EFoLPs, and we show that properties such as the forest
model property and the bounded finite model property are valid for suitably
restricted classes of EFoLPs.

4.1 Forest Model Property

As seen in the previous chapter, the so-called tree model property proves to be
a critical factor in showing decidability of satisfiability checking. A general-
ization of this property is the forest model property: if there is an open answer
set that makes a predicate satisfiable, then there is an open answer set that
has the form of a set of trees, a forest. A similar property arises for DLs that
include nominals, e.g., SHOQ(D) [HS01].

Example 4.1. Consider the program P representing the knowledge that a com-
pany can be trusted for doing business with if it has the ISO 9000 quality cer-
tificate and at least two different trustworthy companies are doing business
with it:

trust(C)← t bus(C ,C1), t bus(C ,C2),C1 6= C2 , qual(C , iso9000)
← t bus(C ,D),not trust(D)

with t bus and qual free predicates, and iso9000 a constant. An open answer
set, e.g., (U,M) with U ≡ {x1, x2, . . .} and

116 4 Bounded Finite Model Property in Open Answer Set Programming

M ≡ {trust(x1), t bus(x1 , x2), t bus(x1 , x3),

qual(x1 , iso9000), trust(x2), . . .}

is such that for every trusted company xi in M , i.e., trust(xi) ∈M , there must
be t bus(xi , xj), t bus(xi , xk) and trust(xj), trust(xk) with xj 6= xk; addition-
ally, every trusted company has the iso9000 quality label. This particular
open answer set has a forest shape, as can be seen from Fig. 4.1: we call it a
forest model. The forest in Fig. 4.1 consists of two trees, one with root x1 and

qual

x1

iso9000x3x2

x4 x5 x7x6

{trust}{trust}

{trust}

{trust} {trust} {trust} {trust}

t bus

Fig. 4.1. Forest Model

one, a single node tree, with root iso9000 . This will be a general feature of
programs with the forest model property: they have open answer sets that can
be rewritten as sets of trees where each constant is identified with the root of
its own tree and there is (possibly) an additional tree with an anonymous root.
The labels of a node x in a tree, e.g., {trust} for x2, encode which literals are
in the corresponding open answer set, e.g., trust(x2) ∈M . The labeled edges
indicate relations between domain elements. The dashed arrows, describing
relations between anonymous domain elements x ∈ U \cts(P) and constants,
appear to be violating the forest structure; their labels can, however, be stored
in the label of the starting node, e.g., qual(x2 , iso9000) can be kept in the
label of x2 as qual iso9000 . Since there are only a finite number of constants,
the number of different labels in a forest is still finite. To be formally correct,
the forest should not have any labeled edges; we solve this by keeping the label
on an edge from x to y in the label of y, and assume that binary predicates
in labels refer to edge labels from the predecessor node to the current node,
e.g., for t bus(x1 , x2) we keep t bus in the label of x2.

Definition 4.2. Let P be a program. A p ∈ upreds(P) is forest satisfiable
w.r.t. P if there is an open answer set (U,M) of P and there is a forest F ≡

4.1 Forest Model Property 117

{tε}∪{ta | a ∈ cts(P)} where the tx : Ux → 2preds(P)∪{fa|a∈cts(P)∧f∈bpreds(P)}

are labeled trees1 with bounded arity such that

• U = ∪tx∈FUx, and2

• p ∈ tε(ε), where ε is the root of Uε, and
• z · i ∈ Ux, i > 0, iff there is some f(z, z · i) ∈M , z ∈ Ux, and
• for y ∈ Ux, q ∈ upreds(P), f ∈ bpreds(P), we have that

– q(y) ∈M iff q ∈ tx(y), and
– f(y, u) ∈M iff (u = y · i ∈ Ux ∧ f ∈ tx(u))∨ (u ∈ cts(P)∧ fu ∈ tx(y)).

We call such a (U,M) a forest model and a program P has the forest model
property if the following property holds:

If p ∈ upreds(P) is satisfiable w.r.t. P then p is forest satisfiable w.r.t.
P .

The label of a node z ∈ Ux is L(z) ≡ {q | q ∈ tx(z), q ∈ upreds(P)}.3

This definition is very similar to the definition of tree satisfiability under IWA
(Definition 3.33, pp. 80), except that it generalizes it to take into account
forests instead of trees. This generalization allows for the introduction of con-
stants in the CoLPs of the previous chapter. We do not take into account,
however, the inverted predicates (i.e., we do not define forest satisfiable under
the IWA) as we want to look for a fragment that has a bounded finite model
property later on. In the presence of inverted predicates, one can show that
there are infinity programs (Example 3.21, pp. 73).

Example 4.3. The forest model of Example 4.1, drawn according to Defini-
tion 4.2, is then as in Fig. 4.2.

In effect, a forest model can be seen as a collection of trees, with arbitrary
connections from elements to constants. As a consequence, the connections
between constants, i.e., the roots of the trees, may form an arbitrary graph.

A particular class of programs with this forest model property are forest
logic programs (FoLPs).

Definition 4.4. A forest logic program (FoLP) is a program with only unary
and binary predicates, and such that a rule is of one of the following types,

1 We assume that the root of each tx is identified with a constant, unless x = ε.
We further allow for tε to be an element of {ta | a ∈ cts(P)}, i.e., the forest
contains trees for which the roots are identified with constants and possibly, but
not necessarily, an extra tree with unidentified root node.

2 Note that U is thus a “flat” structure, consisting of the nodes in the trees Ux.
Since the Ux’s are possibly non-disjoint, U would thus be a multi-set. However, we
assume that the elements in Ux are – by convention – prefixed with x, effectively
making them disjoint. E.g., for Uε = {ε, 1} and Ua = {a, a1, a2}, we have that
U = {ε, 1, a, a1, a2}.

3 L(z) is not equal to tx(z) as we only record the unary predicates in the former.

118 4 Bounded Finite Model Property in Open Answer Set Programming

iso9000x1

x2 x3

{trust , t bus, qual iso9000 }{trust , t bus, qual iso9000 }

{trust , qual iso9000 }

Fig. 4.2. Formal Forest Model

• free rules a(s) ∨ not a(s)← or f (s , t) ∨ not f (s , t)← , where s and t are
terms such that if s and t are both variables, they are different4,

• unary rules

r : a(s)← β(s),
⋃

1≤m≤k

γm(s , tm),
⋃

1≤m≤k

δm(tm), ψ

for terms s and tm, 1 ≤ m ≤ k (again, if both s and tm are variables, they
are different; similarly for ti and tj), where
1. ψ ⊆

⋃

1≤i6=j≤k{ti 6= tj} and {=, 6=} ∩ γm = ∅ for 1 ≤ m ≤ k,

2. ∀ti ∈ vars(r) ·γ+
i 6= ∅, i.e., for variables ti there is a positive atom that

connects s and ti,
• binary rules f (s , t)← β(s), γ(s , t), δ(t) with {=, 6=}∩ γ = ∅ and γ+ 6= ∅ if

t is a variable (s and t are different if both are variables),
• constraints ← a(s) or ← f (s , t), (s and t are different if both are vari-

ables),

The conditions in FoLPs are essentially the same as for CoLPs (Definition
3.34, pp. 80), i.e., allowing for constants in the program does not yield extra
conditions on the rules. Indeed, the conditions

∀ti ∈ vars(r) · γ+
i 6= ∅

for unary rules and
γ+ 6= ∅ if t is a variable

for binary rules apply only to variables.
Intuitively, the syntactical restrictions on the rules in a FoLP are now

designed to ensure the forest model property, while maintaining a sufficient
degree of expressiveness, e.g., to simulate expressive DLs, see Chapter 6. Recall
(pp. 81) that a rule

q(X)← not f (X ,Y),not q(Y)

was not a valid CoLP rule (and hence it is not a valid FoLP rule), since it
is impossible to make a tree out of an open answer set that satisfies q (there

4 A rule f(X,X) ∨ not f(X,X)← is not allowed.

4.1 Forest Model Property 119

is no edge to connect the two different elements). Hence, we enforce that,
for variables, there is always a positive literal connecting such an X and Y .
However, if instead of Y we have a constant a, this restriction is no longer
necessary. Take

q(X)← not f (X , a),not q(a)

We have that ({x, a}, {q(x)}) is an open answer set, which leads to a forest
with trees tε, where tε(ε) = {q}, and ta where the root is identified with a.
Thus, we no longer need a connection between x and a since a is actually
(identified with) the root of its own tree.

In the same spirit we have for binary rules that f (X ,Y) ← v(X) is not
allowed, since this may impose connections between x and y without y being a
successor of x. f (X , a)← v(X) for a constant a on the other hand is allowed,
since this imposes connections between some x and a (which is again the root
of its own tree). One can encode such connections in the label of x with fa

such that the forest structure is not broken.
Like for CoLPs, we can ease the syntactical restrictions on FoLPs by al-

lowing for more general bodies, e.g., by unfolding them, resulting in bodies
with a tree like structure. More complex constraints ← β can be simulated
by a unary rule a(s)← β and a constraint ← a(s).

Theorem 4.5. Let P be a CoLP without inverted predicates. Then, P is a
FoLP.

Proof. Immediately from Definitions 3.34 and 4.4. ut

Since a FoLP may contain constants, but a CoLP may not, the other direction
does not hold. However, FoLPs without constants are CoLPs.

Theorem 4.6. Let P be a FoLP without constants. Then, P is a CoLP.

Proof. Immediately from Definitions 3.34 and 4.4. ut

Consequently, the set of CoLPs without inverted predicates coincides with the
set of FoLPs without constants.

We modify the definitions of liveness as follows. A unary rule

r : a(s)← β(s),
⋃

1≤m≤k

γm(s , tm),
⋃

1≤m≤k

δm(tm), ψ

in a FoLP is a live rule if there is a γm 6= ∅ and tm is a variable (the latter
condition being extra compared to CoLPs). A unary predicate a is live if there
is a live rule r with a in head(r) and a is not free. We denote the set of live
predicates for a FoLP P again with live(P). A degree for the liveliness of a
FoLP rule r, i.e., how many new individuals might need to be introduced to
make the head true, is

degree(r) ≡ |{m | γm 6= ∅, tm ∈ vars(r)}| . (4.1)

120 4 Bounded Finite Model Property in Open Answer Set Programming

The degree of a live predicate a in P is

degree(a) ≡ max{degree(r) | a ∈ head(r)} . (4.2)

The rank of a FoLP P is the sum of the degrees of the live predicates in P :

∑

a∈live(P)

degree(a) . (4.3)

FoLPs indeed have the forest model property.

Theorem 4.7. Forest logic programs have the forest model property.

Proof. Take a FoLP P and p ∈ upreds(P) s.t. p is satisfiable, i.e., there exists
an open answer set (U,M) with p(u) ∈M . Let n be the rank of P .

We first define mappings θx : {x} · {1, . . . , n}∗ → U from a complete n-ary
tree to the domain U , with x ∈ K where

K ≡

{

cts(P) if u ∈ cts(P)

{ε} ∪ cts(P) otherwise

Intuitively, we assume there are trees with the roots identified with the con-
stants, and, in case u is not a constant, there is an additional tree with anony-
mous root (not identified with a constant). Each θx then associates some of
the nodes in the trees with elements in the domain.

Initially, assume each θx is undefined for the whole tree {x}·{1, . . . , n}∗. If
θx is defined on some node, we will call the node defined. Each θx is constructed
as follows:

• Define θx(x) ≡ x if x ∈ cts(P) and θx(x) = u otherwise, i.e., if x = ε.
• Assume that we have considered, as in [Var98], every node in {x} ·
{1, . . . , n}k, for some k, as well as every successor node of the defined z′ ∈
fr({x} · {1, . . . , n}k) until5 z ·m for some defined z ∈ fr({x} · {1, . . . , n}k).
Consequently, we have considered the nodes z · 1, . . . , z ·m.
Since θx is defined on z, we have that θx(z) ∈ U . For every q(θx(z)) ∈M ,
there is, by Theorem 3.13 (pp. 66), some l < ∞ s.t. q(θx(z)) ∈ T l. By
definition of the immediate consequence operator, we have that there is a
rule

rq(θx(z)) : q(θx (z))← β+[] ∈ PMU

with M |= β+[], originating from r : q(s) ∨ α← β ∈ P such that
– M |= α−[],
– M |= not β−[],

5 By saying “until”, we assume that there is an ordering from left to right in the
graphical representation of the tree.

4.2 Bounded Finite Model Property 121

and T l−1 |= β+[]. If r is not live, we do nothing. Else, the body of rq(θx(z))

is of the form
γ+(θx(z)),

⋃

i

γ+
i (θx(z), yi),

⋃

i

δ+i (yi)

with at least one γ+
i 6= ∅ for yi not a constant. Without loss of generality,

we can assume that for all i, where yi is not a constant, γ+
i 6= ∅. For the

yi that are not constants we then do the following: if there is a z · j ∈
{z ·−1, z ·1, . . . , z ·m, . . . , z · (m+ i−1))} with θ(z ·j) = yi then θx remains
undefined on z · (m + i), otherwise θ(z · (m + i)) ≡ yi. Intuitively, if θ is
already defined on a neighbor of z as equal to yi, there is no need to define
θ on another successor as equal to yi.

For each θx, define a corresponding labeled tree

tx : dom(θx)→ 2preds(P)∪{fa|a∈cts(P)∧f∈bpreds(P)} ,

where dom(θx) are those elements for which θx is defined, by

• tx(x) ≡ {q | q(θx(x)) ∈M} ∪ {fa | f(θx(x), a) ∈M,a ∈ cts(P)},
• tx(z · i) ≡ {q | q(θx(z · i)) ∈ M} ∪ {f | f(θx(z), θx(z · i)) ∈ M} ∪ {fa |

f(θx(z · i), a) ∈M,a ∈ cts(P)}.

Define the open interpretation (V,N) such that V ≡ ∪xdom(θx) and

N ≡ {q(z) | q ∈ tx(z) ∩ upreds(P), z ∈ dom(θx)}

∪ {f(z, z · i) | f ∈ tx(z · i) ∩ bpreds(P), {z, z · i} ⊆ dom(θx)}

∪ {f(z, a) | fa ∈ tx(z), z ∈ dom(θx)} .

Similarly as in the proof of Theorem 3.36, one can then check that (V,N) is
indeed a forest model of P according to Definition 4.2. ut

4.2 Bounded Finite Model Property

Satisfiability checking w.r.t. the CoLPs in Chapter 3 was shown to be decid-
able by a reduction to two-way alternating tree automata. However, the defi-
nition of FoLPs includes constants, which are not allowed in CoLPs, such that
the automata reduction cannot be readily applied. Moreover, while automata
provide an elegant characterization, there are few implementations available,
e.g., [HS03] implements a specific type, looping alternating automata, using
a translation to description logics.

An alternative approach is to identify a particular class of FoLPs, local
FoLPs , that allow for a reduction to normal (finite) answer set program-
ming by a so-called bounded finite model property. This property enables the
transformation of an (infinite) open answer set into a finite one, and, more
specifically, it establishes a bound on the number of domain elements that are
needed for such a construction.

122 4 Bounded Finite Model Property in Open Answer Set Programming

Infinite forest models can be turned into finite structures as follows: cut
every path in the forest from the moment there are duplicate labels and copy
the connections of the first node in such a duplicate pair to the second node
of the pair. Intuitively, when we reach a node that is in a state we already
encountered, we proceed as that previous state, instead of going further down
the tree. This cutting is similar to the blocking technique for DL tableaux
[BCM+03], but the minimality of (open) answer sets makes it non-trivial in
the sense that cutting yields finite structures that are not guaranteed to be
(open) answer sets. We will identify a class of FoLPs, local FoLPs, for which
the cutting of infinite forest models does result in finite open answer sets.

Example 4.8. Considering the forest model in Fig. 4.1, we can cut everything
below x2 and x3 since they have the same label as x1. Furthermore, since
t bus(x1 , x2), t bus(x1 , x3), and qual(x1 , iso9000), we have that t bus(xi , x2),
t bus(xi , x3), and qual(xi , iso9000) for i = 2 and i = 3, resulting in the finite
open answer set depicted in Fig. 4.3.

x2

x1

iso9000x3

Fig. 4.3. Bounded Finite Model

Definition 4.9. A program P has the bounded finite model property if the
following holds:

If p ∈ upreds(P) is satisfiable w.r.t. P then there is a finite open
answer set (U,M) of P and a nonnegative integer k, defined only in
function of P , such that p(x) ∈M and |U | < k.

The bounded finite model property is similar to the small model property
found in the temporal logic CTL [Eme90] where a CTL formula is satisfiable
iff it is satisfiable by a model that has a number of states at most exponential
in the length of the formula.

Cutting the (infinite) forest at nodes with duplicate labels, as illustrated
above, does not necessarily yield a finite answer set.

Example 4.10. Consider the program

4.2 Bounded Finite Model Property 123

a(X) ← f (X ,Y), a(Y)
a(X) ← b(X)

b(X) ∨ not b(X) ←
f (X ,Y) ∨ not f (X ,Y)←

A forest model of this program, depicted in Figure 4.4, is

{a(ε), f(ε, 1), a(1), f(1, 11), a(11), b(11)} .

{a, b}

{a}

{a}

Fig. 4.4. Example Open Answer Set

Since ε and 1 have the same label, i.e., L(ε) = L(1), we cut the tree at 1
and copy the connections from ε (f(ε, 1)) to 1 such that f(1, 1) holds in the
new structure; this is depicted in Figure 4.5.

{a}

{a}

Fig. 4.5. Example Cutting

In the resulting structure {a(ε), f(ε, 1), a(1), f(1, 1)}, neither a(ε) nor a(1)
is (minimally) motivated, as b(11) is no longer present. The resulting structure
is thus not minimal.

Intuitively, we want a FoLP where atoms in forest models are locally motivated
such that upon cutting a forest, the motivation for literals higher up in the
forest is not cut away – as it was in the above example. We can obtain this
by enforcing δ+m for variables tm to be empty in rules

124 4 Bounded Finite Model Property in Open Answer Set Programming

r : a(s)← β(s),
⋃

1≤m≤k

γm(s , tm),
⋃

1≤m≤k

δm(tm), ψ

Such local FoLPs can motivate an a(s) (f(s, t)) in an open answer set, by
descending at most one level in the tree, where one can locally prove a(s)
(f(s, t)), i.e., without the need to go further down the tree. Of course, in the
level below s one may need to check more literals which could amount to going
further down the tree, but whilst doing this, one does not need to remember
which literals need to be proved above in the tree. In a way a local FoLP has
limited memory: it only remembers the previous (predecessor) state.

Definition 4.11. A local FoLP is a FoLP where unary rules

r : a(s)← β(s),
⋃

1≤m≤k

γm(s , tm),
⋃

1≤m≤k

δm(tm), ψ

are such that δ+m = ∅ if tm is a variable, 1 ≤ m ≤ k, and binary rules

f (s , t)← β(s), γ(s , t), δ(t)

are such that δ+ = ∅ if t is a variable.

Note that the restrictions in the definition of local FoLPs can be loosened up
by allowing for predicates b in δ+m for a variable tm if b(X)∨not b(X)← is in
the program; and similarly for δ in binary rules. Call such FoLPs semi-local .

Definition 4.12. A semi-local FoLP is a FoLP where unary rules

r : a(s)← β(s),
⋃

1≤m≤k

γm(s , tm),
⋃

1≤m≤k

δm(tm), ψ

are such that δ+m ⊆ {b | b(X)∨not b(X)←∈ P} if tm is a variable, 1 ≤ m ≤ k,
and binary rules

f (s , t)← β(s), γ(s , t), δ(t)

are such that δ+ ⊆ {b | b(X) ∨ not b(X)←∈ P} if t is a variable.

Example 4.13. The program from Example 4.1 is a local FoLP while the pro-
gram from Example 4.10 is neither local nor semi-local.

One can indeed replace such b ∈ δ+m by a double negation. Formally, for a
FoLP P , we define φ(P) as the program where each unary rule

r : a(s)← β(s),
⋃

1≤m≤k

γm(s , tm),
⋃

1≤m≤k

δm(tm), ψ

is replaced by

r : a(s)← β(s),
⋃

1≤m≤k

γm(s , tm),
⋃

1≤m≤k

δ′m(tm), ψ

4.2 Bounded Finite Model Property 125

where

δ′m ≡

{

δm if tm ∈ cts(P)

not δ−m ∪ {not b
′ | b ∈ δ+m} otherwise

and rules
b′(X)← not b(X)

are added for each b ∈ δ+m; and similarly for binary rules. The result of this
transformation is indeed a local FoLP.

Example 4.14. Take the semi-local FoLP

q(X) ← f (X ,Y), r(Y), s(a)
r(Z) ∨ not r(Z)←

Then, its equivalent local version is

q(X) ← f (X ,Y),not r ′(Y), s(a)
r ′(Y) ← not r(Y)

r(Z) ∨ not r(Z) ←

Theorem 4.15. Let P be a semi-local FoLP and p ∈ upreds(P). Then, p is
satisfiable w.r.t. P iff p is satisfiable w.r.t. the local FoLP φ(P). Furthermore,
the size of φ(P) is linear in the size of P .

Proof. The added rule b′(X)← not b(X) is a valid local FoLP rule, and since
the modified rules replace exactly the positive literals that violate locality by
naf-literals, φ(P) is indeed a local FoLP. Moreover, this translation is linear:
the modified rules include not while we add a linear number of new rules
b′(X)← not b(X).

For the “only if” direction, assume p is satisfiable w.r.t. P , i.e., there is an
open answer set (U,M) of P such that p(y) ∈M . One can show that (U,M ′)
with M ′ ≡ M ∪ {b′(x) | b(x) 6∈ M, b′ ∈ φ(P)} is an open answer set of φ(P)
with p(y) ∈M ′.

• M ′ is a model of φ(P)
M ′

U . Indeed, free rules and constraints can be seen

to be satisfied by M ′. Take a rule b′(x) ←∈ φ(P)
M ′

U originating from
b′(X) ← not b(X) ∈ φ(P), such that b(x) 6∈ M ′, and thus b(x) 6∈ M such
that, by definition of M ′, b′(x) ∈M ′.

Take a unary rule a(s)[] ← β+(s)[], γ+
m(s, tm)[], δ′

+
m(tm)[] ∈ φ(P)

M ′

U orig-
inating from r : a(s)[] ← β(s)[], γm(s, tm)[], δ′m(tm)[], ψ[] ∈ φ(P)U . As-
sume β+(s)[] ∪ γ+

m(s, tm)[] ∪ δ′+m(tm)[] ⊆ M ′. We have that a(s)[] ←
β+(s)[], γ+

m(s, tm)[], δ+m(tm)[] ∈ PMU . Indeed, take a b(tm)[] ∈ δ−m(tm)[],

then b ∈ δ′−m such that b(tm)[] 6∈M ′ and b(tm)[] 6∈M . Also δ+m(tm)[] ⊆M .
If tm is a constant then δ+m = δ′

+
m. Otherwise – tm is a variable – take

b(tm)[] ∈ δ+m(tm)[], then b′(tm)[] ∈ δ′−m(tm)[] such that b′(tm)[] 6∈ M ′ and,
by definition of M ′, b(tm)[] ∈ M , such that, in general, δ+m(tm)[] ⊆ M .

126 4 Bounded Finite Model Property in Open Answer Set Programming

Thus, a(s)[]← β+(s)[], γ+
m(s, tm)[], δ+m(tm)[] ∈ PMU is applicable in M and

a(s)[] ∈M such that a(s)[] ∈M ′.
Binary rules can be done similarly.

• M ′ is a minimal model of φ(P)
M ′

U . Assume not, i.e., there is a model

N ′ ⊂ M ′ of φ(P)
M ′

U . Define N ≡ N ′ \{b′(x)}. Then, N ⊂ M , and we
can show that N is a model of PMU , which is a contradiction with the
minimality of M .

For the “if” direction, assume p is satisfiable w.r.t. φ(P), i.e., there is an
open answer set (U,M) of φ(P) such that p(y) ∈M . Define M ′ ≡M\{b′(x)},
then (U,M ′) is an open answer set of P and p(y) ∈M ′.

• M ′ is a model of PM
′

U . Free rules and constraints can be seen to be satisfied
by M ′.
Take a unary rule a(s)[] ← β+(s)[], γ+

m(s, tm)[], δ+m(tm)[] ∈ PM
′

U orig-
inating from r : a(s)[] ← β(s)[], γm(s, tm)[], δm[], ψ[] ∈ PU . Assume
β+(s)[] ∪ γ+

m(s, tm)[] ∪ δ+m(tm)[] ⊆M ′. We have that

a(s)[]← β(s)[], γm(s, tm)[], δ′m(tm)[], ψ[] ∈ φ(P)U .

Take a not b(tm)[] ∈ δ′m(tm)[], then not b(tm)[] ∈ δm(tm)[] and thus
b(tm)[] 6∈ M ′ such that b(tm)[] 6∈M . Take a not b′(tm)[] ∈ δ′m(tm)[], then
b(tm)[] ∈ δm(tm)[] and thus b(tm)[] ∈ M ′ and b(tm)[] ∈ M , such that
b′(tm)[]←6∈ φ(P)MU . Since M is an open answer set, and thus minimal, we

have that b′(tm)[] 6∈M . And thus, a(s)[]← β+(s)[], γ+
m(s, tm)[], δ′

+
m(tm)[] ∈

φ(P)MU is applicable in M and a(s)[] ∈M such that a(s)[] ∈M ′.
Binary rules can be done similarly.

• M ′ is a minimal model of PM
′

U . Assume not, then there is a modelN ′ ⊂M ′

of PM
′

U . Define N ≡ N ′ ∪ {b′(x) ∈M}. Then, N ⊂M . We show that N is

a model of φ(P)
M
U , which is a contradiction with the minimality of M .

Free rules and constraints can be checked.
Take a rule b′(x) ←∈ φ(P)

M
U , then b′(x) ∈ M , such that, by definition of

N , b′(x) ∈ N .

Take a unary rule a(s)[] ← β+(s)[], γ+
m(s, tm)[], δ′

+
m(tm)[] ∈ φ(P)

M
U orig-

inating from r : a(s)[] ← β(s)[], γm(s, tm)[], δ′m[], ψ[] ∈ φ(P)U . As-
sume β+(s)[] ∪ γ+

m(s, tm)[] ∪ δ′+m(tm)[] ⊆ N . We have that a(s)[] ←
β+(s)[], γ+

m(s, tm)[], δ+m(tm)[] ∈ PM
′

U . Indeed, take a b(tm)[] ∈ δ−m(tm)[],

then b ∈ δ′−m such that b(tm)[] 6∈M and b(tm)[] 6∈M ′. Take now a b(tm) ∈
δ+m(tm)[]. If tm is a constant then b(tm)[] ∈ δ′+m(tm)[] such that b(tm) ∈ N ′.
Otherwise, tm is a variable and not b′(tm)[] ∈ δ′m(tm)[] such that b′(tm)[] 6∈
M and thus, by minimality of M , b(tm)[] ∈ M and b(tm)[] ∈ M ′. Since
there is a free rule (by semi-locality) b(X)[] ∨ not b(X)[] ←∈ φ(P) with
X [] = tm[], we have that b(tm)[]∨not b(tm)[]←∈ PU and b(tm)[]←∈ PM

′

U ,

and, since N ′ is a model of PM
′

U , we have that b(tm) ∈ N ′. Thus, in gen-

eral, δ+m(tm)[] ⊆ N ′. Thus, a(s)[]← β+(s)[], γ+
m(s, tm)[], δ+m(tm)[] ∈ PM

′

U is
applicable in N ′ such that a(s)[] ∈ N ′ and a(s)[] ∈ N .

4.2 Bounded Finite Model Property 127

Binary rules can be done similarly.
ut

Theorem 4.16. Let P be a local FoLP. Then, P has the bounded finite model
property.

Proof. Assume p is satisfiable w.r.t. P . Since P has the forest model property,
there is a forest model (U,M) with p(ε) ∈ M . Let U be the set of nodes
from trees Ux which have roots x; thus ε is one of those x’s. Let m be the
number of different labels in the forest model. Note that m is at most 2u

where u ≡ |upreds(P)|. For a path P of length at least m + 2 in some Ux,
define zP ∈ Ux as the minimal node in Ux (w.r.t. the prefix relation <) s.t.

∃y < zP · y 6∈ cts(P) ∧ L(y) = L(zP) .

Denote this unique y with zP . Note that for paths P of length at least m+ 2,
zP and zP are always defined: we have a finite number m of different labels,
such that, for every path P of length m + 1, there are two nodes with the
same label, moreover, in the worst case we only need a path of length m+ 2
to make sure that zP is not a constant.

Intuitively, zP repeats the label of zP and will function as a cutting point.
The connections from zP will be copies of the connections from zP and the
atoms at zP will be motivated by the same rules that motivate those atoms
at zP . The latter also explains why neither zP nor zP are allowed to be
constants. Constants may be introduced by rules containing no variables in
the head, which, consequently, cannot be used to motivate the presence of
literals at anonymous nodes: it might be that a rule t(a) ← introduces t in
the label of some constant a, however, such a rule cannot be used to motivate
the presence of t lower in the tree. Below the root, we would not have this
problem as t would be motivated there by a rule with head t(X), which can
be matched against any lower node.

Define U ′x as follows

U ′x ≡ {z ∈ Ux | (z ∈ P ∧ |P| > m+ 1)⇒ z ≤ zP} ,

i.e., cut the tree Ux at zP for every path P in Ux that has length at least
m+ 2. Let U ′ ≡ ∪{U ′x | Ux ∈ U}. Define

M ′ ≡ {q(z) | z ∈ U ′, q(z) ∈M}

∪ {f(z, y) | z ∈ P ∧ |P| > m+ 1⇒ z < zP , f(z, y) ∈M}

∪ {f(zP , y) | |P| > m+ 1, f(zP , y) ∈M} .

Intuitively, copy the connections from the first node of the duplicate pair to
the second node of the pair.

From Theorem 4.7, we have that the branching of a Ux is at most the rank
n of P , such that the number of nodes in U ′x is at most

∑m+1
i=0 ni. Since m is

128 4 Bounded Finite Model Property in Open Answer Set Programming

at most 2u for u ≡ |upreds(P)|, we have that the number of elements in Ux is

at most
∑2u+1

i=0 ni (and this expression is defined in function of P only, not in
function of the forest model (U,M)).

We have that U ′ contains the nodes of at most c + 1 trees U ′x, where
c ≡ |cts(P)|, such that the cardinality of U ′ is at most

k ≡ (c+ 1)

2u+1∑

i=0

ni , (4.4)

where k is calculated in function of P only.
Note that p(ε) ∈ M ′, such that it remains to show that (U ′,M ′) is an

open answer set of P .

• M ′ is a model of PM
′

U ′ . Free rules and constraints from PM
′

U ′ can be easily
seen to be satisfied by M ′.
Take a unary rule r : a(x)← α+(x), γ+

i (x , yi), β
+
i (yi) ∈ PM

′

U ′ orig. from
a(s) ← α(s), γi(s, ti), βi(ti), ti 6= tj ∈ P , and yi 6= yj for ti 6= tj . Take
body(r) ⊆M ′.
– If x = zP for some path P in some Ux of length at least m + 2,

then γ+
i (zP , yi) ⊆ M , β+

i (yi) ⊆ M and α+(zP) ⊆ M . Furthermore,
γi
−(zP , yi)∩M = α−(zP)∩M = βi

−(yi)∩M = ∅, such that a(zP)←
α+(zP), γ+

i (zP , yi), β
+
i (yi) ∈ PMU , and since the body is true in M , we

have that a(zP) ∈M such that a(zP) ∈M .
– Otherwise (x does not lie on such a path P , or if it does, then x < zP).

Then, a(x)← α+(x), γ+
i (x , yi), β

+
i (yi) ∈ PMU such that a(x) ∈M and

thus a(x) ∈M ′.
Binary rules can be done similarly .

• M ′ is a minimal model of PM
′

U ′ . One can prove this by subsequently showing
the following:
1. if b(x) ∈ M ′, x ∈ P ⇒ x < zP , then b(x) ∈ T k1M ′

6, and if g(x, y) ∈

M ′, x ∈ P ⇒ x < zP , then g(x, y) ∈ T k2M ′ , for finite k1, k2.

2. if b(zP) ∈M ′, then b(zP) ∈ T k1M ′ and if g(zP , y) ∈ M ′, then g(zP , y) ∈

T k2M ′ , for finite k1 and k2.

3. if b(x) ∈M ′, then b(x) ∈ T k1M ′ , and if g(x, y) ∈M ′, then g(x, y) ∈ T k2M ′ ,
for finite k1, k2.

1. if b(x) ∈ M ′, x ∈ P ⇒ x < zP , then b(x) ∈ T k1M ′ , and if g(x, y) ∈
M ′, x ∈ P ⇒ x < zP then g(x, y) ∈ T kM ′ , for finite k1, k2.
Assume b(x) ∈M ′ and g(x, y) ∈M ′. Then, b(x) ∈M and g(x, y) ∈M
such that b(x) ∈ T n1

M and g(x, y) ∈ T n2

M for n1 and n2 finite. We prove
it by induction on n1 and n2.
– BASE CASES.
· n1 = 1. Then, b(x)← ∈ PMU , which

6 Note that we subscript the immediate consequence operator with M ′ instead of
superscripting it with (U,M ′) as on pp. 66; this to avoid cluttering up notation.

4.2 Bounded Finite Model Property 129

· orig. from b(s) ∨ not b(s) ← ∈ P such that b(x) ←∈ PM
′

U ′

and thus b(x) ∈ T 1
M ′ , or

· orig. from r : b(x) ← β(x), γm(x , tm []), δm(tm[]), ψ[] ∈ PU
with body(r)

+
= ∅. Each tm[] must be a constant (otherwise,

by the definition of FoLPs, γ+
m 6= ∅), and thus x ∈ U ′ and

each tm[] ∈ U ′ such that r ∈ PU ′ . Furthermore, β−(x)∩M =
γ−m(x, tm[])∩M = δ−m(tm[])∩M = ∅, such that β−(x)∩M ′ =
γ−m(x, tm[]) ∩M ′ = δ−m(tm[]) ∩M ′ = ∅. Then, b(x) ←∈ PM

′

U ′

s.t. b(x) ∈ T 1
M ′ .

· n2 = 1. This can be done similarly.
– INDUCTION HYPOTHESIS. Assume that for b(x) ∈ M ′, b(x) ∈

T n1−1
M , x ∈ P ⇒ x < zP , and g(x, y) ∈ M ′, g(x, y) ∈ T n2−1

M ,

x ∈ P ⇒ x < zP , for n1 and n2 finite, then b(x) ∈ T l1M ′ and

g(x, y) ∈ T l2M ′ , for finite l1 and l2.
– INDUCTION. Take b(x) ∈ M ′, b(x) ∈ T n1

M , x ∈ P ⇒ x < zP and
g(x, y) ∈M ′, g(x, y) ∈ T n2

M , x ∈ P ⇒ x < zP .
· b(x) ∈ T n1

M , then r : b(x)← α+(x), γ+
i (x, yi), β

+
i (yi) ∈ PMU with

body(r) ⊆ T n1−1
M , originating from

b(s)← α(s), γi(s, ti), βi(ti), ti 6= tj ∈ P 7 ,

yi 6= yj for ti 6= tj , and α−(x)∩M = γ−i (x, yi)∩M = β−i (yi)∩
M = ∅.
Either yi is a constant or there is a g(x, yi) ∈ γ+

i (x, yi) such
that g(x, yi) ∈ M . In both cases, we have that yi ∈ U ′, such
that b(x) ← α(x), γi(x, yi), βi(yi), yi 6= yj ∈ PU ′ . Moreover,
α−(x) ∩M ′ = γ−i (x, yi) ∩M ′ = β−i (yi) ∩M ′ = ∅, such that

b(x)← α+(x), γ+
i (x, yi), β

+
i (yi) ∈ PM

′

U ′ .

We have that α+(x) ⊆ T k1−1
M ∩M ′ and x < zP such that, by

induction, α+(x) ⊆ T kM ′ for some finite k. The same applies
for γ+

i (x, yi). If β+
i (yi) 6= ∅, we have that yi must be a con-

stant8 such that if yi ∈ P , then yi < zP , and we can, again by
induction, show that β+

i (yi) ⊆ T kM ′ for some finite k.
We have that the body of the latter rule is in some T kM ′ , k <∞,

such that b(x) ∈ T k1M ′ for some finite k1.
· Take g(x, y) ∈ T n2

M , this can be done similarly.

2. b(zP) ∈ M ′ ⇒ b(zP) ∈ T k1M ′ and g(zP , y) ∈ M
′ ⇒ g(zP , y) ∈ T

k2
M ′ for

finite k1 and k2.
Assume b(zP) ∈ M ′ and g(zP , y) ∈ M ′. Then, b(zP) ∈ M ′ since
L(zP) = L(zP) and g(zP , y) ∈ M ′ by definition of M ′. We have that
b(zP) ∈M and g(zP , y) ∈M such that b(zP) ∈ T n1

M and g(zP , y) ∈ T
n2

M

for finite n1 and n2. We prove it by induction on n1 and n2.

7 Note that βi
+(yi) = ∅ if ti is a variable, by definition of local FoLPs.

8 This is where we use the locality.

130 4 Bounded Finite Model Property in Open Answer Set Programming

– BASE CASES.
· n1 = 1. Then, b(zP)← ∈ PMU ,
· orig. from b(s) ∨ not b(s)← ∈ P . Since zP is not a constant,

we have that s is a variable, and thus b(zP)←∈ PM
′

U ′ and thus
b(zP) ∈ T 1

M ′ .
· orig. from r : b(s) ← β(s), γm(s , tm), δm(tm) ∈ P . Each tm

must be a constant (otherwise, by the definition of FoLPs,
γ+
m 6= ∅). Again, since zP is not a constant, s must be

a variable. With zP ∈ U ′ and tm[] ∈ U ′, we have then
b(zP) ← β(zP), γm(zP , tm[]), δm(tm[]) ∈ PU ′ . Furthermore,
β−(zP) ∩M = γ−m(zP , tm[]) ∩M = δ−m(tm[]) ∩M = ∅, such
that β−(zP) ∩M ′ = γ−m(zP , tm[]) ∩M ′ = δ−m(tm[]) ∩M ′ = ∅.
Then, b(zP)←∈ PM

′

U ′ s.t. b(zP) ∈ T 1
M ′ .

· n2 = 1. This can be done similarly.
– INDUCTION HYPOTHESIS. Assume that for b(zP) ∈ T n1−1

M and

g(zP , y) ∈ T
n2−1
M for n1 and n2 finite, b(zP) ∈ T l1M ′ and g(zP , y) ∈

T l2M ′ , for finite l1 and l2.
– INDUCTION. Take b(zP) ∈ T n1

M and g(zP , y) ∈ T
n2

M .
· b(zP) ∈ T n1

M , then r : b(zP) ← α+(zP), γ+
i (zP , yi), β

+
i (yi) ∈

PMU with body(r) ⊆ T n1−1
M , originating from

b(s)← α(s), γi(s, ti), βi(ti), ti 6= tj ∈ P ,

yi 6= yj for ti 6= tj , and α(zP)− ∩ M = γ−i (zP , yi) ∩ M =
β−i (yi)∩M = ∅. We have that zP is not a constant such that s
is a variable. We have that zP ∈ U

′ and each yi ∈ U
′ (yi is con-

stant or there is a f(zP , yi) ∈ M such that yi is a successor of
zP and thus in U ′). Thus, b(zP)← α(zP), γi(zP , yi), βi(yi), yi 6=
yj ∈ PU ′ . By induction, we have that α+(zP) ∪ γ+

i (zP , yi) ∪

β+
i (yi) ⊆ T l1M ′ . Indeed (for βi), if β+

i 6= ∅, then yi is a
constant (by locality) such that yi ∈ P ⇒ yi < zP , and
thus, by 1., β+

i (yi) ⊆ T kM ′ for some finite k. Furthermore,
α−(zP) ∩ M ′ = γ−i (zP , yi) ∩ M

′ = β−i (yi) ∩ M
′ = ∅ such

that b(zP) ← α+(zP), γ+
i (zP , yi), β

+
i (yi) ∈ PM

′

U ′ and thus
b(zP) ∈ T kM ′ for some finite k.

· Take g(zP , y) ∈ T
n2

M , this can be done similarly.

3. if b(x) ∈M ′, then b(x) ∈ T k1M ′ , and if f(x, y) ∈M ′ then f(x, y) ∈ T k1M ′ ,
for finite k1, k2. This follows immediately by 1. and 2.

Assume M ′ is not minimal, then there is a model N ′ ⊂ M ′ of PM
′

U ′ such
that there is a a(x) ∈ M ′\N ′ or f(x, y) ∈M ′\N ′. From 3., we have that
a(x) ∈ T kM ′ and likewise for f(x, y), such that, since N ′ is a model of PM

′

U ′ ,
a(x) ∈ N ′ (and f(x, y) ∈ N ′), which is a contradiction.

ut

4.2 Bounded Finite Model Property 131

Satisfiability checking w.r.t. local FoLPs can then be done by standard answer
set solvers. Intuitively, we introduce a large enough number of constants, such
that a bounded finite model can be mapped to these constants.

Theorem 4.17. Let P be a local FoLP. Then, p ∈ upreds(P) is satisfiable
w.r.t. P iff there is a 0 ≤ h ≤ k and an answer set M of ψh(P), where k is

k ≡ (c+ 1)

2u+1∑

i=0

ni , (4.5)

with c ≡ |cts(P)|, u ≡ |upreds(P)|, and n the rank of P , and

ψh(P) ≡ P ∪ { ← not α} , (4.6)

where α ≡ {p(a) | a ∈ {xi | 1 ≤ i ≤ h} ∪ cts(P)}.

Proof. For the “only if” direction, assume p is satisfiable w.r.t. P , such that,
by Theorem 4.16, there is an open answer set (U ′,M ′) of P , with |U ′| ≤ k
and a p(u) ∈ M ′. Define h ≡ |U ′| − |cts(P)|, i.e., the number of anonymous
elements in U ′: since cts(P) ⊆ U ′, we have that 0 ≤ h ≤ k. Define a bijection
F : U ′ → cts(ψh(P)) such that F (a) = a for a ∈ cts(P), which is always
possible since cts(P) ⊆ cts(ψh(P)) and |U ′| = h + |cts(P)| = |cts(ψh(P))|.
Take

M ≡ {a(F (x)) | a(x) ∈M ′} ∪ {f(F (x), F (y)) | f(x, y) ∈M ′} .

Intuitively, we identify U ′ with the constants in ψh(P) making sure the original
constants in P are mapped to the same constants in ψh(P). One can show
that M is an answer set of ψh(P).

• M is a model of gr(ψh (P))
M

. Free rules and constraints can be easily
checked for satisfaction. Take a unary rule
a(x)← α+(x), γi

+(x , yi), βi
+(yi) ∈ gr(ψh(P))

M
, originating from a(s)←

α(s), γi(s , ti), βi(ti), ti 6= tj ∈ ψ(P) (and thus also in P), such that α−(x)∩
M = γ−i (x, yi) ∩M = β−i (yi) ∩M = ∅ and yi 6= yj for ti 6= tj . Assume
that α+(x) ∪ γ+

i (x, yi) ∪ β
+
i (yi) ⊆M .

We have that for each y ∈ cts(ψh(P)) there is a y′ ∈ U ′ such that F (y′) =
y, and thus a(x ′) ← α(x ′), γi(x

′, y ′i), βi(y
′
i), y

′
i 6= y′j ∈ PU ′ (note that

F (y′) = y = y′ for constants y). Furthermore α−(x′) ∩M ′ = γ−i (x′, y′i) ∩
M ′ = β−i (y′i)∩M = ∅ and y′i 6= y′j. Indeed, take b(x′) ∈ α−(x′)∩M ′, then
b(F (x′)) ∈ M , by definition of M , and, since F (x′) = x, b(x) ∈ M for
b ∈ α−, a contradiction. The other cases can be done similarly; that y′i 6= y′j
follows since F is a bijection. Thus a(x ′) ← α+(x ′), γi

+(x ′, y ′i), βi
+(y ′i) ∈

PM
′

U ′ .
Moreover, α+(x′) ∪ γi+(x′, y′i) ∪ βi

+(y′i) ⊆ M ′ such that a(x′) ∈ M ′ and
thus a(F (x′)) ∈M , by definition of M , such that a(x) ∈M since F (x′) =
x.

132 4 Bounded Finite Model Property in Open Answer Set Programming

Binary rules can be checked similarly. Since there is a p(u) ∈M ′, we have

that p(F (u)) ∈M and ← not α 6∈ gr(ψh(P))
M

.

• M is a minimal model of gr(ψh(P))M . Assume not, then there is a model

N ⊂M of gr(ψh (P))
M

. Define

N ′ ≡ {a(x) | a(F (x)) ∈ N} ∪ {f(x, y) | f(F (x), F (y)) ∈ N} .

Then, N ′ ⊂ M ′ and one can show that N ′ is a model of PM
′

U ′ , which is a
contradiction.

For the “if” direction, assume there exists an answer set M of ψh(P) for
0 ≤ h ≤ k. Define U ′ ≡ cts(ψh(P)). One can show that (U ′,M) is an open
answer set of P . Since ← not α ∈ ψh(P) and α 6= ∅ (otherwise ψh(P) would
have no answer set), there must be at least one p(b) ∈M for b ∈ cts(ψh(P)).

ut

Local FoLPs may contain negation as failure in the head (with free rules) such
that ψh(P) may as well, which is not allowed by standard answer set solvers
such as dlv or smodels. One can, however, remove negation as failure from
the heads in ψh(P) as in [IS98].

With Theorem 4.17, one can then subsequently check satisfiability by let-
ting h range from 0 to k and checking whether ψh(P) has an answer set; the
latter can be done with standard answer solvers.

Note that CoLPs without inverted predicates are FoLPs (Theorem 4.5),
such that local CoLPs have the bounded finite model property as well (and
satisfiability checking w.r.t. such CoLPs can also be reduced to finite answer
set programming).

Definition 4.18. A local CoLP is a CoLP where unary rules

r : a(X)← β(X),
⋃

1≤m≤k

γm(X ,Ym),
⋃

1≤m≤k

δm(Ym), ψ

are such that δ+m = ∅, 1 ≤ m ≤ k, and binary rules

f (X ,Y)← β(X), γ(X ,Y), δ(Y)

are such that δ+ = ∅.

Theorem 4.19. Let P be a local CoLP without inverted predicates. Then, P
has the bounded finite model property.

Proof. By Theorem 4.5, P is a FoLP. Furthermore, P is local such that the
result follows from Theorem 4.16. ut

4.3 Acyclic Programs 133

4.3 Acyclic Programs

We identify a class of programs, acyclic programs, such that satisfiability
checking of acyclic FoLPs can be reduced to satisfiability checking w.r.t. local
FoLPs. Acyclic programs will be further used in Chapter 6.

Formally, a positive predicate dependency graph PDG(P) for a program P
is defined by edges between (non-equality) predicates a and b such that a→ b
iff there is a rule α ← β ∈ P such that a is a predicate from α+ and b is a
predicate from β+.

Definition 4.20. Let P be a program. P is (positively) acyclic, if PDG(P)
does not contain cycles.

Acyclic programs are programs that do not allow recursion through positive
literals. A distinction with stratified programs [Bar03] or with the hierarchi-
cal programs from pp. 107 is that recursion through negated literals is still
allowed.

A useful property of acyclic programs is that they can be rewritten such
that there appear no positive unary literals in the body anymore; one replaces
them by a double negation.

Formally, for a program P , we define κ(P) as the program P where rules
r : α← β, γ with β the unary atoms of body(r), are replaced by

α← not β′, γ

and rules
b′(X)← not b(X)

are added for all b′(s) ∈ β′ where β′ ≡ {b′(s) | b(s) ∈ β}.9

Example 4.21. Take the program P

a(X) ← b(X), f (X ,Y),not c(Y)
b(X) ∨ not b(X) ←

f (X ,Y) ∨ not f (X ,Y)←

The positive dependency graph of this program is {a→ b, a→ f} such that
P is acyclic. The translation κ(P) is then

a(X) ← not b′(X), f (X ,Y),not c(Y)
b′(X)← not b(X)

b(X) ∨ not b(X)←
f (X ,Y) ∨ not f (X ,Y)←

which has, among others, the open answer set
({x, y}, {a(x), b(x), f(x, y), b′(y)}), corresponding to an open answer set
({x, y}, {a(x), b(x), f(x, y)}) of P .

9 Note that κ(P) is very similar to the translation φ(P) for semi-local FoLPs (pp.
125), only now we replace every unary atom in the bodies of P .

134 4 Bounded Finite Model Property in Open Answer Set Programming

Theorem 4.22. Let P be a program and p ∈ upreds(P). If p is satisfiable
w.r.t. P , then p is satisfiable w.r.t. κ(P).

Proof. Assume (U,M) is an open answer set of P such that p(x) ∈M . Define
M ′ ≡ M ∪ {b′(x) | b(x) 6∈M, b′ ∈ κ(P)}. Then, one can show that (U,M ′) is
indeed an open answer set of κ(P) that satisfies p. ut

The other direction is in general not valid.

Example 4.23. Consider the program P

a(X)← a(X)

This is not an acyclic program and κ(P) is the program

a(X) ← not a′(X)
a′(X)← not a(X)

with an open answer set ({x}, {a(x)}), which does not correspond to any
open answer set of P .

For acyclic programs, however, P and κ(P) are equivalent w.r.t. satisfiability
checking.

Theorem 4.24. Let P be an acyclic program and p ∈ upreds(P). Then, p is
satisfiable w.r.t. P iff p is satisfiable w.r.t. κ(P).

Proof. The “only if” direction follows from Theorem 4.22.
For the “if” direction, assume p is satisfiable w.r.t. κ(P), i.e., there is an

open answer set (U,M) of κ(P) such that p(y) ∈M . Define M ′ ≡M\{b′(x)},
then (U,M ′) is an open answer set of P and p(y) ∈M ′.

• M ′ is a model of PM
′

U . This is again along the lines of the proof of Theorem
4.15.

• M ′ is a minimal model of PM
′

U . Assume not, then there is a modelN ′ ⊂M ′

of PM
′

U .
We prove that M ′ ⊆ N ′. Take l ∈ M ′, we prove that l ∈ N ′ by induction
on the maximum depth10 of PDG(P) of the predicate preds(l) in l, which
is possible since P is acyclic and PDG(P) is finite.
– preds(l) has depth 0 in PDG(P). Then, all rules α ← β ∈ P with

preds(l) in α+ are such that β is a set of of naf-atoms and/or equality
atoms. Consequently α← β ∈ κ(P) and it does not contain any newly

added b′(s)’s. Since l ∈ M we have that there is a l ← β+[] ∈ κ(P)
M
U

with ∅ |= β+[]11 and M |= α−[]∪not β−[] originating from α[]← β[] ∈
κ(P)U . Then α[] ← β[] ∈ PU and M ′ |= α−[] ∪ not β−[] such that
l ← β+[] ∈ PM

′

U with ∅ |= β+[]. Since N ′ is a model of PM
′

U , l ∈ N ′.

10 A predicate p has depth 0 if it has no successors in PDG(P) and depth n if the
maximum depth of its successors in PDG(P) is n− 1.

11 β+ contains, if anything, only equality atoms.

4.4 Complexity 135

– Assume it is proved for literals l with depth of preds(l) at most n− 1
(IH).

– Take l with depth of preds(l) at most n. Then all rules α← β, γ in P
with preds(l) in α+, where β is a set of unary atoms, and γ the rest,
are such that the predicates in β and γ+ have a depth of at most n−1.
We have that α← not β′, γ ∈ κ(P) and b′(X)← not b(X) ∈ κ(P) for
b ∈ preds(β).

Since l ∈M , we have that there is a l← γ+[] ∈ κ(P)
M
U , withM |= γ+[],

M |= α−[] ∪ not γ−[] ∪ not β′[].
We have that l ← β[], γ+[] ∈ PM

′

U with the body true in N ′. Indeed,
we have that α ← β, γ ∈ P , and M ′ |= α−[] ∪ not γ−[]. Furthermore,
N ′ |= β[] and N ′ |= γ+[], by the fact that M |= β[] and M |= γ+[]
and the induction hypothesis. The former can be seen by noting that
M |= not β′[]. Take then a b(x) ∈ β[], then b′(x) ∈ β′[] such that
b′(x) 6∈ M and thus, by b′(X) ← not b(X) ∈ κ(P), we have that
b(x) ∈M .
Since N ′ is a model of PM

′

U , we then have that l ∈ N ′. Thus M ′ ⊆ N ′,
a contradiction with N ′ ⊂M ′.

ut

Theorem 4.25. Let P be an acyclic FoLP. Then, κ(P) is a local FoLP that
has a size linear in the size of P .

Proof. The added rule b′(X)← not b(X) is a valid local FoLP rule, and since
in the modified rules all unary atoms are replaced by their naf variants, κ(P)
is a local FoLP. Moreover, this translation is linear: the modified rules include
not while we add a linear number of new rules b′(X)← not b(X). ut

Together with Theorem 4.24, the latter theorem allows to reduce satisfiability
checking of acyclic FoLPs to local FoLPs, and thus, by Theorem 4.17, to finite
answer set programming.

4.4 Complexity

Let P be a local FoLP. We verify the complexity of checking whether there
exists an answer set M of ψh(P) for some 0 ≤ h ≤ k where k and ψh(P)
are as in Equations (4.5) and (4.6) respectively. We distinguish between two
cases:

• If FoLP rules have a degree bounded by m, independent of a particu-
lar FoLP, then the size of gr(ψh(P)) is polynomial in the size of ψh(P),

since every rule in ψh(P) introduces at most O(|cts(ψh(P))|m+1
) rules in

gr(ψh(P)). Indeed, each FoLP rule then contains at most m+ 1 variables,
each of which can be instantiated with a constant from ψh(P). Since check-
ing whether there exists an answer set M of ψh(P) is in np in the size of

136 4 Bounded Finite Model Property in Open Answer Set Programming

gr(ψh(P)) [DEGV01, Bar03], we have that checking whether there exists
an answer set M of ψh(P) is in np in the size of ψh(P) as well.

• If the degree is not bounded, we use a result from [EFF+04] to state that
checking whether M is an answer of ψh(P) is in Σp

2 w.r.t. the size of
ψh(P).12 Indeed, the arities of predicates in ψh(P) are bounded by 2 since
FoLPs allow only for unary and binary predicates.

Thus, for a fixed h, checking whether ψh(P) has an answer set is in np for
a FoLP with bounded degree and in Σp

2 in general.
Satisfiability checking of a predicate w.r.t. P can then be done by starting

with h = 0 and checking whether ψh(P) has an answer set. If this is the case,
we are done (by Theorem 4.17), otherwise, we repeat the check for h = 1,
and so on. If finally h = k has been checked, i.e., ψh(P) had no answer sets,
one can conclude, by Theorem 4.17, that the predicate is not satisfiable. This
procedure thus involves at most k + 1 calls to an np oracle for FoLPs with
bounded degree or to an Σp

2 oracle in general.
We have that

k = (c+ 1)

2u+1∑

i=0

ni = (c+ 1)
(1− n2u+2)

(1− n)
,

with u = |upreds(P)|, c = |cts(P)|, and n the rank of P such that k is double
exponential in the size of P and the above procedure to check satisfiability
runs in 2-exptimenp for local FoLPs with bounded degree or in 2-exptimeΣ

p
2

for arbitrary local FoLPs.

Theorem 4.26. Satisfiability checking w.r.t. local FoLPs is in
2-exptimeΣ

p
2 for FoLP rules with unbounded degree or in 2-exptimenp oth-

erwise.

Proof. From the above exposition. ut

Theorem 4.27. Satisfiability checking w.r.t. semi-local FoLPs is in
2-exptimeΣ

p
2 for FoLP rules with unbounded degree or in 2-exptimenp oth-

erwise.

Proof. With Theorem 4.15, we can translate a semi-local FoLP to an equiv-
alent local FoLP that has a size linear in the size of original program. The
result follows from Theorem 4.26. ut

Theorem 4.28. Satisfiability checking w.r.t. acyclic FoLPs is in
2-exptimeΣ

p
2 for FoLP rules with unbounded degree or in 2-exptimenp oth-

erwise.

Proof. With Theorem 4.24, we can translate an acyclic FoLP to an equivalent
local FoLP that has a size linear in the size of original program. The result
follows from Theorem 4.26. ut
12 Recall that Σp

2 = npnp.

4.5 Extended Forest Logic Programs 137

4.5 Extended Forest Logic Programs

Consider a FoLP defining when one cheats one’s spouse, i.e., if one is married
to someone that is different than the person one is dating. We have a spe-
cialized rule saying that when one is cheating one’s spouse with the spouse’s
friend Jane. Furthermore, a constraint ensures that cheaters date cheaters.

cheats(X) ← marr(X ,Y1), dates(X ,Y2),Y1 6= Y2

cheats j (X) ← marr(X ,Y), friend(Y , jane), dates(X , jane),Y 6= jane
← cheats(X), dates(X ,Y),not marr(X ,Y),not cheats(Y)

where marr , friend , and dates are free predicates.13 An (infinite) open answer
set of this program that satisfies cheats j is

M = {cheats(x), cheats j (x), dates(x , jane),

marr(x , x1), friend(x1 , jane),

cheats(jane),marr(jane, jane1), dates(jane, jane2),

cheats(jane2),marr(jane2 , jane21), dates(jane2 , jane22),

cheats(jane22), . . .} ,

depicted in Fig. 4.6.
One sees that x cheats his spouse with Jane since x dates Jane but is

married to x1. Furthermore, by the constraint, we must have that Jane is also
a cheater, and thus, by minimality of open answer sets, Jane is married to
some jane1 and dates jane2, who in turn must be cheating, resulting in an
infinite answer set.

{cheats, cheats j}

marr

x

x1 {cheats}

{cheats}

{cheats}

jane1

marr

marr

dates

dates

jane

jane2

jane21 jane22

dates

friend

Fig. 4.6. Forest Model

In many cases, there is interesting knowledge that cannot be captured
within the rather strict tree format of FoLP rules. For example, in addition,

13 Note that the second rule is, strictly speaking, not a FoLP rule. However, we can
easily rewrite it as two FoLP rules.

138 4 Bounded Finite Model Property in Open Answer Set Programming

we may have a rule representing that if Leo is married to Jane, Jane is dating
Felix, and Leo himself is not cheating, then Leo dislikes Felix:

dislikes(leo, felix) ← marr(leo, jane), dates(jane, felix),not cheats(leo)

This ground rule does not have a tree structure, but relates the three con-
stants in an arbitrary graph-like manner. We extend FoLPs by allowing for a
component with arbitrary program rules that may only be grounded with the
combined program’s constants.

Definition 4.29. An extended forest logic program (EFoLP) P is a pair
(Q,R) where Q is a FoLP and R is a finite program where predicates are
unary or binary. We denote Q with folp(P) and R with e(P). An EFoLP
answer set of (Q,R) is an open answer set of Q ∪ Rcts(Q∪R). Satisfiability
checking, consistency checking, and query answering w.r.t. EFoLPs are mod-
ified accordingly.

We will often speak of open answer sets of an EFoLP (Q,R) instead of an
EFoLP answer set. Additionally, we may also call a program P an EFoLP if
P can be written as Q ∪ R with Q a FoLP and R a finite ground program
with unary and/or binary predicates.

Note that e(P) can be a full-fledged program, i.e., with negation as failure.
Moreover, predicates in e(P) may be defined (i.e., appear in the head of rules)
in the FoLP folp(P), as is the case for marr , dates and cheats . Vice versa, we
may have predicates appearing in the FoLP part that are defined in the ground
rule part, e.g., dislikes could appear in the FoLP part as a dislikes(X ,Y)
literal.

Naively, one could try to reduce reasoning with an EFoLP (Q,R) to FoLP
reasoning by first calculating an answer set of the ground program part
Rcts(Q∪R) and then replacing the part by the facts induced by this answer
set, resulting in a FoLP. However, this would be wrong due to the influence
the FoLP part plays in the ground part. E.g., the empty set is the only answer
set of the above dislikes rule, and thus one would never have that somebody
dislikes someone, which is clearly not true in combination with the FoLP from
the cheating example since it provides definitions for the body predicates of
the rule.

EFoLPs still have the forest model property, since, intuitively, graph-like
connections between constants are allowed in a forest, which is all the e(P)
part of an EFoLP P can ever introduce.

Theorem 4.30. Extended forest logic programs have the forest model prop-
erty.

Proof. Take an EFoLP P = (Q,R), where Q is a FoLP and R is an arbitrary
program. Let p ∈ upreds(P) s.t. p is satisfiable, i.e., there exists an open
answer set (U,M) of P with p(u) ∈M . Let n be the rank of P , i.e., the rank
of Q (we discard R in calculating the rank of P as, semantically, R is identified
with the ground Rcts(Q∪R), of which rules can be considered non-live).

4.5 Extended Forest Logic Programs 139

We then construct the θx as in the proof of Theorem 4.7 (pp. 120). If the
selected r is in R, we treat it as if it were non-live. The rest of the proof is
entirely analogous to the proof of Theorem 4.7. ut

The forest model of the cheats example is depicted in Fig. 4.7. The cutting of

{cheats, cheats j}

marr

x

x1 {cheats}

{cheats}

{cheats}

jane1

marr

marr

dates

dates

jane

jane2

jane21 jane22

dates

friend

leo felix

marr dates

hates

Fig. 4.7. Forest Model of the EFoLP

infinite open answer sets to finite structures, as described in Section 4.2, can
again not be applied to arbitrary EFoLPs since the finite structures would
not necessarily be answer sets. We define local EFoLPs as consisting of a local
FoLP and an arbitrary program with unary or binary predicates.

Definition 4.31. A local EFoLP P is an EFoLP where folp(P) is a local
FoLP.

Local EFoLPs then have the desired bounded finite model property.

Theorem 4.32. Let P be a local EFoLP. Then, P has the bounded finite
model property.

Proof. Let P = (Q,R) be an EFoLP. The proof is along the lines of the proof
of Theorem 4.32 where k is again at most

(c+ 1)

2u+1∑

i=0

ni , (4.7)

with c the number of constants in Q ∪ R, u the number of unary predicates
in Q ∪R and n the rank of Q.

Note that constants are always in the cut open answer set (U ′,M ′) (higher
up in the trees than either zP or zP) such that the ground part e(P) does not
yield any difficulties. ut

140 4 Bounded Finite Model Property in Open Answer Set Programming

Thanks to this property we can reduce reasoning with EFoLPs to normal
answer set programming by introducing a sufficiently large number of new
constants xi.

Theorem 4.33. Let P be a local EFoLP (Q,R). Then, p ∈ upreds(P) is
satisfiable w.r.t. P iff there is a 0 ≤ h ≤ k and an answer set M of ψh(Q ∪
Rcts(Q∪R)), where k is as in Equation (4.7) and ψh is as in Theorem 4.17.

Proof. The proof is analogous to the proof of Theorem 4.17. ut

Theorem 4.33 allows to reduce satisfiability checking w.r.t. local EFoLPs to
normal finite answer set programming. The opposite direction holds as well
for programs with unary and binary predicates only.

Theorem 4.34. Let P be a program with unary and binary predicates only.
Then, there is an answer set M of a program P containing a p(a) with a ∈
cts(P) iff p is satisfiable w.r.t. to the local EFoLP (∅, P)14.

Proof. The pair (∅, P) is indeed a local EFoLP. Furthermore, M is an answer
set of P iff M is an answer set of Pcts(P) iff (cts(P),M) is an open answer
set of Pcts(P) iff (cts(P),M) is an open answer set of (∅, P). This proves the
“only if” direction.

For the “if” direction, take an open answer set (U,M) of Pcts(P), then M
is an answer set of (Pcts(P))U = Pcts(P). ut

Theorem 4.35. Satisfiability checking w.r.t. local EFoLPs is in
2-exptimenexptime.

Proof. Let P = (Q,R) be a local EFoLP. Checking whether there exists an
answer set M of ψh(P

′) for some 0 ≤ h ≤ k with P ′ ≡ Q ∪ Rcts(Q∪R) and
where k and ψh(P

′) are as in Theorem 4.33, amounts to checking whether
there exists an answer set M of gr(ψh (P ′)). By [DEGV01, Bar03] and the
disjunction-freeness of the GL-reduct of gr(ψh(P ′)) we have that the latter
can be decided by a non-deterministic Turing Machine in time polynomial in
the size of gr(ψh (P ′)). In determining the size of gr(ψh (P ′)), one sees that
the size of gr(ψh (P ′)) is exponential in the size of Q if the degree of Q is
unbounded and polynomial in the size of Q if the degree of Q is bounded.
Moreover, the size of gr(ψh (P ′)) is exponential in the size of R. Thus the size
of gr(ψh(P ′)) is (at most) exponential in the size of P and, for a fixed h,
checking whether ψh(P

′) has an answer set is in nexptime.
Satisfiability checking of a predicate w.r.t. P = (Q,R) can then again be

done by starting with h = 0 and checking whether ψh(P
′) has an answer set.

If this is the case, we are done (by Theorem 4.33), otherwise, we repeat the
check for h = 1, and so on. This procedure involves at most k + 1 calls to an
nexptime oracle.

Since k is double exponential in the size of P the above procedure to check
satisfiability runs in 2-exptimenexptime. ut

14 Or equivalently, the local EFoLP ∅ ∪ Pcts(P).

4.5 Extended Forest Logic Programs 141

We define semi-local EFoLPs and acyclic EFoLPs for which satisfiability
checking can be reduced to satisfiability checking w.r.t. local EFoLPs.

Definition 4.36. An EFoLP P = (Q,R) is semi-local if Q is semi-local.

One can translate a semi-local EFoLP (Q,R) to a local EFoLP (φ(Q), R)
where φ is defined as on pp. 124.

Theorem 4.37. Let P = (Q,R) be a semi-local EFoLP and p ∈ upreds(P).
Then, p is satisfiable w.r.t. P iff p is satisfiable w.r.t. the local EFoLP
(φ(Q), R). Furthermore, the size of (φ(Q), R) is linear in the size of P .

Proof. The proof is analogous to the proof of Theorem 4.15. ut

Complexity upper bounds for semi-local EFoLPs can then be obtained from
the upper bounds for local EFoLPs.

Theorem 4.38. Satisfiability checking w.r.t. semi-local EFoLPs is in
2-exptimenexptime.

A similar extension of acyclic FoLPs to the EFoLP case does not work, i.e., an
EFoLP (Q,R) where Q is an acyclic FoLP can not be equivalently rewritten
as the local EFoLP (κ(Q), R), where κ is as on pp. 133.

Example 4.39. Take the EFoLP (Q,R) with Q the rule p(X) ← q(X) and R
the rule q(a)← p(a). Then Q is acyclic and κ(Q) is

p(X) ← not q ′(X)
q ′(X)← not q(X)

Then, ({a}, {p(a), q(a)}) is an open answer set of the EFoLP (κ(Q), R) but
the only open answer set of (Q,R) with universe {a} is ({a}, ∅).

If Q ∪R were acyclic then (Q,R) would be equivalent to (κ(Q), κ(R)).

Theorem 4.40. Let P = (Q,R) be an EFoLP such that Q∪R is acyclic and
p ∈ upreds(P). Then, p is satisfiable w.r.t. P iff p is satisfiable w.r.t. the local
EFoLP (κ(Q), κ(R)).

Proof. We have that p is satisfiable w.r.t. P iff p is satisfiable w.r.t. Q ∪
Rcts(Q∪R). Since the latter is acyclic, we have, with Theorem 4.24, that p is
satisfiable w.r.t. Q ∪Rcts(Q∪R) iff p is satisfiable w.r.t. κ(Q ∪ Rcts(Q∪R)) =
κ(Q)∪κ(R)cts(Q∪R) iff p is satisfiable w.r.t. (κ(Q), κ(R)). Since Q is an acyclic
FoLP (Q ∪ R is acyclic), κ(Q) is a local FoLP (Theorem 4.25) and thus
(κ(Q), κ(R)) is a local EFoLP. ut

Theorem 4.41. Satisfiability checking w.r.t. EFoLPs (Q,R) where Q ∪ R is
acyclic is in 2-exptimenexptime.

Proof. By the reduction in Theorem 4.40 and Theorem 4.35. ut

142 4 Bounded Finite Model Property in Open Answer Set Programming

Another class of EFoLPs, one that will prove useful in Chapter 6, are the free
acyclic EFoLPs.

Definition 4.42. An EFoLP P = (Q,R) is free acyclic if Q is acyclic and

∀α← β ∈ R,α+ = {q(s)} · q(X) ∨ not q(X)←∈ Q ∪R .

where X = X if q is unary and X = (X,Y) if q is binary.

An EFoLP is thus free acyclic if its FoLP part is acyclic and for each positive
atom in a head of a rule in R there is a free rule. One can then safely replace
unary atoms in Q by their double negation.

Theorem 4.43. Let P = (Q,R) be a free acyclic EFoLP and p ∈ upreds(P).
Then, p is satisfiable w.r.t. P iff p is satisfiable w.r.t. the local EFoLP
(κ(Q), R).

Proof. For the “only if” direction, assume p is satisfiable w.r.t. P , i.e., there
is an open answer set (U,M) of Q ∪ Rcts(Q∪R) such that p(y) ∈ M . One
can show, along the lines of the proof of Theorem 4.24, that (U,M ′) with
M ′ ≡M ∪ {b′(x) | b(x) 6∈M, b′ ∈ κ(P)} is an open answer set of (κ(Q), R).

For the “if” direction, assume p is satisfiable w.r.t. (κ(Q), R), i.e., there is
an open answer set (U,M) of κ(Q) ∪ Rcts(Q∪R) such that p(y) ∈ M . Define
M ′ ≡M\{b′(x)}, then (U,M ′) is an open answer set of (Q,R) and p(y) ∈M ′.

• M ′ is a model of (Q ∪Rcts(Q∪R))
M ′

U
. This is again along the lines of the

proof of Theorem 4.15.

• M ′ is a minimal model of (Q ∪Rcts(Q∪R))
M ′

U
. Assume not, then there is a

model N ′ ⊂M ′ of (Q ∪Rcts(Q∪R))
M ′

U
.

We prove that M ′ ⊆ N ′. Take l ∈ M ′, we prove that l ∈ N ′ by induction
on the maximum depth15 of PDG(Q) of the predicate preds(l) in l, which
is possible since Q is acyclic and PDG(Q) is finite16.
– preds(l) has depth 0 in PDG(Q). Then, all rules α ← β ∈ Q with

preds(l) in α+ are such that β is a set of of naf-atoms and/or equality
atoms. Consequently such α ← β ∈ κ(Q) and it does not contain any
newly added b′(s)’s.

Since l ∈ M we have that there is a l ← β+[] ∈ (κ(Q) ∪Rcts(Q∪R))
M

U

with M |= β+[] and M |= α−[] ∪ not β−[] originating from α[]← β[] ∈
κ(Q)U or α[]← β[] ∈ Rcts(Q∪R).
In the former case, ∅ |= β+[]17, α[] ← β[] ∈ QU and M ′ |= α−[] ∪
not β−[] such that l← β+[] ∈ QM

′

U with ∅ |= β+[]. Since N ′ is a model

of QM
′

U , l ∈ N ′.

15 A predicate p has depth 0 if it has no successors in PDG(Q) and depth n if the
maximum depth of its successors in PDG(Q) is n− 1.

16 We assume that if l 6∈ preds(Q), then the depth of l is 0.
17 β+ contains, if anything, only equality atoms since the depth of preds(l) is 0.

4.5 Extended Forest Logic Programs 143

In the latter case, there is a free rule L ∨ not L ←∈ Q ∪ R such that
L[] = l and thus l ∨not l ←∈ (Q∪Rcts(Q∪R))U . Since l ∈M ′, we have

that l←∈ (Q ∪Rcts(Q∪R))
M ′

U
and l ∈ N ′.

– Assume it is proved for literals l with depth of preds(l) at most n− 1
(IH).

– Take l with depth of preds(l) at most n. Then all rules α← β, γ in Q
with preds(l) in α+, where β is a set of unary atoms, and γ the rest, are
such that the predicates in β and γ+ have a depth of at most n−1. We
have that such α ← not β′, γ ∈ κ(Q) and b′(X) ← not b(X) ∈ κ(Q)
for b ∈ preds(β).

Since l ∈ M , we have that there is a l ← γ+[] ∈ (κ(Q) ∪Rcts(Q∪R))
M

U

with M |= γ+[], and l← γ+[] ∈ κ(Q)MU or l← γ+[] ∈ RM
cts(Q∪R).

In the former case, l ← γ+[] originates from a α ← not β′, γ ∈ κ(Q)
and thus M |= α−[] ∪ not γ−[] ∪ not β′[].

We have that l ← β[], γ+[] ∈ (Q ∪Rcts(Q∪R))
M ′

U
with the body true in

N ′. Indeed, we have that α ← β, γ ∈ Q, and M ′ |= α−[] ∪ not γ−[].
Furthermore, N ′ |= β[] and N ′ |= γ+[], by the fact that M |= β[] and
M |= γ+[] and the induction hypothesis. The former can be seen by
noting that M |= not β′[]. Take then a b(x) ∈ β[], then b′(x) ∈ β′[]
such that b′(x) 6∈ M and thus, by b′(X) ← not b(X) ∈ κ(Q), we have

that b(x) ∈M . Since N ′ is a model of (Q ∪Rcts(Q∪R))
M ′

U
, we then have

that l ∈ N ′.
In the latter case, l ← γ+[] ∈ RM

cts(Q∪R), there is a free rule L ∨

not L ←∈ Q ∪ R such that L[] = l and thus l ∨ not l ←∈ (Q ∪

Rcts(Q∪R))U . Since l ∈M ′, we have that l ←∈ (Q ∪Rcts(Q∪R))
M ′

U
and

l ∈ N ′.
Thus M ′ ⊆ N ′, a contradiction with N ′ ⊂M ′.

ut

Theorem 4.44. Satisfiability checking w.r.t. free acyclic EFoLPs is in
2-exptimenexptime.

Proof. By the reduction in Theorem 4.43 and Theorem 4.35. ut

5

Guarded Open Answer Set Programming

In Section 5.1, we reduce satisfiability checking w.r.t. arbitrary logic programs
to satisfiability checking of alternation-free fixed point logic formulas. We
identify in Section 5.2 syntactical classes of programs for which this FPL
translation falls into the decidable logic µGF or µLGF, i.e., guarded or loosely
guarded fixed point logic.

In Section 5.3, we introduce so-called generalized literals and modify the
translation to FPL in Section 5.4. Section 5.5 mirrors Section 5.2 and identifies
classes of programs with generalized literals that can be mapped to guarded
FPL. Finally, in Section 5.6, we relate the obtained languages under the open
answer set semantics to Datalog lite which has a least fixed point model
semantics.

5.1 Open Answer Set Programming via Fixed Point
Logic

We assume, without loss of generality, that the predicates in a program P are
differently named than the constants in P and that each predicate q in P has
one associated arity, e.g., q(x) and q(x, y) are not allowed.

Definition 5.1. A program P is a p-program if the only predicate in P dif-
ferent from the (in)equality predicate is p.

For a program P , let in(Y) ≡ ∪{Y 6= a | a ∈ preds(P) ∪ {0}}, i.e., a set of
inequalities between the variable Y and the predicates in P as well as a new
constant 0. For a sequence of variables Y, we have in(Y) ≡ ∪Y ∈Yin(Y).

For a predicate name p not appearing in an arbitrary program P , we can
rewrite P as an equivalent p-program Pp by replacing every regular m-ary
atom q(t) in P by p(t,0, q) where p has arity n, with n the maximum of the
arities of predicates in P augmented by 1, 0 is a sequence of new constants 0
of length n−m−1, and q is a new constant with the same name as the original

146 5 Guarded Open Answer Set Programming

predicate. Furthermore, in order to avoid grounding with the new constants,
we add for every variable X in a non-free rule r ∈ P and for every newly
added constant a in Pp, X 6= a to the body. The rule in Pp corresponding to
r : α← β ∈ P is denoted as rp : αp ← βp , in(X) ∈ Pp for vars(r) = X.

Example 5.2. Take a program P :

h(a, b) ← q(X)
q(X) ∨ not q(X) ←

← q(a)
← q(b)

For a universe U = {x, a, b} of P , we have the open answer sets M1 = (U, ∅)
and M2 = (U, {q(x), h(a, b)}). The translation Pp is

p(a, b, h) ← p(X , 0 , q),X 6= 0 ,X 6= h,X 6= q
p(X , 0 , q) ∨ not p(X , 0 , q) ←

← p(a, 0 , q)
← p(b, 0 , q)

The open answer sets of this program can then be rewritten as open
answer sets of the original program (by leaving out all “wrong” literals
p(q, 0, q), p(0, 0, q), p(h, 0, q) that can be generated by the free rule).

Theorem 5.3. Let P be a program, p a predicate not in P , and q a predicate
in P . q is satisfiable w.r.t. P iff there is an open answer set (U ′,M ′) of the
p-program Pp with p(x,0, q) ∈M ′.

Proof. For the “only if” direction, assume (U,M) is an open answer set of P
that satisfies q, i.e., there is a q(x) ∈ M . Let U ′ = U ∪ preds(P) ∪ {0} and
M ′ = {p(x,0, q) | q(x) ∈M}). Then (U ′,M ′) is an open interpretation of Pp
and p(x,0, q) ∈M ′. One can show that (U ′,M ′) is an open answer set of Pp.

For the “if” direction, assume (U ′,M ′) is an open answer set of Pp with
p(x,0, q) ∈M ′. Define U ≡ U ′\(preds(P)∪ {0}) and M ≡ {q(x) | p(x,0, q) ∈
M ′ ∧ x ∩ (preds(P) ∪ {0}) = ∅}.

By Theorem 3.11 (pp. 65), we can assume that q is a non-free predicate
(and we assume this throughout the rest of the chapter). Then there are no
free rules with a q(t) in the head such that there are no free rules with a
p(t,0, q) in the head in Pp. Since there is a p(x,0, q) ∈ M ′, and (U ′,M ′)

is an open answer set, there must be a rule r[] in (Pp)
M ′

U ′ such that M ′ |=
in(Y)[] for Y the variables in the corresponding ungrounded rule r. Thus
x ∩ (preds(P) ∪ {0}) = ∅, such that q(x) ∈M , by definition of M .

Remains to show that (U,M) is an open answer set of P .

• M is a model of PMU . This can be easily done.
• M is a minimal model of PMU . Assume not, then there is a model N ⊂M

of PMU . Define

5.1 Open Answer Set Programming via Fixed Point Logic 147

N ′ ≡ {p(x,0, q) | q(x) ∈ N}

∪ {p(x,0, q) | p(x,0, q) ∈M ′ ∧ x ∩ (preds(P) ∪ {0}) 6= ∅} .

Clearly N ′ ⊂M ′; one can show that N ′ is a model of (Pp)
M ′

U ′ , which leads
to a contradiction with the minimality of M ′.

ut

The translation of a program to a p-program does not influence the complexity
of reasoning.

Theorem 5.4. Let P be a program and p a predicate not in P . The size of
Pp is polynomial in the size of P .

Proof. The size of a rule r ∈ P is of the order v + k, with v the number of
variables and k the number of predicate names in r. The corresponding rp
then contains an extra v × n inequality atoms for n ≡ |preds(P) ∪ {0}|, and
the size of rp is thus in general quadratic in the size of r. ut

By Theorems 5.3 and 5.4, we can focus, without loss of generality, on
p-programs only. Since p-programs have open answer sets consisting of one
predicate p, fixed points calculated w.r.t. p yield minimal models of the pro-
gram as we will show in Theorem 5.8.

In [CH82], a similar motivation drives the reduction of Horn clauses1 to
clauses consisting of only one defined predicate. Their encoding does not in-
troduce new constants to identify old predicates and depends entirely on the
use of (in)equality. However, to account for databases consisting of only one
element, [CH82] needs an additional transformation that unfolds bodies of
clauses.

We can reduce a p-program P to equivalent formulas comp(P) in fixed
point logic. The completion comp(P) of a program P consists of formulas that
demand that different constants in P are interpreted as different elements:

a 6= b (5.1)

for every pair of different constants a and b in P , and where a 6= b ≡ ¬(a = b).
comp(P) contains formulas ensuring the existence of at least one element in
the domain of an interpretation:

∃X · true . (5.2)

Besides these technical requirements matching FOL interpretations with open
interpretations, comp(P) contains the formulas in fix(P) ≡ sat(P)∪gl(P)∪
fpf(P), which can be intuitively categorized as follows:

• sat(P) ensures that a model of fix(P) satisfies all rules in P ,

1 Horn clauses are rules of the form a ← β where β is a finite set of atoms (i.e.,
negation as failure is not allowed).

148 5 Guarded Open Answer Set Programming

• gl(P) is an auxiliary component defining atoms that indicate when a rule
in P belongs to the GL-reduct of P , and

• fpf(P) ensures that every model of fix(P) is a minimal model of the GL-
reduct in P ; it uses the atoms defined in gl(P) to select, for the calculation
of the fixed point, only those rules in P that are in the GL-reduct of P .

We interpret a naf-atom not a in a FOL formula as the literal ¬a. Moreover,
we assume that, if a set X is empty,

∧
X = true and

∨
X = false. In the

following, we assume that the arity of p, the only predicate in a p-program is
n.

Definition 5.5. Let P be a p-program. The fixed point translation of P is
fix(P) ≡ sat(P) ∪ gl(P) ∪ fpf(P), where

1. sat(P) contains formulas

∀Y ·
∧

β ⇒
∨

α (5.3)

for rules α← β ∈ P with variables Y,
2. gl(P) contains the formulas

∀Y · r(Y)⇔
∧

α− ∧
∧

¬β− (5.4)

for rules r : α← β ∈ P 2 with variables Y,
3. fpf(P) contains the formula

∀X · p(X)⇒ [LFP WX.φ(W ,X)](X) (5.5)

with
φ(W,X) ≡W (X) ∨

∨

r:p(t)∨α←β∈P

E(r) (5.6)

and

E(r) ≡ ∃Y ·X1 = t1 ∧ . . . ∧Xn = tn ∧
∧

β+[p|W] ∧ r(Y) (5.7)

where X = X1, . . . , Xn are n new variables, Y are the variables in r, W
is a new (second-order) variable and β+[p|W] is β+ with p replaced by W .

The completion of P is comp(P) ≡ fix(P) ∪ {(5.1), (5.2)}.

The predicate W appears only positively in φ(W,X) such that the fixed point
formula in (5.5) is well-defined. By the first disjunct in (5.6), we have that
applying the operator φ(U,M) (see pp. 57) to an arbitrary set S ⊆ Un does
not lose information from S.

Theorem 5.6. Let P be a p-program and (U,M) an interpretation with S ⊆
Un. Then

S ⊆ φ(U,M)(S) .

2 We assume that rules are uniquely named.

5.1 Open Answer Set Programming via Fixed Point Logic 149

Proof. Take x ∈ S, then (U,M),W → S |= W (x), such that, by (5.6),
(U,M),W → S |= φ(W,x). Thus, by (2.2), we have that x ∈ φ(U,M)(S). ut

Example 5.7. Take a p-program P

r : p(X) ← p(X)

The completion comp(P) contains the formulas ∃X · true, together with
fix(P) ≡ sat(P) ∪ gl(P) ∪ fpf(P), where

sat(P) = {∀X · p(X)⇒ p(X)} ,

ensuring that r is satisfied, and

gl(P) = {∀X · r(X)⇔ true} ,

saying that r belongs to every GL-reduct since there are no naf-atoms. Finally,

fpf(P) = {∀X1 · p(X1)⇒ [LFP W X1 .φ(W ,X1)](X1)} ,

with
φ(W,X1) ≡W (X1) ∨ ∃X ·X1 = X ∧W (X) ∧ r(X) .

The formula fpf(P) ensures that every atom in a FOL interpretation is mo-
tivated by a fixed point construction, using the available rule p(x)← p(X).

Theorem 5.8. Let P be a p-program. Then, (U,M) is an open answer set of
P iff (U,M ∪R) is a model of

∧
comp(P), where

R ≡ {r(y) | r[Y | y] : α[]← β[] ∈ PU ,M |= α[]− ∪ not β[]−, vars(r) = Y} .

Proof. Denote M ∪R as M ′.
⇒ For the “only if” direction, assume (U,M) is an open answer set of P .

We show that (U,M ′) is a model of comp(P).

(U,M ′) is a model of (5.1). Immediate, since the domain U of the FOL in-
terpretation is also the universe of the open interpretation.

(U,M ′) is a model of (5.2). Immediate, U is non-empty by the definition of
universes.

(U,M ′) is a model of sat(P). Take y1, . . . , yd ∈ U s.t.
∧
β[Y1|y1, . . . , Yd|yd]

is true in (U,M ′). Ground β in the rule α← β accordingly; we have that
M |= not β−[]. If M 6|= α−[], there is a not l ∈ α[] such that M |= not l,
and thus

∨
α[] is true in (U,M ′).

If M |= α−[], we have that α+[] ← β+[] ∈ PMU and thus there exists a
l ∈ α+[] with M |= l such that

∨
α[] is true in (U,M ′).

(U,M ′) is a model of gl(P). Take y = y1, . . . , yd and assume r(y) is in M ′.
By definition of M ′, we have that r(y) ∈ R, and thus vars(r) = Y,M |=
α−[Y|y],M |= not β−[Y|y] for r : α ← β, such that M ′ |=

∧
α−[] and

M ′ |=
∧
¬β−[].

For the other direction, take y = y1, . . . , yd and assume
∧
α−[Y|y] and

∧
¬β−[Y|y] are true in M ′, consequently, immediately by the definition

of M ′, r(y) ∈ R ⊆M ′.

150 5 Guarded Open Answer Set Programming

(U,M ′) is a model of fpf(P). Take x for X and assume p(x) ∈ M ′. Thus,
p(x) ∈M . Since (U,M) is an open answer set we have that p(x) ∈ T n for
some n <∞.

Claim. x ∈ φ(U,M ′) ↑ n, n <∞.

We prove the claim by induction on n.
n = 1 (Base step). If p(x) ∈ T 1 there is some r′ : p(x) ← β+[] ∈ PMU

originating from r : p(t) ∨ α ← β ∈ P with variables Y = Y1, . . . , Yd
such that for [Y|y], r[] = r′ (and thus ti[] = xi for 1 ≤ i ≤ n).
Furthermore, we have
• ∅ |= β+[]3,
• M |= α−[], and
• M |= not β−[].
Thus

∧
α−[] and

∧
¬β−[] are true in M ′, such that, by definition

of M ′, r(y) ∈ M ′. It follows immediately that E(r) is true in M ′.
Since ∅ |= β+[] we do not use W to deduce the latter, such that
(U,M ′),W → ∅ |= φ(W,x), and thus x ∈ φ(U,M ′)(∅) = φ(U,M ′) ↑ 1.

(Induction). Assume for every p(u) ∈ T n−1 that u ∈ φ(U,M ′) ↑ n − 1,
n−1 <∞. From p(x) ∈ T n, we have some r′ : p(x)← β+[Y|y] ∈ PMU
originating from r : p(t) ∨ α ← β ∈ P with variables Y = Y1, . . . , Yd
and such that for [Y|y], r[] = r′ (and thus ti[] = xi for 1 ≤ i ≤ n).
Furthermore, we have
• T n−1 |= β+[],
• M |= α−[], and
• M |= not β−[].
Thus

∧
α−[] and

∧
¬β−[] are true in M ′, such that, by definition of

M ′, r(y) ∈M ′. Since P is a p-program β contains only p-literals and
(in)equalities. Furthermore, the equalities in β+[] are true in M ′. For
every regular p(u) ∈ β+[], we have that p(u) ∈ T n−1, and thus, by
induction, that u ∈ φ(U,M ′) ↑ n − 1. We have that (U,M ′),W →
φ(U,M ′) ↑ n − 1 |= E(r)[X|x], such that (U,M ′),W → φ(U,M ′) ↑
n− 1 |= φ(W,x). Thus x ∈ φ(U,M ′) ↑ n.

From x ∈ φ(U,M ′) ↑ n, n <∞, we have that x ∈ φ(U,M ′) ↑ n ⊆ φ(U,M ′) ↑ α,
for a limit ordinal α such that φ(U,M ′) ↑ α = LFP(φ(U,M ′)). Then, we have
that x ∈ LFP(φ(U,M ′)), and consequently, [LFP WX.φ(W,X)](x) is true
in (U,M ′) such that (5.5) is satisfied.

⇐ For the “if” direction, assume (U,M ′) is a model of comp(P). We show

that (U,M) is an open answer set of P . Denote {x | p(x) ∈M} as M .

1. From (5.1) and (5.2), we have that U is non-empty and interprets dif-
ferent constants as different elements. We assume that the elements that
interpret the constants in U have the same name as those constants.

2. M = LFP(φ(U,M ′)).

3 β+ may contain equalities but no regular atoms.

5.1 Open Answer Set Programming via Fixed Point Logic 151

• M = φ(U,M ′)(M).
– M ⊆ φ(U,M ′)(M). Immediate, with Theorem 5.6.
– M ⊇ φ(U,M ′)(M). Assume x ∈ φ(U,M ′)(M). Then by (2.2), we have

that (U,M ′),W → M |= φ(W,x). Thus, by (5.6), we have either
that x ∈M , which means we are done, or there is a r : p(t) ∨ α←
β ∈ P such that (U,M ′),W →M |= E(r)[X|x].
Then, there exist [Y|y] with
· x = t[],
· (U,M ′),W →M |= β+[p|W][], such that M ′ |= β+[], and
· r(y) ∈M ′, from which, since M ′ is a model of gl(P), we have

that M ′ |=
∧
α−[] and M ′ |=

∧
¬β−[].

Since M ′ is a model of sat(P) we then have that p(t)[] ∈M ′ and
thus p(x) ∈M , such that x ∈M .

• M is a least fixed point. Assume there is a Y ⊆ Un such that Y =
φ(U,M ′)(Y). We prove that M ⊆ Y . Take x ∈ M , then p(x) ∈ M ′.
Since M ′ is a model of fpf(P), we have that x ∈ LFP(φ(U,M ′)). And
since LFP(φ(U,M ′)) ⊆ Y , we have that x ∈ Y .

3. M is a model of PMU . Take a rule r′ : p(x) ← β+[Y|y] ∈ PMU originating
from r : p(t) ∨ α ← β ∈ P with variables Y = Y1, . . . , Yd and such that
for [Y|y], r[] = r′ (and thus ti[] = xi for 1 ≤ i ≤ n). Furthermore, we
have
• M |= α−[],
• M |= not β−[].
Assume M |= β+[], we then have that
• M ′ |= α−[],
• M ′ |= not β−[],
• M ′ |= β+[].
Since M ′ is a model of sat(P), we then have that p(x) ∈ M ′, and thus
p(x) ∈M .

4. M is a minimal model of PMU . Assume not, then there is a N ⊂ M , N a
model of PMU . Take N = {x | p(x) ∈ N}, we show that N is a fixed point

of φ(U,M ′), i.e., N = φ(U,M ′)(N).
• N ⊆ φ(U,M ′)(N). Immediate, with Theorem 5.6.
• N ⊇ φ(U,M ′)(N). Assume x ∈ φ(U,M ′)(N). Then by (2.2), we have

that (U,M ′),W → N |= φ(W,x). Thus, by (5.6), we have either that
x ∈ N , which means we are done, or there is a r : p(t) ∨ α ← β ∈ P
such that (U,M ′),W → N |= E(r)[X|x].
Then, there exist [Y|y] with
– x = t[],
– (U,M ′),W → N |= β+[p|W][], such that N |= β+[],
– r(y) ∈M ′, from which, since M ′ is a model of gl(P), we have that

M ′ |=
∧
α−[] and thus M ′ |=

∧
¬β−[], and thus M |= α−[] and

M |= not β−[].
Thus p(x)← β+[] ∈ PMU with the body true in N , such that, since N
is a model of PMU , we have that p(x) ∈ N , and x ∈ N .

152 5 Guarded Open Answer Set Programming

Thus N is a fixed point of φ(U,M ′). Since M = LFP(φ(U,M ′)), we have
that M ⊆ N , which is a contradiction with N ⊂ M , and M is indeed a
minimal model of PMU .

ut

Example 5.9. For a universe U = {x} we have the unique open answer set
(U, ∅) of P in Example 5.7. Since U is non-empty, every open answer set with
a universe U satisfies ∃X · true. Both (U,M1 = {p(x), r(x)}) and (U,M2 =
{r(x)}) satisfy sat(P)∪ gl(P). However, LFP(φ(U,M1)) = LFP(φ(U,M2)) = ∅,
such that only (U,M2) satisfies fpf(P); (U,M2) corresponds exactly to the
open answer set (U, ∅) of P .

The completion in Definition 5.5 differs from Clark’s completion [Cla87] both
in the presence of the fixed point construct in (5.5) and atoms represent-
ing membership of the GL-reduct. For p-programs P Clark’s Completion
ccomp(P) does not contain gl(P) and fpf(P) is replaced by a formula that
ensures support for every atom by an applied rule

∀X · p(X)⇒
∨

r :p(t)∨α←β∈P

D(r)

with
D(r) ≡ ∃Y ·X1 = t1 ∧ . . . ∧Xn = tn ∧

∧

β ∧
∧

α− .

Program P in Example 5.7 is the open ASP version of the classical example
p ← p [LL03]. There are FOL models of ccomp(P) that do not correspond to
any open answer sets: both ({x}, {p(x)}) and ({x}, ∅) are FOL models while
only the latter is an open answer set of P .

Example 5.10. Take the program P

r1 : p(X , a) ← not p(X , b),X 6= a,X 6= b
r2 : p(X , b) ← not p(X , a),X 6= a,X 6= b

which has, for a universe U = {x, a, b}, two open answer sets M1 = {p(x, a)}
and M2 = {p(x, b)}. sat(P) contains the formulas

∀X · ¬p(X , b) ∧ X 6= a ∧ X 6= b ⇒ p(X , a) ,

and
∀X · ¬p(X , a) ∧ X 6= a ∧ X 6= b ⇒ p(X , b) .

gl(P) is defined by the formulas ∀X · r1 (X) ⇔ ¬p(X , b) ∧ X 6= a ∧ X 6= b
and ∀X · r2 (X)⇔ ¬p(X , a) ∧ X 6= a ∧ X 6= b. Finally, fpf(P) is

∀X1, X2 · p(X1 ,X2)⇒ [LFP W X1 ,X2 .φ(W ,X1 ,X2)](X1 ,X2)

with

5.2 Guarded Open Answer Set Programming 153

φ(W,X1, X2) ≡ W (X1, X2)

∨ ∃X ·X1 = X ∧X2 = a ∧ r1(X)

∨ ∃X ·X1 = X ∧X2 = b ∧ r2(X) .

To satisfy sat(P) a model must contain p(x, a) or p(x, b). Taking into account
gl(P), we then distinguish three different classes of models, represented by

M ′1 |= {p(x, a),¬p(x, b), r1(x),¬r2(x)} ,

M ′2 |= {¬p(x, a), p(x, b),¬r1(x), r2(x)} ,

M ′3 |= {p(x, a), p(x, b),¬r1(x),¬r2(x)} .

Now, we have that LFP(φ(U,M ′
3)) = ∅, such that fpf(P) is not satisfied by M ′3.

Furthermore, LFP(φ(U,M ′
1)) = {(x, a)} and LFP(φ(U,M ′

2)) = {(x, b)}. Thus,
in order to satisfy fpf(P), we have that M ′1 = {p(x, a), r1(x)} and M ′2 =
{p(x, b), r2(x)}, which correspond to the open answer sets of P .

Theorem 5.11. Let P be a p-program. The size of
∧
comp(P) is quadratic in

the size of P .

Proof. If the number of constants in a program P is c, then the number
of formulas (5.1) is 1

2c(c − 1), which yields the quadratic bound. The size
of sat(P) is linear in the size of P , as is the size of gl(P) (with |P | new
predicates). Finally, each E(r) in fpf(P) is linear in the size of r, such that
fpf(P) is linear in the size of P . ut

Theorem 5.12. Let P be a program, p a predicate not appearing in P , and q
an n-ary predicate in P . q is satisfiable w.r.t. P iff p(X,0, q)∧

∧
comp(Pp) is

satisfiable. Moreover, this reduction is polynomial in the size of P .

Proof. Assume q is satisfiable w.r.t. P . By Theorem 5.3, we have that p(x,0, q)
is in an open answer set of Pp, such that, with Theorem 5.8, p(x,0, q) is in a
model of comp(Pp).

For the opposite direction, assume p(X,0, q) ∧
∧
comp(Pp) is satisfiable.

Then there is a model (U,M ′) of
∧
comp(P) with p(x,0, q) ∈ M ′. We have

that M ′ = M ∪R as in Theorem 5.8, such that (U,M) is an open answer set
of Pp and p(x,0, q) ∈M . From Theorem 5.3, we then have that q is satisfiable
w.r.t. P .

By Theorem 5.11, the size of
∧
comp(Pp) is quadratic in the size of Pp.

Since the size of the latter is polynomial in the size of P by Theorem 5.4, the
size of

∧
comp(Pp) is polynomial in the size of P . ut

5.2 Guarded Open Answer Set Programming

We repeat the definitions of the loosely guarded fragment [Ben97] of first-order
logic as in [GW99]: The loosely guarded fragment LGF of first-order logic is
defined inductively as follows:

154 5 Guarded Open Answer Set Programming

(1) Every relational atomic formula belongs to LGF.
(2) LGF is closed under propositional connectives ¬, ∧, ∨, ⇒, and ⇔.
(3) If ψ(X,Y)4 is in LGF, and α(X,Y) = α1 ∧ . . .∧αm is a conjunction of

atoms, then the formulas

∃Y · α(X,Y) ∧ ψ(X,Y)
∀Y · α(X,Y)⇒ ψ(X,Y)

belong to LGF (and α(X,Y) is the guard of the formula), provided that
free(ψ) ⊆ free(α) = X ∪Y and for every quantified variable Y ∈ Y and
every variable Z ∈ X∪Y there is at least one atom αj that contains both
Y and Z (where free(ψ) are the free variables of ψ).

The loosely guarded fixed point logic µLGF is LGF extended with fixed point
formulas (2.1) where ψ(W,X) is a µLGF formula such that W does not appear
in guards. The guarded fragment GF is defined as LGF but with the guards
α(X,Y) atoms instead of a conjunction of atoms. The guarded fixed point
logic µGF is GF extended with fixed point formulas where ψ(W,X) is a µGF
formula such that W does not appear in guards.

Example 5.13. The infinity axiom in Example 2.27 (pp. 58) is a µGF formula
where all the formulas are guarded by F (X,Y).

Example 5.14 ([GW99]). Take the formula

∃Y ·X ≤ Y ∧ ϕ(Y) ∧ (∀Z · (X ≤ Z ∧ Z < Y)⇒ ψ(Z)) .

This formula is not guarded as the formula ∀Z · (X ≤ Z ∧ Z < Y) ⇒ ψ(Z)
has no atom as guard. It is however loosely guarded.

Definition 5.15. A rule r : α ← β is loosely guarded if there is a γb ⊆ β+

such that every two variables X and Y from r appear together in an atom from
γb; we call γb a body guard of r. It is fully loosely guarded if it is loosely
guarded and there is a γh ⊆ α− such that every two variables X and Y from
r appear together in an atom from γh; γh is called a head guard of r.

A program P is a (fully) loosely guarded program ((F)LGP) if every non-
free rule in P is (fully) loosely guarded.

Example 5.16. The rule in Example 5.7 is loosely guarded but not fully loosely
guarded. The program in Example 5.10 is neither fully loosely guarded nor
loosely guarded. A rule

a(X) ∨ not g(X ,Y ,Z)← not b(X ,Y), f (X ,Y), f (X ,Z), h(Y ,Z),not c(Y)

has a body guard {f(X,Y), f(X,Z), h(Y, Z)} and a head guard {g(X,Y, Z)}.

4 Recall that ψ(X,Y) denotes a formula whose free variables are all among X∪Y

([ANB98], pp. 236).

5.2 Guarded Open Answer Set Programming 155

Definition 5.17. A rule r : α ← β is guarded if it is loosely guarded with a
singleton body guard. It is fully guarded if it is fully loosely guarded with body
and head guards singleton sets.

A program P is a (fully) guarded program ((F)GP) if every non-free rule
in P is (fully) guarded.

In [GHO02] it is noted that a singleton set {b} ⊆ U for a universe U is always
guarded by an atom b = b. With a similar reasoning one sees that rules with
only one variable X can be made guarded by adding the guard X = X to the
body. E.g., a(X)← not b(X) is equivalent to a(X)← X = X ,not b(X).

Every F(L)GP is a (L)GP, and we can rewrite every (L)GP as a F(L)GP.

Example 5.18. The rule p(X)← p(X) can be rewritten as p(X) ∨ not p(X)←
p(X) where the body guard is added to the negative part of the head to func-
tion as the head guard. Both programs are equivalent: for a universe U , both
have the unique open answer set (U, ∅).

Formally, we can rewrite every (L)GP P as an equivalent F(L)GP P f , where
P f is P with every α← β replaced by α ∪ not β+ ← β.

One can consider the body guard of a rule in a loosely guarded program P
as the head guard such that P f is indeed a fully (loosely) guarded program.

Theorem 5.19. Let P a (L)GP. Then, P f is a F(L)GP.

Proof. Let P be a (L)GP. We show that every non-free rule r : α ∪ not β+ ←
β ∈ P f is fully (loosely) guarded. Since α ← β is a non-free rule of P , we
have that there is a body guard γb ⊆ β+, and thus r is (loosely) guarded.

Furthermore, γb ⊆ (α ∪ not β+)
−

such that γb is a head guard of r and r is
fully (loosely) guarded. ut

A rule is vacuously satisfied if the body of a rule in P f is false and consequently
the head does not matter; if the body is true then the newly added part in
the head becomes false and the rule in P f reduces to its corresponding rule in
P .

Theorem 5.20. Let P be a program. An open interpretation (U,M) of P is
an open answer set of P iff (U,M) is an open answer set of P f .

Proof. For the “only if” direction, assume (U,M) is an open answer set of P .

• M is a model of (P f)MU . Take a rule (α ∪ not β+)[]
+
← β[]

+ ∈ (P f)MU with

– M |= (α ∪ not β+)[]
−

,
– M |= not β[]

−
,

originating from α ∪ not β+ ← β ∈ P f with α← β ∈ P . Furthermore,
– M |= α[]−,
– M |= not β[]

−
.

Thus α[]
+ ← β[]

+ ∈ PMU . Take M |= β[]
+
, then ∃l ∈ α+[] ·M |= l, and

thus l ∈ (α ∪ not β+)[]
+
.

156 5 Guarded Open Answer Set Programming

• M is a minimal model of (P f)MU . Assume not, then there is a model N ⊂M
of (P f)MU . We show thatN is a model of PMU , which leads to a contradiction

with the minimality of M . Take a rule α[]
+ ← β[]

+ ∈ PMU with

– M |= α[]
−

,
– M |= not β[]−.
originating from α ← β ∈ P . Take N |= β[]

+
(then M |= β[]

+
). For the

corresponding α ∪ not β+ ← β in P f , we have that
– M |= (α ∪ not β+)[]

−
. Indeed, M |= α[]

−
and M |= (not β+[])

−
= β+.

– M |= not β[]
−

,

such that (α ∪ not β+)[]
+
← β[]+ ∈ (P f)MU . Since N is a model we have

that ∃l ∈ (α ∪ not β+)[]
+

= α[]
+ ·N |= l.

For the “if” direction, assume (U,M) is an open answer set of P f .

• M is a model of PMU . This can be done similarly as the above case where
N was shown to be a model.

• M is a minimal model of PMU . Assume not, then there is a model N ⊂M
of PMU . One can again show that N is a model of (P f)MU , which leads to a
contradiction with the minimality of M .

ut

Since we only copy (a part of) the bodies to the heads, the size of P f only
increases linearly in the size of P .

Theorem 5.21. Let P be a program. The size of P f is linear in the size of
P .

Proof. Immediate. ut

We have that the construction of a p-program retains the guardedness prop-
erties.

Theorem 5.22. Let P be a program. Then, P is a (F)LGP iff Pp is a
(F)LGP. And similarly for (F)GPs.

Proof. We only prove the LGP case, the cases for FLGPs and (F)GPs are
similar.

For the “only if” direction, take a non-free rule rp : αp ← βp , in(X) ∈ Pp
and two variables X and Y in rp. We have that r : α ← β is a non-free
rule in P by the construction of Pp and X and Y are two variables in r,
such that there is a γ ⊆ β+ with either a regular atom q(t) that contains
X and Y or an equality atom X = Y in γ. In the former case, we have
that p(t,0, q) ∈ γp ⊆ βp

+ such that rp is loosely guarded. In the latter case,
X = Y ∈ γp such that again rp is loosely guarded.

For the “if” direction, take a non-free r : α ← β ∈ P and two variables
X and Y in r. Then rp : αp ← βp , in(X) is non-free in Pp and X and Y

are variables in rp. Thus, there is a γp ⊆ (βp ∪ in(X))
+

= βp
+ with an atom

5.2 Guarded Open Answer Set Programming 157

containing the two variables X and Y . Then γ ⊆ β+ with an atom in γ
containing X and Y .

ut

For a fully (loosely) guarded p-program P , we can rewrite comp(P) as the
equivalent µ(L)GF formulas gcomp(P). gcomp(P) is comp(P) with the follow-
ing modifications.

• Formula (5.2) is replaced by

∃X ·X = X , (5.8)

such that it is guarded by X = X .
• Formula (5.3) is removed if r : α← β is free or otherwise replaced by

∀Y ·
∧

γb ⇒
∨

α ∨
∨

¬(β+\γb) ∨
∨

β− , (5.9)

where γb is a body guard of r, thus we have logically rewritten the for-
mula such that it is (loosely) guarded. If r is a free rule of the form
q(t) ∨ not q(t) ← we have ∀Y · true ⇒ q(t) ∨ ¬q(t) which is always
true and can thus be removed from comp(P).

• Formula (5.4) is replaced by the formulas

∀Y · r(Y)⇒
∧

α− ∧
∧

¬β− (5.10)

and
∀Y ·

∧

γh ⇒ r(Y) ∨
∨

β− ∨
∨

¬(α−\γh) (5.11)

where γh is a head guard of α← β. We thus rewrite an equivalence as two
implications where the first implication is guarded by r(Y) and the second
one is (loosely) guarded by the head guard of the rule – hence the need
for a fully (loosely) guarded program, instead of just a (loosely) guarded
one.

• For every E(r) in (5.5), replace E(r) by

E′(r) ≡
∧

ti 6∈Y

Xi = ti ∧ ∃Z · (
∧

β+[p|W] ∧ r(Y))[ti ∈ Y|Xi] , (5.12)

with Z = Y\{ti | ti ∈ Y}, i.e., move all Xi = ti where ti is constant out of
the scope of the quantifier, and remove the others by substituting each ti
in

∧
β+[p|W]∧ r(Y) by Xi. This rewriting makes sure that every variable

in the quantified part of E′(R) is guarded by r(Y)[ti ∈ Y|Xi].

Example 5.23. For the fully guarded p-program P containing a rule

p(X) ∨ not p(X)← p(X)

with body and head guard {p(X)}, one has that sat(P) = {∀X · p(X) ⇒
p(X) ∨ ¬p(X)}, gl(P) = {∀X · r(X) ⇔ p(X)} and the formula φ(W,X1)

158 5 Guarded Open Answer Set Programming

in fpf(P) is φ(W,X1) ≡ W (X1) ∨ ∃X · X1 = X ∧W (X) ∧ r(X). gcomp(P)
translates sat(P) identically and rewrites the equivalence of gl(P) as two
implications resulting in guarded rules. The rewritten φ(W,X1) is W (X1) ∨
(W (X1) ∧ r(X1)). There is no quantification anymore in this formula since
X was substituted by X1. Clearly, for a universe {x}, we have that the open
answer set of the program is ({x}, ∅), which corresponds with the unique
model of gcomp(P) for a universe {x}.

The translation gcomp(P) is logically equivalent to comp(P) and, moreover, it
contains only formulas in (loosely) guarded fixed point logic.

Theorem 5.24. Let P be a fully (loosely) guarded p-program. (U,M) is a
model of

∧
comp(P) iff (U,M) is a model of

∧
gcomp(P).

Proof. Clearly (U,M) |= (5.2) iff (U,M) |= (5.8). Assume formula (5.3) is re-
placed by (5.9) (and thus α← β is non-free). Since the latter is logically equiv-
alent with the former, we have (U,M) |= (5.3) iff (U,M) |= (5.9). Moreover if
α← β is free, i.e., of the form q(t) ∨ not q(t)← we have that (U,M) |= (5.3)
iff (U,M) |= ∀Y · true⇒ q(t) ∨ ¬q(t), which is always satisfied. It is easy to
see that (U,M) |= (5.4) iff (U,M) |= (5.10) and (U,M) |= (5.11).

Finally, we show that for any substitution [X|x],

(U,M) |= E(r)[X|x] ⇐⇒ (U,M) |= E′(r)[X|x] .

Assume (U,M) |= E(r)[X|x]. We can move out the Xi = ti where ti is a
constant, such that (U,M) |= A[X|x] ∧ (∃Y ·

∧

tj∈Y
Xj = tj ∧ B)[X|x] with

A ≡
∧

ti 6∈Y
Xi = ti and B ≡

∧
β+[p|W] ∧ r(Y). Thus, there exists a [Y|y]

such that (U,M) |= A[X|x] ∧ (
∧

tj∈Y
Xj = tj ∧B)[X|x,Y|y] which is well-

defined since X and Y are disjoint. By
∧

tj∈Y
Xj = tj we have that tj ∈ Y

is grounded by xj , and thus, we can first substitute every tj ∈ Y by Xj , and
since the mapping of the tj ∈ Y is taken care of by [X|x], we can restrict
ourselves to Y \{tj | tj ∈ Y} for [Y|y]. Thus, (U,M) |= A[X|x] ∧ B[tj ∈
Y|Xj][X|x,Y\{tj | tj ∈ Y}|z] where every zk = yk for Yk ∈ Y\{tj | tj ∈ Y}.
And thus (U,M) |= A[X|x]∧B[tj ∈ Y|Xj][Y\{tj | tj ∈ Y}|z][X|x] such that,
with Z = Y\{tj | tj ∈ Y}, we have that (U,M) |= E′(r)[X|x].

For the other direction, assume (U,M) |= E′(r)[X|x]. Then (U,M) |=
A[X|x] ∧ B[ti ∈ Y|Xi][Z|z][X|x]. Since ti gets substituted by Xi and Xi is
grounded with xi we have that

∧

ti∈Y
Xi = ti is true w.r.t. to the latter [].

We have that Z = Y\{tj | tj ∈ Y} such that [Y|y] ≡ [ti ∈ Y|xi][Z|z] is well-
defined. We then have that (U,M) |= A[X|x]∧(

∧

tj∈Y
Xj = tj ∧B)[Y|y][X|x].

And thus, (U,M) |= ∃Y · (A ∧B)[X|x], such that (U,M) |= E(r)[X|x]. ut

Theorem 5.25. Let P be a fully (loosely) guarded p-program. Then, the for-
mula

∧
gcomp(P) is a µ(L)GF formula.

Proof. We first show that [LFP WX.φ′(W,X)](X) is a valid fixed point for-
mula, with φ′(W,X) equal to φ(W,X) with E′(r) instead of E(r). We have

5.2 Guarded Open Answer Set Programming 159

that all free variables are still in X, since only Xi = ti where ti is constant
is moved out of the scope of the quantifier in E(r) and all other ti where
substituted by Xi such that Z in E(r) bounds all other variables than X.
Furthermore, p appears only positively in φ′.

We next show that
∧
gcomp(P) is a µLGF formula if P is fully loosely

guarded; the treatment for µGF formulas if P is fully guarded is similar.

• Formula (5.8) is guarded with guard X = X .
• Formula (5.9) corresponds with a non-free rule α← β with a body guard

γb; thus vars(α← β) ⊆ vars(γb).
– free(

∨
α ∨

∨
¬(β+\γb) ∨

∨
β−) ⊆ Y = vars(α ← β) = vars(γb) =

free(
∧
γb).

– Take two variables Yi and Yj from Y, then Yi ∈ vars(α ← β) and
Yj ∈ vars(α← β), such that Yi and Yj are in an atom from γb.

• Formula (5.10) is guarded with guard r(Y).
• Formula (5.11):

– For a non-free rule α← β with a head guard γh. Can be done similarly
as formula (5.9).

– If α ← β is free, i.e., of the form q(t) ∨ not q(t) ← , we have that
γh = {q(t)}, and formula (5.11) is of the form ∀Y · q(t)⇒ r(Y).
· free(r(Y)) = Y = vars(α← β) = vars(q(t)) = free(

∧
γh).

· Take two variables Yi and Yj from Y, then Yi ∈ vars(α ← β) and
Yj ∈ vars(α← β), such that Yi and Yj are in vars(q(t)) = free(γh).

• For the last case, we need to show that φ′(X) is a µLGF formula where
W does not appear as a guard. We show that for each r : α ← β, ∃Z ·
(
∧
β+[p|W] ∧ r(Y))[ti ∈ Y|Xi] is a guarded formula with guard r(Y)[].

Thus W does not appear as a guard.
– free((

∧
β+[p|W] ∧ r(Y))[ti ∈ Y|Xi]) = Y\{ti | ti ∈ Y} ∪ {Xi | ti ∈

Y} = free(r(Y)[]).
– Take a quantified variable Z ∈ Y\{ti | ti ∈ Y} and U from Y\{ti |

ti ∈ Y} ∪ {Xi | ti ∈ Y}, then Z and U appear in r(Y)[].
ut

Since gcomp(P) is just a logical rewriting of comp(P) its size is linear in the
size of comp(P).

Theorem 5.26. Let P be a fully (loosely) guarded p-program. The size of
gcomp(P) is linear in the size of comp(P).

Proof. The size of formula (5.8) is linear in the size of (5.2). Formula (5.9) is
just a shuffling of (5.3). Every formula (5.4) is replaced by two shuffled for-
mulas. Finally, E′(r) is E(r) with the movement of some atoms and applying
a substitution, thus the size of E′(r) is linear in the size of E(r). ut

Theorem 5.27. Let P be a (L)GP and q an n-ary predicate in P . q is sat-
isfiable w.r.t. P iff p(X,0, q) ∧

∧
gcomp((P f)p) is satisfiable. Moreover, this

reduction is polynomial in the size of P .

160 5 Guarded Open Answer Set Programming

Proof. By Theorem 5.19 and 5.22, we have that (P f)p is a fully (loosely)

guarded p-program, thus the formula
∧
gcomp((P f)p) is defined. By Theorem

5.20, we have that q is satisfiable w.r.t. P iff q is satisfiable w.r.t. P f . By
Theorem 5.12, we have that q is satisfiable w.r.t. P f iff p(X,0, q)∧comp((P f)p)
is satisfiable. Finally, Theorem 5.24 yields that q is satisfiable w.r.t. P iff
p(X,0, q) ∧

∧
gcomp((P f)p) is satisfiable.

Theorem 5.21, Theorem 5.12, and Theorem 5.26 yield that this reduction
is polynomial. ut

For a (L)GP P , we have, by Theorem 5.25, that
∧
gcomp((P f)p) is a µ(L)GF

formula such that the formula p(X,0, q) ∧
∧
gcomp((P f)p) is as well. Since

satisfiability checking for µ(L)GF is 2-exptime-complete (Theorem [1.1] in
[GW99]), satisfiability checking w.r.t. P is in 2-exptime.

Theorem 5.28. Satisfiability checking w.r.t. (L)GPs is in 2-exptime.

An answer set of a program P (in contrast with an open answer set) is defined
as an answer set of the grounding of P with its constants, i.e., M is an answer
set of P if it is a minimal model of PM

cts(P). As is common in literature, we
assume P contains at least one constant.

We can make any program loosely guarded and reduce the answer set
semantics for programs to the open answer set semantics for loosely guarded
programs. For a program P , let P g be the program P , such that for each rule
r in P and for each pair of variables X and Y in r, g(X,Y) is added to the
body of r. Furthermore, add g(a, b) ← for every a, b ∈ cts(P). Note that we
assume, without loss of generality, that P does not contain a predicate g.

Example 5.29. Take a program P

q(X) ← f (X ,Y)
f (a,Y) ∨ not f (a,Y)←

such that cts(P) = {a}, and P has answer sets {f(a, a), q(a)} and ∅. The
loosely guarded program P g is

q(X) ← g(X ,X), g(Y ,Y), g(X ,Y), f (X ,Y)
f (a,Y) ∨ not f (a,Y)← g(Y ,Y)

g(a, a) ←

For a universe U , we have the open answer sets (U, {f(a, a), q(a), g(a, a)} and
(U, {g(a, a)}).

The newly added guards in the bodies of rules together with the definition
of those guards for constants only ensure a correspondence between (normal)
answer sets and open answer sets where the universe of the latter equals the
constants in the program.

Theorem 5.30. Let P be a program. M is an answer set of P iff (cts(P),M∪
{g(a, b) | a, b ∈ cts(P)}) is an open answer set of P g.

5.2 Guarded Open Answer Set Programming 161

Proof. Define (U ≡ cts(P),M ′ ≡M ∪ {g(a, b) | a, b ∈ cts(P)}).
⇒ For the “only if” direction, assume M is an answer set of P , i.e., M is

a minimal model of PMcts(P). We have that U 6= ∅ by the assumption that P
contains at least one constant, thus U is a universe for P g.

• M ′ is a model of P gM
′

U .

– Take a rule α+[] ← γ[], β+[] ∈ P gM
′

U with M ′ |= γ[] ∪ β+[] originating
from α ← γ, β ∈ P g where γ = {g(X,Y) | X,Y ∈ vars(P)} and
M ′ |= not β−[] and M ′ |= α−[].
Then α ← β ∈ P and M |= not β−[] and M |= α−[], such that
α+[] ← β+[] ∈ PMU . With M |= β+[], U = cts(P), and M a model of
PMU , we then have that ∃l ∈ α+[] ·M |= l, and thus M ′ |= l.

– Take a rule g(a, b) ← ∈ P gM
′

U . We have that, by definition of M ′,
g(a, b) ∈M ′.

• M ′ is a minimal model of P gM
′

U . Assume not, then there is a model N ′ ⊂

M ′ of P gM
′

U . Define N ≡ N ′\{g(a, b) | a, b ∈ cts(P)}.
– N ⊂M . This follows from g(a, b) ∈ N ′ iff g(a, b) ∈M ′: M ′ contains a

g(a, b) for all a, b ∈ cts(P), and so does N ′ by the rules g(a, b) ← ∈

P gM
′

U and N ′ being a model of P gM
′

U .
– N is a model of PM

cts(P), which is a contradiction with the minimality of

M . Take a rule α+[]← β+[] ∈ PM
cts(P) with M |= β+[] originating from

α ← β ∈ P and M |= not β−[] and M |= α−[]. Then α ← γ, β ∈ P
with γ = {g(X,Y) | X,Y ∈ vars(α ← β)}. Since M ′ |= not β−[] and
M ′ |= α−[] and [] is a grounding in U , we have that α+[]← γ[], β+[] ∈

P gM
′

U .
Since N |= β+[], N ′ |= β+[]. Take g(a, b) ∈ γ[]. Since g(a, b) ← ∈

P gM
′

U and N ′ is a model, N ′ |= g(a, b). And thus N ′ |= γ[]. Thus
∃l ∈ α+[] ·N ′ |= l, and thus N |= l.

⇐ For the “if” direction, assume (U,M ′) is an open answer set of P g.
– M is a model of PM

cts(P). This can be done similarly as the above case
where N was shown to be a model.

– M is a minimal model of PM
cts(P). Assume not, then there is a model

N ⊂ M of PMcts(P). Define N ′ ≡ N ∪ {g(a, b) | a, b ∈ cts(P)}. Then

N ′ ⊂ M ′ and one can again show that N ′ is a model of P gM
′

U , which
leads to a contradiction with the minimality of M ′.

ut

Theorem 5.31. Let P be a program. The size of P g is quadratic in the size
of P .

Proof. If there are c constants in P , we add c2 rules g(a, b) ← to P g. Fur-
thermore, the size of each rule grows also grows quadratically, since for a rule
with n variables we add n2 atoms g(X,Y) to the body of r. ut

By construction, P g is loosely guarded.

162 5 Guarded Open Answer Set Programming

Theorem 5.32. Let P be a program. P g is a LGP.

Proof. Immediate. ut

We can reduce checking whether there exists an answer set containing a lit-
eral to satisfiability checking w.r.t. the open answer set semantics for loosely
guarded programs.

Lemma 5.33. Let P be a LGP with an open interpretation (U,M) and U ′ ⊆
U such that M contains only terms from U ′. Then, (U,M) is an open answer
set of P iff (U ′,M) is an open answer set of P .

Proof. For the “only if” direction, assume (U,M) is an open answer set of P .

• M is a model of PMU ′ . Take a rule α+[] ← β+[] ∈ PMU ′ with M |= β+[]
originating from α← β such that
– M |= α−[],
– M |= not β−[],
– [] grounds in U ′.
Since U ′ ⊆ U , [] grounds in U and α+[] ← β+[] ∈ PMU . M is a model of
PMU such that ∃l ∈ α+[] ·M |= l.

• M is a minimal model of PMU ′ . Assume not, then there is a N ⊂ M , N
model of PMU ′ . We prove that N is a model of PMU , which is a contradiction
with the minimality of M .
Take a rule α+[]← β+[] ∈ PMU with N |= β+[] originating from r : α← β
such that
– M |= α−[],
– M |= not β−[],
– [] grounds in U .
Since N ⊂M we have that M |= β+[]. We distinguish between two cases:
– r is free. Then r is of the form q(t) ∨ not q(t)← , such that q(t)[]← ∈

PMU . Since M is a model of PMU , we have that q(t)[] ∈M . M contains
only terms from U ′ such that q(t)[]← ∈ PMU ′ and q(t)[] ∈ N since N
is a model of PMU ′ .

– r is non-free. Every variable in r is grounded by [] in U ′. Indeed, take
X in vars(α ← β), then there is a q(t) ∈ β+ with X ∈ t since P is a
LGP such that q(t)[] ∈M , and, since M contains only terms from U ′,
X [] ∈ U ′.
Thus [] grounds in U ′ and α+[] ← β+[] ∈ PMU ′ . N is a model of PMU ′

such that ∃l ∈ α+[] ·N |= l.

For the “if” direction, assume (U ′,M) is an open answer set of P . Showing
that (U,M) is an open answer set of P can be done using the same reasoning
as above. ut

Theorem 5.34. Let P be a program and q an n-ary predicate in P . There is
an answer set M of P with q(a) ∈M iff q is satisfiable w.r.t. P g. Moreover,
this reduction is quadratic.

5.2 Guarded Open Answer Set Programming 163

Proof. For the “only if” direction, assume there is an answer set M of P with
q(a) ∈ M . Then, by Theorem 5.30, (cts(P),M ∪ {g(a, b) | a, b ∈ cts(P)}) is
an open answer set of P g, and q(a) ∈M ∪ {g(a, b) | a, b ∈ cts(P)}, such that
q is satisfiable w.r.t. P g.

For the “if” direction, assume q is satisfiable w.r.t. P g. Then there exists
an open answer set (U,M ′) of P g with a q(x) ∈M . We have that cts(P) ⊆ U .

Claim. M ′ contains only terms from cts(P).

Assume the claim does not hold, thus there is a r(y) ∈ M ′ with some
y ∈ y such that y 6∈ cts(P). Since (U,M ′) is an open answer set there is a

r(y) ← γ[], β+[] ∈ P gM
′

U originating from r(t) ∨ α ← γ, β ∈ P g such that
γ[] ⊆ M ′. Since y is not constant the corresponding t (i.e., such that t[] = y)
is a variable. And thus, since all rules are loosely guarded, we have that there
is some g(t, Y) ∈ γ with g(y, Y []) ∈ γ[]. Thus, since M ′ |= γ[], we have that

there must be an applied rule with head g(y, Y []) in P gM
′

U . However, the only
rules in P g with a g-predicate in the head have constants as arguments, thus
y ∈ cts(P), a contradiction, and the claim holds.

M ′ contains every g(a, b) for a, b ∈ cts(P) such that we can write
M ′ = M ∪ {g(a, b) | a, b ∈ cts(P)}. Furthermore, since cts(P) ⊆ U by defini-
tion of universes and since P g is a LGP, Lemma 5.33 is applicable such that
(cts(P),M ′) is an open answer set of P g. By Theorem 5.30, we have that M
is an answer set of P and q(x) ∈M . ut

Theorem 5.35. Satisfiability checking w.r.t. LGPs is nexptime-hard.

Proof. By [DEGV01, Bar03] and the disjunction-freeness of the GL-reduct
of the programs we consider, we have that checking whether there exists an
answer setM of P containing a q(a) is nexptime-complete. Thus, by Theorem
5.34, satisfiability checking w.r.t. a LGP is nexptime-hard. ut

A similar approach to show nexptime-hardness of GPs instead of LGPs
does not seem to be directly applicable. E.g., a naive approach is to add
to the body of every rule r in a program P , an n-ary guarding atom
g(X1, . . . , Xk, . . . Xk), k ≤ n, with n the maximum number of different vari-
ables in rules of P and X1, . . . , Xk the pairwise different variables in r. Fur-
thermore, one need to enforce that for an open answer set and n constants
a1, . . . , an, g(a1, . . . , an) is in the answer set, and vice versa, if g(x1, . . . , xn) is
in the open answer set then x1, . . . , xn ∈ cts(P). This amounts to adding cn

rules g(a1 , . . . , an)← for constants a1, . . . , an ∈ cts(P) where c is the number
of constants in P . Since n is not bounded, this transformation is, however,
not polynomial.

In Section 5.6, we improve5 on Theorem 5.35 and show that both satisfi-
ability checking w.r.t. GPs and w.r.t. LGPs is 2-exptime-hard.

5 Note that p ⊆ np ⊆ exptime ⊆ nexptime ⊆ 2-exptime ⊆ . . . where
p ⊂ exptime, exptime ⊂ 2-exptime, . . ., and np ⊂ nexptime, nexptime ⊂
2-nexptime, . . ., see, e.g., [Pap94, Tob01].

164 5 Guarded Open Answer Set Programming

5.3 Open Answer Set Programming with Generalized
Literals

In this section, we extend the language of logic programs with generalized
literals and modify the open answer set semantics to accommodate for those
generalized literals.

A generalized literal is a first-order formula of the form

∀Y · φ⇒ ψ ,

where φ is a finite boolean formula of atoms (i.e., using ¬, ∨, and ∧) and
ψ is an atom; we call φ the antecedent and ψ the consequent . We refer to
extended literals (i.e., atoms and naf-atoms since we assume the absence of
¬) and generalized literals as g-literals. For a set of g-literals α, αx ≡ {l |
l generalized literal in α}, the set of generalized literals in α. We extend α+

and α− for g-literals as follows: α+ = (α\αx)
+

and α− = (α\αx)
−

; thus
α = α+ ∪ not α− ∪ αx.

A generalized program (gP) is a countable set of rules α← β, where α is a
finite set of extended literals, |α+| ≤ 1, β is a countable6 set of g-literals, and
∀t, s · t = s 6∈ α+, i.e., α contains at most one positive atom, and this atom
cannot be an equality atom. Furthermore, generalized literals are ground if
they do not contain free variables, and rules and gPs are ground if all g-literals
in it are ground.

For a g-literal l, we define vars(l) as the (free) variables in l. For a rule
r, we define vars(r) ≡ ∪{vars(l) | l g-literal in r}. For a set of atoms I, we
extend the |= relation, as originally defined on pp. 46 for interpretations I, by
induction, for any boolean formula of ground atoms. For such ground boolean
formulas φ and ψ, we have

1. I |= φ ∧ ψ iff I |= φ and I |= ψ,
2. I |= φ ∨ ψ iff I |= φ or I |= ψ, and
3. I |= ¬φ iff I 6|= φ.

A universe U for a gP P is again defined as a non-empty countable superset
of the constants in P . Let BUP be the set of regular ground atoms that can
be formed from a gP P and the terms in a universe U for P . Call a pair
(U, I) where U is a universe for P and I a subset of BUP a pre-interpretation
of P . For a ground gP P and a pre-interpretation (U, I) of P , we define the
GeLi-reduct Px(U,I) which removes the generalized literals from the program:
Px(U,I) contains the rules

α← β\βx, (βx)x(U ,I) , (5.13)

for α← β in P , where

6 Thus the rules may have an infinite body.

5.3 Open Answer Set Programming with Generalized Literals 165

(βx)x(U,I) ≡
⋃

∀Y·φ⇒ψ∈βx
{ψ[Y|y] | y ⊆ U, I |= φ[Y|y]} .

Intuitively, a generalized literal ∀Y · φ ⇒ ψ is replaced by those ψ[Y|y] for
which φ[Y|y] is true, such that7, e.g., p(a)← [∀X · q(X)⇒ r(X)] means that
in order to deduce p(a) one needs to deduce r(x) for all x where q(x) holds. If
only q(x1) and q(x2) hold, then the GeLi-reduct contains p(a)← r(x1), r(x2).
With an infinite universe and a condition φ that holds for an infinite number
of elements in the universe, one can thus have a rule with an infinite body

in the GeLi-reduct. Note that ((βx)x(U,I))
−

is always empty by definition of
generalized literals: the consequent is always an atom.

Definition 5.36. An open interpretation of a gP P is a pre-interpretation

(U,M) where M is an interpretation of (PU)
x(U,M)

. An open answer set of P

is an open interpretation (U,M) of P where M is an answer set of (PU)
x(U,M)

.

In the following, a gP is assumed to be a finite set of finite rules; infinite gPs
only appear as byproducts of grounding a finite program with an infinite uni-
verse, or, by taking the GeLi-reduct w.r.t. an infinite universe. Satisfiability,
consistency, and query answering remain defined as before.

Example 5.37. Take a gP P

p(X) ← [∀Y · q(Y)⇒ r(Y)]
r(X)← q(X)

q(X) ∨ not q(X) ←

Intuitively, the first rule says that p(X) holds if for every Y where q(Y) holds,
r(Y) holds (thus p(X) also holds if q(Y) does not hold for any Y). Take a
pre-interpretation ({x, y}, {p(x), r(x), q(x), p(y)}). Then, the GeLi-reduct of
P{x,y} is

p(x) ← r(x)
p(y) ← r(x)
r(x)← q(x)
r(y) ← q(y)

q(x) ∨ not q(x) ←
q(y) ∨ not q(y) ←

Since {p(x), r(x), q(x), p(y)} is indeed an interpretation of the latter program,
we have that ({x, y}, {p(x), r(x), q(x), p(y)}) is an open interpretation. More-
over, {p(x), r(x), q(x), p(y)} is an answer set such that the open interpretation
({x, y}, {p(x), r(x), q(x), p(y)}) is an open answer set.

Note that for a gP without generalized literals and a pre-interpretation (U, I)

of P , (PU)
x(U,I)

= PU , such that the open answer set semantics of Definition
5.36 for gPs without generalized literals coincides with the open answer set
semantics of Definition 3.2.
7 We put square brackets around generalized literals for clarity.

166 5 Guarded Open Answer Set Programming

Example 5.38. Take the following program P , i.e., the open answer set variant
of the classical infinity axiom in guarded fixed point logic from [GW99] (see
also Example 2.27, pp. 58):

r1 : q(X) ← f (X ,Y)
r2 : ← f (X ,Y),not q(Y)
r3 : ← f (X ,Y),not well(Y)
r4 : well(Y)← q(Y), [∀X · f (X ,Y)⇒ well(X)]
r5 : f (X ,Y) ∨ not f (X ,Y)←

Intuitively, in order to satisfy q with some x, one needs to apply r1, which
enforces an f -successor y. Moreover, the second rule ensures that also for this
y an f -successor must exist, etc. The third rule makes sure that every f -
successor is on a well-founded f -chain. The well-foundedness itself is defined
by r4 which says that y is on a well-founded chain of elements where q holds
if all f -predecessors of y satisfy the same property.

E.g., take an infinite open interpretation (U,M) with U = {x0, x1, . . .} and
M = {q(x0),well(x0), f(x0, x1), q(x1),well(x1), f(x1, x2), . . .}). PU contains
the following grounding of r4:

r0
4 : well(x0)← q(x0), [∀X · f (X , x0)⇒ well(X)]

r1
4 : well(x1)← q(x1), [∀X · f (X , x1)⇒ well(X)]

...

Since, for r04 , there is no f(y, x0) in M , the body of the corresponding rule
in the GeLi-reduct w.r.t. (U,M) contains only q(x0). For r14 , we have that
f(x0, x1) ∈M such that we include well(x0) in the body:

well(x0)← q(x0)
well(x1)← q(x1),well(x0)

...

One can check that (U,M) is indeed an open answer set of the gP, satisfying
q.

Moreover, no finite open answer set can satisfy q. First, note that an open
answer set (U,M) of P cannot contain loops, i.e., {f(x0, x1), . . . , f(xn, x0)} ⊆
M is not possible. Assume otherwise. By rule r3, we need well(x0) ∈ M .
However, the GeLi-reduct of PU contains rules:

well(x0) ← q(x0),well(xn), . . .
well(xn) ← q(xn),well(xn−1), . . .

...
well(x1) ← q(x1),well(x0), . . .

such that well(x0) cannot be in any open answer set: we have a circular
dependency and cannot use these rules to motivate well(x0), i.e., well(x0) is
unfounded. Thus, an open answer set of P cannot contain loops.

5.3 Open Answer Set Programming with Generalized Literals 167

Assume that q is satisfied in an open answer set (U,M) with q(x0) ∈ M .
Then, by rule r1, we need some X such that f(x0, X) ∈ M . Since M cannot
contain loops X must be different from x0 and we need some new x1. By rule
r2, q(x1) ∈M , such that by rule r1, we again need an X such that f(x1, X).
Using x0 or x1 for X results in a loop, such that we need a new x2. This
process continues infinitely, such that there are only infinite open answer sets
that make q satisfiable w.r.t. P .

We defined the open answer set semantics for gPs in function of the answer
set semantics for programs without generalized literals. We can, however, also
define a GL-reduct PM directly for a ground gP P by treating generalized
literals as positive, such that α+ ← β+, βx ∈ PM iff α← β ∈ P and M |= α−

and M |= not β− for a ground gP P . Applying the GL-reduct transformation
after the GeLi-reduct transformation (like we defined it), is then equivalent to
first applying the GL-reduct transformation to a gP and subsequently com-
puting the GeLi-reduct.

Example 5.39. Take a program F ∪ {r} with F ≡ {q(x) ←, b(x) ←, b(y) ←
, c(x) ←} and r : a(X) ← [∀X · ¬q(X)⇒ b(X)],not c(X). For a universe
U = {x, y}, (F ∪ {r})U is F ∪ {rx, ry} where

rx : a(x)← [∀X · ¬q(X)⇒ b(X)],not c(x)

and
ry : a(y)← [∀X · ¬q(X)⇒ b(X)],not c(y)

Applying the GeLi-reduct transformation w.r.t.

(U,M = {q(x), b(x), b(y), c(x), a(y)})

yields

(F ∪ {rx, ry})
x(U,M) ≡ F ∪ {a(x)← b(y),not c(x); a(y)← b(y),not c(y)} .

The GL-reduct of the latter is F ∪ {a(y) ← b(y)}, such that (U,M) is a
(unique) open answer set of F ∪ {r} for U = {x, y}.

First applying the GL-reduct transformation to F∪{rx, ry} yields F∪{ry},
and, subsequently, the GeLi-reduct again gives F ∪ {a(y)← b(y)}. Thus

((F ∪ {rx, ry})
x(U,M))M = ((F ∪ {rx, ry})

M)x(U,M) .

Since the GeLi-reduct transformation never removes rules or naf-atoms from
rules, while the GL-reduct transformation may remove rules (and thus gener-
alized literals), calculating the GL-reduct before the GeLi-reduct is likely to
be more efficient in practice. We opted, however, for the “GeLi-reduct before
GL-reduct” transformation as the standard definition, as it is theoretically
more robust against changes in the definition of generalized literals. E.g., if
naf were allowed in the consequent of generalized literals, the “GL-reduct be-
fore GeLi-reduct” approach does not work since the GeLi-reduct (as currently
defined) could introduce naf again in the program, making another application
of the GL-reduct transformation necessary.

168 5 Guarded Open Answer Set Programming

Theorem 5.40. Let P be a ground gP with an open interpretation (U,M).
Then,

(P x(U,M))M = (PM)x(U,M) .

Proof. Let α← β ∈ P .

Then α+ ← (β\βx, βxx(U ,M))
+
∈ (Px(U,M))M

iff α ← β\βx, βxx(U ,M) ∈ Px(U,M) with M |= not (β\βx, βxx(U,M)
)
−

and
M |= α−

iff α ← β ∈ P , M |= not (β\βx, βxx(U,M)
)
−

, M |= α−, and βxx(U,M)
=

⋃

∀Y·φ⇒ψ∈βx{ψ[Y|y] | y ⊆ U,M |= φ[Y|y]} (*) with (β\βx, βxx(U,M)
)
−

=

(β\βx)
−

iff α+ ← β+, βx ∈ PM and (*) holds

iff α+ ← β+, βxx(U ,M) ∈ (PM)x(U,M)

iff α+ ← (β\βx)+, βxx(U ,M) ∈ (PM)x(U,M)

iff α+ ← (β\βx, βxx(U ,M)
)
+
∈ (PM)x(U,M).

ut

We have similar results as in Theorems 3.13 and 3.30, regarding the finite
motivation of literals in possibly infinite open answer sets. We again express
the motivation of a literal more formally by means of the immediate conse-
quence operator [vEK76] T that computes the closure of a set of literals w.r.t.
a GL-reduct of a GeLi-reduct.

For a gP P and an open interpretation (U,M) of P , T
(U,M)
P : BUP → B

U
P is

defined as T (B) = B ∪ {a|a← β ∈
(

P
x(U,M)
U

)M

∧ B |= β}. Additionally, we

have T 0(B) = B8, and T n+1(B) = T (T n(B)).

Theorem 5.41. Let P be a gP and (U,M) an open answer set of P . Then,
∀a ∈M · ∃n <∞ · a ∈ T n.

Proof. The proof is similar to the proof of Theorem 3.13, pp. 66. ut

5.4 Open Answer Set Programming with gPs via Fixed
Point Logic

We reduce satisfiability checking w.r.t. gPs to satisfiability checking of FPL
formulas. Note that the exposition in this section is along the lines of Section
5.1, such that we will skip the details of some of the proofs.

First, we rewrite an arbitrary gP as a gP containing only one designated
predicate p and (in)equality. A gP P is a p-gP if p is the only predicate in P
different from the (in)equality predicate. For a set of g-literals α, we construct
αp in two stages:

8 We omit the sub- and superscripts (U,M) and P from T
(U,M)
P if they are clear

from the context and, furthermore, we will usually write T instead of T (∅).

5.4 Open Answer Set Programming with gPs via Fixed Point Logic 169

1. replace every regular m-ary atom q(t) appearing in α (either in atoms,
naf-atoms, or generalized literals) by p(t,0, q) where p has arity n, with
n the maximum of the arities of predicates in P augmented by 1, 0 a
sequence of new constants 0 of length n −m − 1, and q a new constant
with the same name as the original predicate,

2. in the set thus obtained, replace every generalized literal ∀Y · φ ⇒ ψ by
∀Y · φ ∧

∧
in(Y) ⇒ ψ, where Y 6= t in in(Y) stands for ¬(Y = t) (we

defined generalized literals in function of boolean formulas of atoms).

The p-gP Pp is then the program P with all non-free rules r : α← β replaced
by rp : αp ← βp , in(X) where vars(r) = X. Note that P and Pp have the
same free rules.

Example 5.42. Let P be the gP:

q(X) ← [∀Y · r(Y)⇒ s(X)]
r(a) ←

s(X) ∨ not s(X)←

Then q is satisfiable by an open answer set ({a, x}, {s(x), r(a), q(x)}). The
p-gP Pp is

p(X , q) ← [∀Y · p(Y , r) ∧
∧

in(Y)⇒ p(X , s)], in(X)
p(a, r) ←

p(X , s) ∨ not p(X , s)←

where in(X) = {X 6= s,X 6= q,X 6= r,X 6= 0}. The corresponding open
answer set for this program is ({a, x, s, r, q}, {p(x, s), p(a, r), p(x, q)}).

Theorem 5.43. Let P be a gP, p a predicate not in P , and q a predicate in
P . q is satisfiable w.r.t. P iff there is an open answer set (U ′,M ′) of the p-gP
Pp with p(x,0, q) ∈M ′. Furthermore, the size of Pp is polynomial in the size
of P .

Proof. The proof is analogous to the proof of Theorem 5.3. ut

The completion compgl(P) of a gP P consists of formulas that demand that
different constants in P are interpreted as different elements:

a 6= b . (5.14)

For every pair of different constants a and b in P , compgl(P) contains for-
mulas ensuring the existence of at least one element in the domain of an
interpretation:

∃X · true . (5.15)

Besides these technical requirements matching FOL interpretations with open
interpretations, compgl(P) contains the formulas in fix(P) = sat(P) ∪
gl(P) ∪ gli(P) ∪ fpf(P), which can be intuitively categorized as follows:

170 5 Guarded Open Answer Set Programming

• sat(P) ensures that a model of fix(P) satisfies all rules in P ,
• gl(P) is an auxiliary component defining atoms that indicate when a rule

in P belongs to the GL-reduct,
• gli(P) indicates when the antecedents of generalized literals are true, and
• fpf(P) ensures that every model of fix(P) is a minimal model of the

GL-reduct of the GeLi-reduct of P ; it uses the atoms defined in gl(P) to
select, for the calculation of the fixed point, only those rules in P that are
in the GL-reduct of the GeLi-reduct of P ; the atoms defined in gli(P)
ensure that the generalized literals are interpreted correctly.

In the following, we assume that the arity of p, the only predicate in a p-gP
is n.

Definition 5.44. Let P be a p-gP. The fixed point translation of P is
fix(P) ≡ sat(P) ∪ gli(P) ∪ gl(P) ∪ fpf(P), where

1. sat(P) contains formulas

∀Y ·
∧

β ⇒
∨

α (5.16)

for rules r : α← β ∈ P with vars(r) = Y,
2. gl(P) contains the formulas

∀Y · r(Y)⇔
∧

α− ∧
∧

¬β− (5.17)

for rules r : α← β ∈ P with vars(r) = Y,
3. gli(P) contains the formulas

∀Z · g(Z)⇔ φ (5.18)

for generalized literals g : ∀Y ·φ⇒ ψ ∈ P 9 where φ contains the variables
Z,

4. fpf(P) contains the formula

∀X · p(X)⇒ [LFP WX.φ(W ,X)](X) (5.19)

with
φ(W,X) ≡W (X) ∨

∨

r:p(t)∨α←β∈P

E(r) (5.20)

and

E(r) ≡ ∃Y ·X1 = t1 ∧ . . .∧Xn = tn ∧
∧

β+[p |W]∧
∧

γ ∧ r(Y) (5.21)

where X = X1, . . . , Xn are n new variables, vars(r) = Y, W is a new
(second-order) variable, β+[p | W] is β+ with p replaced by W , and γ is
βx with

9 We assume that generalized literals are named.

5.4 Open Answer Set Programming with gPs via Fixed Point Logic 171

• every generalized literal g : ∀Y · φ⇒ ψ replaced by ∀Y · g(Z)⇒ ψ, Z
the variables of φ, and, subsequently,

• every p replaced by W .

The completion of P is compgl(P) ≡ fix(P) ∪ {(5.14), (5.15)}.

The predicate W appears only positively in φ(W,X) such that the fixed point
formula in (5.19) is well-defined. Note that the predicate p is replaced by the
fixed point variableW in E(r) except in the antecedents of generalized literals,
which were replaced by atoms g(Z), and the negative part of r, which were
replaced by atoms r(Y), thus respectively encoding the GeLi-reduct and the
GL-reduct.10

By the first disjunct in (5.20), we have that applying φ(U,M) to a set
S ⊆ Un does not lose information from S.

Theorem 5.45. Let P be a p-gP and (U,M) an open interpretation with
S ⊆ Un. Then

S ⊆ φ(U,M)(S) .

Proof. Similar to the proof of Theorem 5.6. ut

Example 5.46. We rewrite the program from Example 5.38 as the p-gP P :

r1 : p(X , 0 , q) ← p(X ,Y , f), in(X), in(Y)
r2 : ← p(X ,Y , f),not p(Y , 0 , q), in(X), in(Y)
r3 : ← p(X ,Y , f),not p(Y , 0 ,well), in(X), in(Y)
r4 : p(Y , 0 ,well) ← p(Y , 0 , q), in(Y),

[∀X · p(X,Y, f) ∧
V

in(X)⇒ p(X, 0, well)]
r5 : p(X ,Y , f) ∨ not p(X ,Y , f) ←

where in(X) and in(Y) are shorthand for the inequalities with the new
constants. sat(P) consists of the sentences

• ∀X,Y · p(X,Y, f) ∧
∧

in(X) ∧
∧

in(Y)⇒ p(X, 0, q),
• ∀X,Y · p(X,Y, f) ∧ ¬p(Y, 0, q) ∧

∧
in(X) ∧

∧
in(Y)⇒ false,

• ∀X,Y · p(X,Y, f) ∧ ¬p(Y, 0,well) ∧
∧

in(X) ∧
∧

in(Y)⇒ false,
• ∀Y · p(Y, 0, q) ∧

∧
in(Y) ∧ (∀X · p(X,Y, f) ∧

∧
in(X)⇒ p(X, 0,well))

⇒ p(Y, 0,well), and
• ∀X,Y · true⇒ p(X,Y, f) ∨ ¬p(X,Y, f).

gl(P) contains the sentences

• ∀X,Y · r1 (X ,Y)⇔
∧

in(X) ∧
∧

in(Y),
• ∀X,Y · r2 (X ,Y)⇔ ¬p(Y , 0 , q) ∧

∧
in(X) ∧

∧
in(Y),

• ∀X,Y · r3 (X ,Y)⇔ ¬p(Y , 0 ,well) ∧
∧

in(X) ∧
∧

in(Y),

10 Note that we apply the GeLi-reduct and the GL-reduct “at the same time”,
while the open answer set semantics is defined such that first the GeLi-reduct is
constructed and then the GL-reduct. However, as indicated by Theorem 5.40, the
order of applying the reducts does not matter.

172 5 Guarded Open Answer Set Programming

• ∀Y · r4 (Y)⇔
∧

in(Y), and
• ∀X,Y · r5 (X ,Y)⇔ p(X ,Y , f).

gli(P) contains the sentence ∀X,Y · g(X ,Y) ⇔ p(X ,Y , f) ∧
∧

in(X), and
fpf(P) is constructed with

• E(r1) ≡ ∃X,Y ·X1 = X ∧X2 = 0 ∧X3 = q ∧W (X,Y, f) ∧ r1(X,Y),
• E(r4) ≡ ∃Y ·X1 = Y ∧X2 = 0 ∧X3 = well ∧W (Y, 0, q)∧

(∀X · g(X,Y)⇒W (X, 0,well)) ∧ r4(Y), and
• E(r5) ≡ ∃X,Y ·X1 = X ∧X2 = Y ∧X3 = f ∧ r5(X,Y).

Take an infinite FOL interpretation (U,M) with U = {q, f,well , 0, x0, x1, . . .}
and11

M = {p(x0, 0, q), p(x0 , 0 ,well), p(x0, x1, f),

p(x1, 0, q), p(x1 , 0 ,well), p(x1, x2, f), . . .

r1(x0, x0), r1(x0, x1), . . . , r1(x1, x0), . . . , r4(x0), r4(x1), . . .

r5(x0, x1), r5(x1, x2), . . . , g(x0, x1), g(x1, x2), . . .}) .

sat(P), gl(P), and gli(P) are satisfied. We check that fpf(P) is satisfied
by M . We first construct the fixed point of φ(U,M) where φ(W,X1, X2, X3) ≡
W (X1, X2, X3)∨E(r1)∨E(r4)∨E(R5) as in [Grä02a], i.e., in stages starting
from W 0 = ∅. We have that

• W 1 = φ(U,M)(W 0) = {(x0, x1, f), (x1, x2, f), . . .}, where the (xi, xi+1, f)
are introduced by E(r5),

• W 2 = φ(U,M)(W 1) = W 1 ∪ {(x0, 0, q), (x1, 0, q), . . .}, where the (xi, 0, q)
are introduced by E(r1),

• W 3 = φ(U,M)(W 2) = W 2∪{(x0, 0,well)}, where (x0, 0,well) is introduced
by E(r4),

• W 4 = φ(U,M)(W 3) = W 3 ∪ {(x1, 0,well)},
• . . .

The least fixed point LFP(φ(U,M)) is then ∪α<∞W
α [Grä02a]. The sentence

fpf(P) is then satisfied since every p-literal in M is also in this least fixed
point. (U,M) is thus a model of compgl(P), and it corresponds to an open
answer set of P .

Theorem 5.47. Let P be a p-gP. Then, (U,M) is an open answer set of P
iff (U,M ∪R ∪G) is a model of

∧
compgl(P), where

R ≡ {r(y) | r[Y | y] : α[]← β[] ∈ PU ,M |= α[]
− ∪ not β[]

−
, vars(r) = Y} ,

i.e., the atoms corresponding to rules for which the GeLi-reduct version will
be in the GL-reduct, and

G ≡ {g(z) | g : ∀Y · φ⇒ ψ ∈ P, vars(φ) = Z,M |= φ[Z | z]} ,

i.e., the atoms corresponding to true antecedents of generalized literals in P .

11 We interpret the constants in compgl(P) by universe elements of the same name.

5.4 Open Answer Set Programming with gPs via Fixed Point Logic 173

Proof. Denote M ∪R ∪G as M ′.
⇒ For the “only if” direction, assume (U,M) is an open answer set of P .

We show that (U,M ′) is a model of
∧
compgl(P).

(U,M ′) is a model of (5.14), (5.15), sat(P), gl(P). This can be done as in
the proof of Theorem 5.8.

(U,M ′) is a model of gli(P). By definition of M ′, we have that g(z) ∈ M ′

iff g(z) ∈ G iff M |= φ[Z | z] iff M ′ |= φ[Z | z].
(U,M ′) is a model of fpf(P). Take x for X and assume p(x) ∈ M ′. Thus,

p(x) ∈M . Since (U,M) is an open answer set we have that p(x) ∈ T n for
some n <∞.

Claim. x ∈ φ(U,M ′) ↑ n, n <∞.

We prove the claim by induction on n.
n = 1 (Base step). If p(x) ∈ T 1 there is some

r′ : p(x)← β[]
+
, (βx[])x(U ,M) ∈ (P

x(U,M)
U)M

originating from r : p(t) ∨ α ← β ∈ P with variables Y = Y1, . . . , Yd
where [] = [Y | y]. We have
• ∅ |= body(r′)12,
• M |= α−[], and
• M |= not β[]

−
.

Thus α−[] and ¬β−[] are true in M , such that, by definition of M ′,
r(y) ∈ M ′. We show that (U,M ′), {W → ∅} |= E(r)[X | x]. Be-
cause then (U,M ′), {W → ∅} |= φ(W,x) such that x ∈ φ(U,M ′)(∅) =
φ(U,M ′) ↑ 1.
Take y, we show that

(U,M ′), {W → ∅} |= x1 = t1[Y | y] ∧ . . . ∧ xn = tn[Y | y]∧
∧

β+[p |W][Y | y] ∧
∧

γ[Y | y] ∧ r(y) .

We have that xi = ti[Y | y] since p(t)[Y | y] = p(x). We already have
that r(y) ∈M ′.
It remains to show that (U,M ′), {W → ∅} |=

∧
β+[p | W][Y | y] ∧

∧
γ[Y | y].
• Take l a conjunct in

∧
β+[p |W][Y | y]. We have that l is either

– an equality t = s[] for a t = s ∈ β+, then, since ∅ |= β[]+, we
have that (U,M ′), {W → ∅} |= l, or

– an atom W (U)[] for a p(U) ∈ β+. Then p(U)[] ∈ β[]
+
, but

∅ |= body(r′) so this case is not possible.

12 body(r′) may contain equalities but no regular atoms.

174 5 Guarded Open Answer Set Programming

• Take l a conjunct in γ[Y | y]. Since γ was constructed from βx, we
have that l is a ∀Z ·g(Z)[]⇒ ψ′[] originating from ∀Z ·φ⇒ ψ ∈ β+

where ψ′[] is again an equality t = s[] for ψ ≡ t = s or a W (U)[]
for ψ ≡ p(U). Assume (U,M ′), {W → ∅} |= g(Z)[][Z | z], and
thus, by definition of M ′, we have that M |= φ[][Z | z]. We have
that ψ′[][Z | z] is either some t = s[][Z | z] or a W (U)[][Z | z].
Since ∀Z · φ[] ⇒ ψ[] ∈ β[]

+
and M |= φ[][Z | z], we have that

ψ[][Z | z] ∈ (βx[])x(U,M). Thus, since ∅ |= body(r′), we have that
ψ must be an equality and M |= t = s[][Z | z]. With ψ′[][Z | z] is
t = s[][Z | z], we then have that (U,M ′), {W → ∅} |= ψ′[][Z | z].

(Induction). Assume for every p(u) ∈ T n−1 that u ∈ φ(U,M ′) ↑ n − 1,
n− 1 <∞. From p(x) ∈ T n, we have some

r′ : p(x)← β[]+, (βx[])x(U ,M) ∈ (P
x(U,M)
U)M

originating from r : p(t) ∨ α ← β ∈ P with variables Y = Y1, . . . , Yd
where [] = [Y | y]. We have
• T n−1 |= body(r′),
• M |= α−[], and
• M |= not β[]

−
.

We can then prove, again similar as in Theorem 5.8, that x ∈ φ(U,M ′) ↑
n, n <∞.

We have that LFP(φ(U,M ′)) = φ(U,M ′) ↑ α for some ordinal α. If α < n, we
have that n = α+k for k <∞. One can see that φ(U,M ′) ↑ n = φ(U,M ′) ↑ α,
such that x ∈ LFP(φ(U,M ′)), and consequently, [LFP WX.φ(W,X)](x) is
true in (U,M ′). If α ≥ n, we have that φ(U,M ′) ↑ n ⊆ φ(U,M ′) ↑ α,
and again x ∈ LFP(φ(U,M ′)), such that [LFP WX.φ(W,X)](x) is true in
(U,M ′).

⇐ For the “if” direction, assume (U,M ′) is a model of
∧
compgl(P).

One can show that (U,M) is an open answer set of P . ut

Using Theorems 5.43 and 5.47, we can reduce satisfiability checking w.r.t. gPs
to satisfiability checking in FPL. Moreover, since

∧
compgl(P) contains only

one fixed point predicate, the translation falls in the alternation-free fragment
of FPL.

Theorem 5.48. Let P be a gP, p a predicate not appearing in P , and q an
n-ary predicate in P . q is satisfiable w.r.t. P iff ∃X ·p(X,0, q)∧

∧
compgl(Pp)

is satisfiable. Moreover, this reduction is polynomial.

Proof. Assume q is satisfiable w.r.t. P . By Theorem 5.43, we have that
p(x,0, q) is in an open answer set of Pp, such that with Theorem 5.47, p(x,0, q)
is in a model of

∧
compgl(Pp).

For the opposite direction, assume ∃X · p(X,0, q) ∧
∧
compgl(Pp) is sat-

isfiable. Then there is a model (U,M ′) of
∧
compgl(P) with p(x,0, q) ∈ M ′.

We have that M ′ = M ∪ R ∪ G as in Theorem 5.47, such that (U,M) is an

5.5 Open Answer Set Programming with Guarded gPs 175

open answer set of Pp and p(x,0, q) ∈M . From Theorem 5.43, we then have
an open answer set of P satisfying q.

The size of
∧
compgl(Pp) is polynomial in the size of Pp. Since the size

of the latter is also polynomial in the size of P , the size of
∧
compgl(Pp) is

polynomial in the size of P . ut

5.5 Open Answer Set Programming with Guarded gPs

As we did in Section 5.2 for programs, we introduce in this section a notion
of guardedness such that the FPL translation of guarded gPs falls in µGF.
We do not, however, consider their loosely guarded counterpart like we did in
Section 5.2, but leave this as an exercise to the reader.

Definition 5.49. A generalized literal ∀Y · φ ⇒ ψ is guarded if φ is of the
form γ ∧ φ′ with γ an atom, and vars(Y) ∪ vars(φ′) ∪ vars(ψ) ⊆ vars(γ);
we call γ the guard of the generalized literal. A rule r : α ← β is guarded if
every generalized literal in r is guarded, and there is an atom γb ∈ β+ such
that vars(r) ⊆ vars(γb); we call γb a body guard of r. It is fully guarded if it
is guarded and there is a γh ⊆ α− such that vars(r) ⊆ vars(γh); γh is called
a head guard of r.

A gP P is a (fully) guarded gP ((F)GgP) if every non-free rule in P is
(fully) guarded.

Example 5.50. Reconsider the gP from Example 5.38. r1, r2, and r3 are
guarded with guard f(X,Y). The generalized literal in r4 is guarded by
f(X,Y), and r4 itself is guarded by q(Y). Note that r5 does not influence
the guardedness as it is a free rule.

Every fully guarded gP is guarded. Vice versa, we can transform every guarded
gP into an equivalent fully guarded one. For a GgP P , P f is defined as in
Section 5.2 (pp. 175), i.e., as P with the rules α← β replaced by α ∪ not β+ ←
β for the body guard γb of α ← β. For a GgP P , we have that P f is a
FGgP, where the head guard of each non-free rule is equal to the body guard.
Moreover, the size of P f is linear in the size of P .

Theorem 5.51. Let P be a GgP. An open interpretation (U,M) of P is an
open answer set of P iff (U,M) is an open answer set of P f .

Proof. The proof is analogous to the proof of Theorem 5.20 (pp. 155). ut

We have that the construction of a p-gP retains the guardedness properties.

Theorem 5.52. Let P be a gP. Then, P is a (F)GgP iff Pp is a (F)GgP.

Proof. We only prove the GgP case, the case for FGgPs is similar.
For the “only if” direction, take a non-free rule rp : αp ← βp , in(X) ∈ Pp.

We have that r : α ← β is a non-free rule in P where all generalized literals

176 5 Guarded Open Answer Set Programming

are guarded and vars(r) ⊆ vars(γb) with γb ∈ β+. Take a generalized literal
∀Y·φp∧

∧
in(Y)⇒ ψp in rp, then ∀Y·φ⇒ ψ is in r, where it must be guarded,

thus φ = γ ∧ φ′, with γ an atom and vars(Y)∪ vars(φ′)∪ vars(ψ) ⊆ vars(γ).
Then φp ∧

∧
in(Y) = γp ∧ φ′p ∧

∧
in(Y) with γp an atom and vars(Y) ∪

vars(φ′p)∪ vars(in(Y)) ∪ vars(ψp) ⊆ vars(γp). Thus all generalized literals in
rp are guarded. Furthermore, we have that vars(rp) = vars(r) ⊆ vars(γb) =
vars(γbp) ∈ βp

+, such that rp is guarded.
For the “if” direction, take a non-free r : α ← β ∈ P . Then rp : αp ←

βp , in(X) is non-free in Pp, thus it is guarded and there is a γp ∈ βp
+ such

that vars(rp) ⊆ γp, furthermore, all generalized literals in rp are guarded.
Take a generalized literal ∀Y · φ ⇒ ψ in r, then ∀Y · φp ∧

∧
in(Y) ⇒ ψp

is guarded in rp such that φp = γp ∧ φ′p (and thus φ = γ ∧ φ′) such that
vars(Y) ∪ vars(φ′p) ∪ vars(in(Y)) ∪ vars(ψp) ⊆ vars(γp) and thus vars(Y) ∪
vars(φ′)∪ vars(ψ) ⊆ vars(γ) making the generalized literal in r also guarded.
Furthermore, we have that vars(r) = vars(rp) ⊆ vars(γbp) = vars(γb) ∈ β+,
such that r is guarded. ut

For a fully guarded p-gP P , we can rewrite compgl(P) as the equivalent µGF
formulas gcompgl(P). For a guarded generalized literal ξ ≡ ∀Y ·φ⇒ ψ, define

ξg ≡ ∀Y · γ ⇒ ψ ∨ ¬φ′ ,

where, since the generalized literal is guarded, φ = γ ∧ φ′, and vars(Y) ∪
vars(φ′) ∪ vars(ψ) ⊆ vars(γ), making formula ξg a guarded formula. The
extension of this operator ·g for sets (or boolean formulas) of generalized
literals is as usual.

gcompgl(P) is compgl(P) with the following modifications.

• Formula ∃X · true is replaced by

∃X ·X = X , (5.22)

such that it is guarded by X = X .
• Formula (5.16) is removed if r : α← β is free or otherwise replaced by

∀Y · γb ⇒
∨

α ∨
∨

¬(β+\{γb}) ∨
∨

β− ∨
∨

¬(βx)g , (5.23)

where γb is a body guard of r, thus we have logically rewritten the formula
such that it is guarded. If r is a free rule of the form q(t) ∨ not q(t) ←
we have ∀Y · true ⇒ q(t) ∨ ¬q(t) which is always true and can thus be
removed from compgl(P).

• Formula (5.17) is replaced by the formulas

∀Y · r(Y)⇒
∧

α− ∧
∧

¬β− (5.24)

and
∀Y · γh ⇒ r(Y) ∨

∨

β− ∨
∨

¬(α−\{γh}) , (5.25)

5.5 Open Answer Set Programming with Guarded gPs 177

where γh is a head guard of α ← β. We thus rewrite an equivalence as
two implications where the first implication is guarded by r(Y) and the
second one is guarded by the head guard of the rule.

• Formula (5.18) is replaced by the formulas

∀Z · g(Z)⇒ φ (5.26)

and
∀Z · γ ⇒ g(Z) ∨ ¬φ′ (5.27)

where φ = γ ∧ψ by the guardedness of the generalized literal ∀Y · φ⇒ ψ.
We thus rewrite an equivalence as two implications where the first one is
guarded by g(Z) (vars(φ) = Z by definition of g), and the second one is
guarded by γ (vars(g(Z) ∨ ¬φ′) = vars(Z) = vars(γ)).

• For every E(r) in (5.19), replace E(r) by

E′(r) ≡
∧

ti 6∈Y

Xi = ti∧∃Z · (
∧

β+[p|W]∧
∧

γ∧r(Y))[ti ∈ Y|Xi] , (5.28)

with Z = Y\{ti | ti ∈ Y}, i.e., move all Xi = ti where ti is constant out of
the scope of the quantifier, and remove the others by substituting each ti in
∧
β+[p|W]∧

∧
γ∧r(Y) by Xi. This rewriting makes sure that every (free)

variable in the quantified part of E′(R) is guarded by r(Y)[ti ∈ Y|Xi].

Example 5.53. The rule

r : p(X) ∨ not p(X)← p(X), [∀Y · p(Y) ∧ p(b)⇒ p(a)]

constitutes a fully guarded p-gP P . The generalized literal is guarded by p(Y)
and the rule by head and body guard p(X). sat(P) contains the formula
∀X · p(X) ∧ (∀Y · p(Y) ∧ p(b) ⇒ p(a)) ⇒ p(X) ∨ ¬p(X), gl(P) consists of
∀X · r(X) ⇔ p(X), gli(P) is the formula ∀Y · g(Y) ⇔ p(Y) ∧ p(b) and
E(r) ≡ ∃X ·X1 = X ∧W (X) ∧ (∀Y · g(Y)⇒W (a)) ∧ r(X).

gcompgl(P) consists then of the corresponding guarded formulas:

• ∀X · p(X)⇒ p(X) ∨ ¬p(X) ∨ ¬(∀Y · p(Y)⇒ p(a) ∨ ¬p(b)),
• ∀X · r(X)⇒ p(X),
• ∀X · p(X)⇒ r(X),
• ∀Y · g(Y)⇒ p(Y) ∧ p(b),
• ∀Y · p(Y)⇒ g(Y) ∨ ¬p(b), and
• E′(r) ≡W (X1) ∧ (∀Y · g(Y)⇒W (a)) ∧ r(X1).

As gcompgl(P) is basically a linear logical rewriting of compgl(P), they are
equivalent. Moreover,

∧
gcompgl(P) is an alternation-free µGF formula.

Theorem 5.54. Let P be a fully guarded p-gP. (U,M) is a model of
∧
compgl(P) iff (U,M) is a model of

∧
gcompgl(P).

178 5 Guarded Open Answer Set Programming

Proof. The only notable difference from the proof of Theorem 5.24 is the
presence of generalized literals, which are handled by the observation that
(U,M) |= ξ ⇐⇒ (U,M) |= ξg for a generalized literal ξ. ut

Theorem 5.55. Let P be a fully guarded p-gP. Then,
∧
gcompgl(P) is an

alternation-free µGF formula.

Proof. We first show that [LFP WX.φ′(W,X)](X) is a valid fixed point for-
mula, with φ′(W,X) equal to φ(W,X) with E′(r) instead of E(r). We have
that all free variables are still in X, since only Xi = ti where ti is constant is
moved out of the scope of the quantifier in E(r) and all other ti where sub-
stituted by Xi such that Z bounds all other variables than X. Furthermore,
W appears only positively in φ′.

We next show that
∧
gcompgl(P) is a µGF formula if P is fully guarded.

• Formula (5.22) is guarded with guard X = X .
• Formula (5.23) for a non-free rule α ← β with a body guard γb; thus

vars(α← β) ⊆ vars(γb).
– vars(

∨
α ∨

∨
¬(β+\{γb}) ∨

∨
β− ∨

∨
¬(βx)g) ⊆ Y = vars(α ← β) ⊆

vars(γb).
– Furthermore, for all ∀Y · γ ⇒ φ′ ∨ ψ ∈ (βx)g, we have vars(ψ ∨ ¬φ′)∪

vars(Y) ⊆ vars(ψ)∪ vars(φ′)∪ vars(Y) ⊆ vars(γ) (the latter since all
generalized literals in α← β are guarded).

• Formula (5.24) is guarded with guard r(Y).
• Formula (5.25):

– For a non-free rule α← β with a head guard γh. Can be done similarly
as formula (5.23).

– If α ← β is free, i.e., of the form q(t) ∨ not q(t) ← , we have that
γh = q(t), and formula (5.25) is of the form ∀Y · q(t)⇒ r(Y).
vars(r(Y)) = Y = vars(α← β) = vars(q(t)) = vars(γh).

• Formula (5.26) is guarded by g(Z): vars(φ) = Z = vars(g(Z)).
• Formula (5.27) is guarded by γ: vars(g(Z)) ∪ vars(φ′) ∪ Z = vars(φ) ∪

vars(φ′) = vars(γ) ∪ vars(φ′) (the latter since φ = φ′ ∧ γ). Which equals
vars(γ) (since the corresponding guarded generalized literal is guarded:
vars(φ′) ⊆ vars(γ)).

• For the last case, we show that φ′(W,X) is a guarded formula where W
does not appear in guards. Then formula (5.19), with E′(r) instead of
E(r), is a valid µGF-formula.
We show that for each r : α← β, ∃Z · (

∧
β+ ∧

∧
γ ∧ r(Y))[ti ∈ Y|Xi] is a

guarded formula with guard r(Y)[]. Thus W does not appear in a guard.
Indeed, vars((

∧
β+ ∧

∧
γ)[ti ∈ Y|Xi]) ∪ Z = (Y\{ti ∈ Y}) ∪ {Xi | ti ∈

Y} ∪ (Y\{ti | ti ∈ Y}) = vars(r(Y)[]).

Moreover, since gcompgl(P) contains only one fixed point it is alternation-
free. ut

5.5 Open Answer Set Programming with Guarded gPs 179

Theorem 5.56. Let P be a GgP and q an n-ary predicate in P . q is satisfiable
w.r.t. P iff ∃X · p(X,0, q) ∧

∧
gcompgl((P f)p) is satisfiable. Moreover, this

reduction is polynomial.

Proof. We have that P f is a FGgP. By Theorem 5.52, we have that (P f)p
is a fully guarded p-gP, thus the formula

∧
gcompgl((P f)p) is defined. By

Theorem 5.51, we have that q is satisfiable w.r.t. P iff q is satisfiable w.r.t.
P f . By Theorem 5.48, we have that q is satisfiable w.r.t. P f iff ∃X ·p(X,0, q)∧
∧
compgl((P f)p) is satisfiable. Finally, Theorem 5.54 yields that q is satisfiable

w.r.t. P iff ∃X · p(X,0, q) ∧
∧
gcompgl((P f)p) is satisfiable. ut

Corollary 5.57. Satisfiability checking w.r.t. GgPs can be polynomially re-
duced to satisfiability checking of alternation-free µGF-formulas.

Proof. For a GgP P , we have, by Theorem 5.55, that
∧
gcomp((P f)p) is an

alternation-free µGF, which yields with Theorem 5.56, the required result. ut

Corollary 5.58. Satisfiability checking w.r.t. GgPs is in 2-exptime.

Proof. Since satisfiability checking of µGF formulas is 2-exptime-complete
(Theorem [1.1] in [GW99]), satisfiability checking w.r.t. GgPs is, by Corollary
5.57, in 2-exptime. ut

Thus, adding generalized literals to guarded programs does not come at the
cost of increased complexity of reasoning, as also for guarded programs with-
out generalized literals, reasoning is in 2-exptime, see Theorem 5.28.

In [Syr04], ω-restricted programs allow for cardinality constraints and con-
ditional literals. Conditional literals have the form X.L : A where X is a set
of variables, A is an atom (the condition) and L is an atom or a naf-atom.
Intuitively, conditional literals correspond to generalized literals ∀X ·A⇒ L,
i.e., the defined reducts add instantiations of L to the body if the correspond-
ing instantiation of A is true. However, conditional literals appear only in
cardinality constraints Card(b,S)13 where S is a set of literals (possibly con-
ditional), such that a for all effect such as with generalized literals cannot be
obtained with conditional literals.

Take, for example, the rule q ← [∀X · b(X) ⇒ a(X)] and a universe
U = {x1, x2} with an interpretation containing b(x1) and b(x2). The reduct
will contain a rule q ← a(x1), a(x2) such that, effectively, q holds only if a holds
everywhere where b holds. The equivalent rule rewritten with a conditional
literal would be something like q ← Card(n, {X.a(X) : b(X)}), resulting14

in a rule q ← Card(n, {a(x1), a(x2)}). In order to have the for all effect, we
have that n must be 2. However, we cannot know this n in advance, making
it impossible to express a for all restriction.

13 Card(b,S) is true if at least b elements from S are true.
14 Assume we again have a universe {x1, x2}, formally, this is the Herbrand Universe.

180 5 Guarded Open Answer Set Programming

Further note that consistent ω-restricted programs (with cardinality con-
straints and conditional literals) always have finite answer sets, which would
make a reduction from GgPs (in which infinity axioms can be expressed) to
ω-restricted programs non-trivial.

5.6 Relationship with Datalog LITE

We define Datalog lite as in [GGV02]. A Datalog rule is a rule α← β where
α = {a} for some atom a and β does not contain generalized literals. A basic
Datalog program is a finite set of Datalog rules such that no head predicate
appears in negative bodies of rules. Predicates that appear only in the body
of rules are extensional or input predicates. Note that equality is, by the
definition of rules, never a head predicate and thus always extensional. The
semantics of a basic Datalog program P , given a relational input structure
U defined over extensional predicates of P 15, is given by the unique (subset)
minimal model of ΣP whose restriction to the extensional predicates yields U
(ΣP are the first-order clauses corresponding to P , see [AHV95]).

For a query (P, q), where P is a basic Datalog program and q is an n-ary
predicate, we write a ∈ (P, q)(U) if the minimal model M of ΣP with input U
contains q(a). We call (P, q) satisfiable if there exists a U and an a such that
a ∈ (P, q)(U).

A program P is a stratified Datalog program if it can be written as a
union of basic Datalog programs (P1, . . . , Pn), so-called strata, such that each
of the head predicates in P is a head predicate in exactly one stratum Pi.
Furthermore, if a head predicate in Pi is an extensional predicate in Pj , then
i < j. This definition entails that head predicates in the positive body of rules
are head predicates in the same or a lower stratum, and head predicates in
the negative body are head predicates in a lower stratum. The semantics of
stratified Datalog programs is defined stratum per stratum, starting from the
lowest stratum and defining the extensional predicates on the way up. For
an input structure U and a stratified program P = (P1, . . . , Pn), define as in
[AHV95]:

U0 ≡ U
Ui ≡ Ui−1 ∪ Pi(Ui−1|edb(Pi))

where Si ≡ Pi(Ui−1|edb(Pi)) is the minimal model of ΣPi
among those models

of ΣPi
whose restriction to the extensional predicates of Pi (i.e., edb(Pi)) is

equal to Ui−1|edb(Pi). The least fixed point model with input U of P is per
definition Un.

A Datalog lite generalized literal is a generalized literal ∀Y ·a ⇒ b where
a and b are atoms and vars(b) ⊆ vars(a). Note that Datalog lite generalized
literals ∀Y · a ⇒ b can be replaced by the equivalent ∀Z · a ⇒ b where

15 We assume that an input structure always defines equality, and that it does so as
the identity relation.

5.6 Relationship with Datalog LITE 181

Z ≡ Y\{Y | Y 6∈ vars(a)}, i.e., with the variables that are not present in the
formula a ⇒ b removed from the quantifier. After such a rewriting, Datalog
lite generalized literals are guarded according to Definition 5.17.

A Datalog lite program is a stratified Datalog program, possibly contain-
ing Datalog lite generalized literals in the positive body, where each rule
is monadic or guarded. A rule is monadic if each of its (generalized) literals
contains only one (free) variable; it is guarded if there exists an atom in the
positive body that contains all variables (free variables in the case of general-
ized literals) of the rule. The definition of stratified is adapted for generalized
literals: for a ∀Y · a ⇒ b in the body of a rule where the underlying predicate
of a is a head predicate, this head predicate must be a head predicate in a
lower stratum (i.e., a is treated as a naf-atom) and a head predicate underly-
ing b must be in the same or a lower stratum (i.e., b is treated as an atom).
The semantics can be adapted accordingly since a is completely defined in a
lower stratum, as in [GGV02]: every generalized literal ∀Y · a ⇒ b is instan-
tiated (for any x grounding the free variables X in the generalized literal) by
∧
{b[X | x][Y | y] | a[X | x][Y | y] is true}, which is well-defined since a is

defined in a lower stratum than the rule where the generalized literal appears.

5.6.1 Reduction from GgPs to Datalog LITE

In [GGV02], Theorem 8.5., a Datalog lite query (πϕ, qϕ) was defined for an
alternation-free µGF sentence ϕ such that

(U,M) |= ϕ ⇐⇒ (πϕ, qϕ)(M ∪ id(U)) evaluates to true ,

where the latter means that qϕ is in the fixed point model of πϕ with input
M ∪ id(U) and id(U) ≡ {x = x | x ∈ U}.

Example 5.59. Take the µGF sentence gcomp(P) ≡ ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 from
Example 5.23, i.e., with

ϕ1 ≡ ∀X · p(X)⇒ p(X) ∨ ¬p(X)

ϕ2 ≡ ∀X · r(X)⇒ p(X)

ϕ3 ≡ ∀X · p(X)⇒ r(X)

ϕ4 ≡ ∀X · p(X)⇒ [LFP WX .φ(W ,X)](X)

and φ(W,X) ≡W (X)∨ (W (X)∧ r(X)). The query (πgcomp(P), qgcomp(P)) con-
siders atoms and negated atoms as extensional predicates and introduces rules

Hp,ϕ1
(X)← p(X)

H¬p,ϕ1
(X)← p(X),¬p(X)

for ϕ1 where both rules are guarded by the guard p(X) of ϕ1 (or, in general,
the guard in the most closely encompassing scope). Disjunction is defined as
usual:

182 5 Guarded Open Answer Set Programming

Hp∨¬p,ϕ1
(X)← p(X),Hp,ϕ1

(X)
Hp∨¬p,ϕ1

(X)← p(X),H¬p,ϕ1
(X)

where p(X) serves again as guard.16 The sentence ϕ1 itself is translated into

Hϕ1
← (∀X · p(X)⇒ Hp∨¬p,ϕ1

(X))

Formulas ϕ2 and ϕ3 can be translated similarly. For ϕ4, we translate, as an
intermediate step, φ(W,X) as

Hφ(X) ← p(X),HW (X)
Hφ(X) ← p(X),HW∧r (X)

HW∧r (X) ← p(X),HW (X),Hr (X)
HW (X) ← p(X),W (X)
Hr (X) ← p(X), r(X)

from which the translation for [LFP WX.φ(W,X)](X) can be obtained by
replacing Hφ(X) and W (X) by H[LFP WX.φ(W,X)](X), i.e.,

H[LFP WX .φ(W ,X)](X)← p(X),HW (X)
H[LFP WX .φ(W ,X)](X)← p(X),HW∧r (X)

HW∧r (X)← p(X),HW (X),Hr (X)
HW (X)← p(X),H[LFP WX .φ(W ,X)](X)
Hr (X)← p(X), r(X)

The sentence ϕ4 is translated to

Hϕ4
← (∀X · p(X)⇒ H[LFP WX .φ(W ,X)](X))

Finally, we compile the results in the rule qgcomp(P) ← Hϕ1
,Hϕ2

,Hϕ3
,Hϕ4

.
In Example 5.23, we had, for a universe {x}, the unique model ({x}, ∅)

of gcomp(P). Accordingly, we have that {x = x} is the only relational input
structure on the extensional predicates of πgcomp(P), r and p, that contains
the term x and results in a least fixed point model of πgcomp(P) containing
qgcomp(P).

For the formal details of this reduction, we refer to [GGV02]. Satisfiability
checking w.r.t. GgPs can be polynomially reduced, using the above reduction,
to satisfiability checking in Datalog lite.

Theorem 5.60. Let P be a GgP, q an n-ary predicate in P , and ϕ the µGF
sentence ∃X · p(X,0, q)∧

∧
gcomp((P f)p). q is satisfiable w.r.t. P iff (πϕ, qϕ)

is satisfiable. Moreover, this reduction is polynomial.

Proof. By Theorem 5.56, we have that q is satisfiable w.r.t. P iff ϕ is satisfi-
able. Since ϕ is a µGF sentence, we have that ϕ is satisfiable, i.e., there exists

16 Actually, in this particular case, the rules would already be guarded without the
guard of ϕ1, but we include it, as this is not true in general.

5.6 Relationship with Datalog LITE 183

a (U,M) such that (U,M) |= ϕ, iff (πϕ, qϕ)(M ∪ id (U)) evaluates to true, i.e.,
(πϕ, qϕ) is satisfiable.

Since, by Theorem 5.56, the translation of P to ϕ is polynomial in the size
of P and the query (πϕ, qϕ) is polynomial in ϕ [GGV02], we have a polynomial
reduction. ut

5.6.2 Reduction from Datalog LITE to GgPs

For stratified Datalog programs, possibly with generalized literals, least fixed
point models with as input the identity relation on a universe U coincide with
open answer sets with universe U .

Lemma 5.61. Let P = (P1, . . . , Pn) be a stratified Datalog program, possibly
with generalized literals, and U an input structure for P . If p(x) ∈ Sj, then p
is a head predicate in Pj or p ∈ Uj−1|edb(Pj).

Proof. Either p ∈ edb(Pj) or not. In the former case, we have that p(x) ∈
Sj |edb(Pj) such that, by the definition of Sj , p(x) ∈ Uj−1|edb(Pj). In the
latter case, we have that, since p does not appear in the body of Pj , but
nevertheless p(x) is in Sj , a minimal model of Pj , p must be a head predicate
in Pj . ut

Lemma 5.62. Let P = (P1, . . . , Pn) be a stratified Datalog program, possibly
with generalized literals, U an input structure for P . If p is a head predicate
in some Pj, 1 ≤ j ≤ n, then

p(x) ∈ Sj ⇐⇒ p(x) ∈ Un . (5.29)

If p ∈ edb(Pj) and p(x) 6∈ Uj−1, then p(x) 6∈ Un.

Proof. The “only if” direction of Equation (5.29) is immediate. For the “if”
direction: assume p is a head predicate in Pj and p(x) ∈ Un. Since p(x) ∈ Un,
there must be a k, such that p(x) ∈ Sk, 1 ≤ k ≤ n.

If k = j, we are finished, otherwise, by Lemma 5.61, p(x) ∈ Uk−1|edb(Pk)
and thus p(x) ∈ Uk−1. Again, we have that there is a 1 ≤ k1 ≤ k−1, such that
p(x) ∈ Sk1 . If k1 = j, we are finished, otherwise, we continue as before. After
at most n steps, we must find a kn = j, otherwise we have a contradiction
(p(x) ∈ U is not possible since p is a head predicate and input structures are
defined on extensional predicates only).

Take p extensional in Pj , p(x) 6∈ Uj−1, and p(x) ∈ Un. We show that
this leads to a contradiction. From p(x) ∈ Un, we have that p(x) ∈ Un−1 or
p(x) ∈ Sn. For the latter, one would have, with Lemma 5.61, that p(x) ∈
Un−1|edb(Pn) or p is a head predicate in Sn. The latter is impossible since
p ∈ edb(Pj) and j ≤ n. Thus, we have that p(x) ∈ Un−1.

Continuing this way, we eventually have that p(x) ∈ Uj−1, a contradiction.
ut

184 5 Guarded Open Answer Set Programming

Theorem 5.63. Let P = (P1, . . . , Pn) be a stratified Datalog program, possi-
bly with generalized literals, U a universe for P , and l a literal. For the least
fixed point model Un of P with input U = {id(U)}, we have Un |= l iff there
exists an open answer set (U,M) of P such that M |= l.

Moreover, for any open answer set (U,M) of P , we have that M = Un\
id(U).

Proof. For the “only if” direction, assume Un |= l. Define

M ≡ Un\id(U) .

Clearly, M |= l, such that remains to show that (U,M) is an open answer set
of P .

1. M is a model of R ≡ (P
x(U,M)
U)M .

Take a rule r : a[X | x] ← β[X | x]
+
, (β[X | x]

x
)x(U,M) ∈ R, thus M |=

not β[]
−

, originating from a ← β ∈ P . Assume M |= body(r). We have
that ∀X ·

∧
β ⇒ a ∈ ΣPi

for some stratum Pi. Take x as in r.
We verify that Un |=

∧
β[]. We have that Un |=

∧
β[]

+ ∧
∧
¬β[]

−
. Take a

generalized literal ∀Y · c ⇒ b in
∧
β[] and Un |= c[Y | y]. Then M |= c[]

such that b[] ∈ (β[X | x]x)x(U,M), and thus, with M |= b[], that Un |= b[].
With Theorem 15.2.11 in [AHV95], we have that Un is a model of ΣP ,
such that a[] ∈ Un, and thus M |= a[].

2. M is a minimal model of R ≡ (P
x(U,M)
U)M .

Assume not, then there is a N ⊂M , model of R. Define N ′ ≡ N ∪ id(U).
Since M \N 6= ∅, we have that Un \N

′ 6= ∅. Since U = id(U), we have
Un = id(U) ∪ S1 ∪ . . . ∪ Sn, such that there is a 1 ≤ j ≤ n, where
Sj \N ′ 6= ∅ and Uj−1 ⊆ N ′. Define Nj ≡ Sj \ (Sj \N ′). We show that
Nj ⊂ Sj , Nj|edb(Pj) = Uj−1|edb(Pj), and Nj is a model of ΣPj

, which is
a contradiction with the minimality of Sj .
a) Nj ⊂ Sj . Immediate.
b) Nj |edb(Pj) = Uj−1|edb(Pj).

l ∈ Nj |edb(Pj) ⇒ l ∈ Sj |edb(Pj) [Def Nj]
⇒ l ∈ Uj−1|edb(Pj) [Def Sj]

and
l ∈ Uj−1|edb(Pj) ⇒ l ∈ Sj |edb(Pj) ∧ l ∈ N ′ [Def Sj and Uj−1 ⊆ N ′]

⇒ l ∈ Nj |edb(Pj) [Def Nj]
c) Nj is a model of ΣPj

. Take ∀X ·
∧
β ⇒ a ∈ ΣPj

. Assume Nj |=
∧
β[].

• a[] ← β[]
+
, (β[]

x
)x(U,M) ∈ R. Indeed, M |= not β[]

−
: take a

not p(x) ∈ not β[]
−

. Then Nj |= ¬p(x). p is negative in a body
of a rule in Pj and thus p ∈ edb(Pj). Moreover, p(x) 6∈ Uj−1. In-
deed, if p(x) were in Uj−1, one would have that p(x) ∈ Nj by b),
a contradiction. We have, by Lemma 5.62, that p(x) 6∈ Un.
p(x) 6∈ Un, such that M 6|= p(x) and M |= not p(x).

• N |= β[]
+
, (β[]

x
)x(U,M).

5.6 Relationship with Datalog LITE 185

– Take p(x) ∈ β[]+. Then Nj |= p(x), such that Sj |= p(x) and
Sj \N ′ 6|= p(x). Then, Sj |= p(x) and N ′ |= p(x), such that
p(x) ∈ N or p(x) ∈ id(U), and thus N |= p(x).

– Take b[][Y | y] ∈ (β[]
x
)x(U,M) for ∀Y · c[] ⇒ b[] ∈ β[]

x
. Then

M |= c[][]. We have, by definition of generalized literals, that
c is a head predicate in in a lower stratum Pk: k < j. By
Lemma 5.62, we have that c[][] ∈ Sk, k < j, such that c[][] ∈
Uk|edb(Pj) ⊆ Uj−1|edb(Pj). And thus, since Uj−1|edb(Pj) =
Sj |edb(Pj), we have that c[][] ∈ Sj.
Furthermore, since Uj−1 ⊆ N ′, we have that c[][] ∈ N ′, and
thus c[][] ∈ Nj . Since Nj |= ∀Y · c[]⇒ b[], we have that Nj |=
b[][], and as before, we have then that N |= b[][].

Thus since N is a model of R, we have that a[] ∈ N and thus
a[] ∈ N ′. Furthermore, since N ⊂M , we have that a[] ∈ Un. Since
a is a head predicate in Pj , we have that, with Lemma 5.62, that
a[] ∈ Sj . And thus a[] ∈ Nj .

For the “if” direction, assume (U,M) is an open answer set of P with
M |= l. Assume Un 6|= l. Define M ′ ≡ Un\id(U). By the previous direction, we
know that (U,M ′) is an open answer set of P with M ′ 6|= l, such that M |= l
and M ′ 6|= l. Note that M |= p(x) ⇐⇒ M ′ |= p(x) for extensional predicates
p in P . Indeed, assume M |= p(x), then p(x) must be in the head of an applied
rule since M is an answer set, contradicting that p is extensional, unless p is
an equality, and then ∅ |= p(x) such that M ′ |= p(x). The other direction is
similar.

We show per induction on k, that for a head predicate p in Pk, M |=
p(x) iff M ′ |= p(x), resulting in M = M ′, and thus in particular we have a
contradiction for l, such that l ∈ Un.

• BASE CASE. Assume k = 1. For the “only if” direction, assume p(x) ∈M .
Since M is an answer set, we have that p(x) ∈ T n1

M , n1 < ∞, We prove,
by induction on n1, that if q(y) ∈ T n1

M for a head predicate q ∈ P1, then
q(y) ∈M ′ (and thus in particular for p(x)).
– BASE CASE. Assume n1 = 1. Thus there is a

r : q(y)← β[]
+
, (β[]

x
)x(U,M) ∈ R ≡ (P

x(U,M)
U)M

with ∅ |= body(r), and M |= not β[], originating from some q(t) ←
β ∈ P1. Since not β contains only extensional predicates, we have that
M ′ |= not β[]. We then have that r′ : q(y) ← β[]+, (β[]x)x(U,M ′) ∈

R′ ≡ (P
x(U,M ′)
U)M

′

. Moreover, ∅ |= (β[]
x
)x(U,M ′). Indeed, assume b[Y |

y] ∈ (β[]
x
)x(U,M ′) for ∀Y · c ⇒ b ∈ β[], then M ′ |= c[]. Since c is

defined to be in a lower stratum, then the rule it appears in, we have
that c contains an extensional predicate, and thus M |= c[] such that
b[] ∈ (β[]

x
)x(U,M), and then ∅ |= b[].

Thus, since M ′ is a model of R′, we have that q(y) ∈M ′.

186 5 Guarded Open Answer Set Programming

– INDUCTION HYPOTHESIS. If q(y) ∈ T n1−1
M for a head predicate

q ∈ P1, then q(y) ∈M ′

– INDUCTION. Assume q(y) ∈ T n1

M . Thus there is a r : q(y) ←

β[]
+
, (β[]

x
)x(U,M) ∈ R with T n1−1

M |= body(r), and M |= not β[]. Since
not β contains only extensional predicates, we have that M ′ |= not β[].
We then have that r′ : q(y)← β[]

+
, (β[]

x
)x(U,M ′) ∈ R′.

By induction, we have that M ′ |= body(r′), and , since M ′ is a model
of R′, we have that q(y) ∈M ′.

The “if” direction is entirely analogous.
• INDUCTION HYPOTHESIS. Assume that for a head predicate p in Pl,

l < k, M |= p(x) iff M ′ |= p(x).
• INDUCTION. Assume p is a head predicate in Pk. For the “only if” direc-

tion, assume p(x) ∈M . SinceM is an answer set, we have that p(x) ∈ T nk

M .
We prove, by induction on nk, that if q(y) ∈ T nk

M for a head predicate
q ∈ Pk, then q(y) ∈M ′ (and thus in particular for p(x)).
– BASE CASE. Assume nk = 1. Thus there is a

r : q(y)← β[]
+
, (β[]

x
)x(U,M) ∈ R

with ∅ |= body(r), and M |= not β[]. Since not β contains only
head predicates from lower strata or extensional predicates, we have,
by induction, that M ′ |= not β[]. We then have that r′ : q(y) ←
β[]

+
, (β[]

x
)x(U,M ′) ∈ R′. Moreover, ∅ |= (β[]

x
)x(U,M ′). Indeed, assume

b[Y | y] ∈ (β[]x)x(U,M ′) for ∀Y · c ⇒ b ∈ β[], then M ′ |= c[]. Since c is
defined to be in a lower stratum or is extensional, we have by induction
that M |= c[] such that b[] ∈ (β[]

x
)x(U,M), and then ∅ |= b[].

Thus, since M ′ is a model of R′, we have that q(y) ∈M ′.
– INDUCTION HYPOTHESIS. If q(y) ∈ T nk−1

M for a head predicate
q ∈ Pk, then q(y) ∈M ′

– INDUCTION. Assume q(y) ∈ T nk

M . Thus there is a r : q(y) ←

β[]+, (β[]x)x(U,M) ∈ R with T nk−1
M |= body(r), and M |= not β[].

Since not β contains only extensional predicates or head predicates
from lower strata, we have, by induction, that M ′ |= not β[]. We then
have that r′ : q(y)← β[]+, (β[]x)x(U,M ′) ∈ R′.
By induction, we have that M ′ |= body(r′), and , since M ′ is a model
of R′, we have that q(y) ∈M ′.

The “if” direction is entirely analogous.

In particular, we have M = M ′ = Un\id(U), which proves the last part of
the Theorem. ut

From Theorem 5.63, we obtain a generalization of Corollary 2 in [GL88] (If Π
is stratified, then its unique stable model is identical to its fixed point model.)
for stratified Datalog programs with generalized literals and an open answer
set semantics.

5.6 Relationship with Datalog LITE 187

Corollary 5.64. Let P be a stratified Datalog program, possibly with gener-
alized literals, and U a universe for P . The unique open answer set (U,M)
of P is identical to its least fixed point model (minus the equality atoms) with
input structure id(U).

We generalize Theorem 5.63, to take into account arbitrary input structures U .
For a stratified Datalog program P , possibly with generalized literals, define
FP ≡ {q(X) ∨ not q(X)←| q extensional (but not =) in P}.

Theorem 5.65. Let P = (P1, . . . , Pn) be a stratified Datalog program, possi-
bly with generalized literals, and l a literal. There exists an input structure U
for P with least fixed point model Un such that Un |= l iff there exists an open
answer set (U,M) of P ∪ FP such that M |= l.

Proof. For the “only if” direction, assume Un |= l. Define U ≡ cts(P ∪ U) and

M ≡ Un\id(U) .

Clearly, M |= l, and one can show, similarly to the proof of Theorem 5.63,
that (U,M) is an open answer set of P .

For the “if” direction, assume (U,M) is an open answer set of P ∪FP with
M |= l. Define

U ≡ id(U) ∪ {q(x) | q(x) ∈M ∧ q extensional (but not equality) in P} .

Take Un the least fixed point model with input U . Assume Un 6|= l. DefineM ′ ≡
Un\id(U). By the previous direction, we know that (cts(U ∪ P)(= U),M ′) is
an open answer set of P with M ′ 6|= l, such that M |= l and M ′ 6|= l. The rest
of the proof is along the lines of the proof of Theorem 5.63. ut

The set of free rules FP ensures a free choice for extensional predicates, a
behavior that corresponds to the free choice of an input structure for a Datalog
program P . Note that P ∪ FP is not a Datalog program anymore, due to the
presence of naf in the heads of FP .

Define a Datalog litem program as a Datalog lite program where all
rules are guarded (instead of guarded or monadic). As we will see below this
is not a restriction. As FP contains only free rules, P ∪ FP is a GgP if P is
a Datalog litem program. Furthermore, the size of the GgP P ∪ FP is linear
in the size of P .

Theorem 5.66. Let P be a Datalog litem program. Then, P ∪FP is a GgP
whose size is linear in the size of P .

Proof. Immediate by the Definition of Datalog litem (note also the remark
at pp. 181) and the fact that FP is a set of free rules and thus has no influence
on the guardedness of P . ut

Satisfiability checking of Datalog litem queries can be reduced to satisfiability
checking w.r.t. GgPs.

188 5 Guarded Open Answer Set Programming

Theorem 5.67. Let (P, q) be a Datalog litem query. Then, (P, q) is satis-
fiable iff q is satisfiable w.r.t. the GgP P ∪ FP . Moreover, this reduction is
linear.

Proof. Immediate by Theorems 5.65 and 5.66. ut

Theorems 5.60 and 5.67 lead to the conclusion that Datalog litem and open
ASP with GgPs are equivalent (i.e., satisfiability checking in either one of
the formalisms can be polynomially reduced to satisfiability checking in the
other).17 Furthermore, since Datalog litem, Datalog lite, and alternation-
free µGF are equivalent as well [GGV02], we have the following result.

Theorem 5.68. Datalog lite, alternation-free µGF, and open ASP with
GgPs are equivalent.

Satisfiability checking in both GF and LGF is 2-exptime-complete [Grä99],
as are their (alternation-free) extensions with fixed point predicates µGF and
µLGF [GW99]. Theorem 5.68 gives us then immediately the following com-
plexity result.

Theorem 5.69. Satisfiability checking w.r.t. GgPs is 2-exptime-complete.

Some extra terminology is needed to show that satisfiability checking w.r.t.
(L)GPs (i.e., without generalized literals) is 2-exptime-complete as well.

Recursion-free stratified Datalog is stratified Datalog where the head pred-
icates in the positive bodies of rules must be head predicates in a lower stra-
tum. We call recursion-free Datalog litem, Datalog liter, where the def-
inition of recursion-free is appropriately extended to take into account the
generalized literals.

For a Datalog liter program P , let ¬¬P be the program P with all
generalized literals replaced by a double negation. E.g.,

q(X)← f (X), ∀Y · r(X ,Y)⇒ s(Y)

is rewritten as the rules

q(X)← f (X),not q ′(X)

and
q ′(X)← r(X ,Y),not s(Y) .

As indicated in [GGV02], this yields an equivalent program ¬¬P , where the
recursion-freeness ensures that ¬¬P is stratified.

Theorem 5.70. Let P be a Datalog liter program. Then ¬¬P ∪ F¬¬P is a
GP.

17 Note that (πϕ, qϕ) is a Datalog litem query [GGV02].

5.7 Application: CTL Reasoning using GgPs 189

Proof. Every rule in P is guarded, and thus every rule in ¬¬P is too. Since
¬¬P ∪ F¬¬P adds but free rules to ¬¬P , all non-free rules of ¬¬P ∪ F¬¬P
are guarded. ut

Satisfiability checking of Datalog liter queries can be linearly reduced to
satisfiability checking w.r.t. GPs.

Theorem 5.71. Let (P, q) be a Datalog liter query. (P, q) is satisfiable iff q
is satisfiable w.r.t. the GP ¬¬P ∪ F¬¬P . Moreover, this reduction is linear.

Proof. For a Datalog liter query (P, q), (¬¬P, q) is an equivalent stratified
Datalog query. Hence, by Theorem 5.65, (¬¬P, q) is satisfiable iff q is satis-
fiable w.r.t. ¬¬P ∪ F¬¬P . This reduction is linear since ¬¬P is linear in the
size of P and so is ¬¬P ∪ F¬¬P . ut

Theorem 5.72. Satisfiability checking w.r.t. (L)GPs is 2-exptime-complete.

Proof. The reduction from alternation-free µGF sentences ϕ to Datalog lite
queries (πϕ, qϕ) specializes, as noted in [GGV02], to a reduction from GF sen-
tences to recursion-free Datalog lite queries. Moreover, the reduction con-
tains only guarded rules such that GF sentences ϕ are actually translated to
Datalog liter queries (πϕ, qϕ).

Satisfiability checking in the guarded fragment GF is 2-exptime-complete
[Grä99], such that, using Theorem 5.71 and the intermediate Datalog liter
translation, we have that satisfiability checking w.r.t. GPs is 2-exptime-hard.
The 2-exptime membership was shown in Theorem 5.28, such that the com-
pleteness readily follows.

Every GP is a LGP and satisfiability checking w.r.t. to the former is 2-
exptime-complete, thus we have 2-exptime-hardness for satisfiability check-
ing w.r.t. LGPs. Completeness follows again from Theorem 5.28. ut

5.7 Application: CTL Reasoning using GgPs

In this section, we show how to reduce CTL satisfiability checking (see Section
2.3.3, pp. 54) to satisfiability checking w.r.t. GgPs, i.e., guarded programs with
generalized literals.

In order to keep the treatment simple, we will assume that the only allowed
temporal constructs are AFq, E(p U q), and EXq, for formulas p and q. They
are actually adequate in the sense that other temporal constructs can be
equivalently, i.e., preserving satisfiability, rewritten using only those three
[HR00]. One can show that AXp is equivalent to ¬EX¬p. Intuitively, p holds at
all next successors if there is no successor where p does not hold. The formula
A(p U q) is equivalent with ¬E(¬q U (¬p∧¬q))∧AFq. This is less easy to see
immediately, but, to illustrate one direction, assume ¬E(¬q U (¬p∧¬q))∧AFq
is satisfiable. By the second conjunct we have that, on all paths, we eventually

190 5 Guarded Open Answer Set Programming

have a q. Choose the location of this q to be minimal on each path, i.e., q does
not hold on earlier states of the path. It remains to show that p holds up
until every such minimal q. Assume not, then there is an earlier state where
¬p ∧ ¬q holds, and thus, by ¬E(¬q U (¬p ∧ ¬q)), there must be earlier state
where q holds, which is a contradiction, since the chosen state were q holds
was minimal.

For a CTL formula p, let clos(p) be the closure of p: the set of subformulas
of p. We construct a GgP G ∪ Dp consisting of a generating part G and a
defining part Dp. The guarded program G contains free rules (g1) for every
proposition P ∈ AP , free rules (g2) that allow for state transitions, and rules
(g3) that ensure that the transition relation is total:

[P](S) ∨ not [P](S)← (g1)

next(S ,N) ∨ not next(S ,N)← (g2)

succ(S)← next(S ,N) ← S = S ,not succ(S) (g3)

where [P] is the predicate corresponding to the proposition P . The S = S is
necessary merely for having guarded rules; note that any rule containing only
one (free) variable can be made guarded by adding such an equality.

The GgPDp introduces for every non-propositional CTL formula in clos(p)
the following rules (we write [q] for the predicate corresponding to the CTL
formula q ∈ clos(p)); as noted before we tacitly assume that rules containing
only one (free) variable S are guarded by S = S:

• For a formula ¬q in clos(p), we introduce in Dp the rule

[¬q](S)← not [q](S) (d1)

Thus, the negation of a CTL formula is simulated by negation as failure.
• For a formula q ∧ r in clos(p), we introduce in Dp the rule

[q ∧ r](S)← [q](S), [r](S) (d2)

Conjunction of CTL formulas thus corresponds to conjunction in the body.
• For a formula AFq in clos(p), we introduce in Dp the rules

[AFq](S)← [q](S) (d1
3)

[AFq](S)← ∀N · next(S ,N)⇒ [AFq](N) (d2
3)

We define AFq corresponding to the intuition that AFq holds if, either q
holds at the current state (d1

3) or for all successors, we have that AFq holds
(d2

3). Note that we use generalized literals to express the for all successors
part. Moreover, we explicitly use the minimal model semantics of (open)
answer set programming to ensure that eventually [q] holds on all paths:
one cannot continue to use rule (d2

3) to motivate satisfaction of AFq, at
a certain finite point, one is obliged to use rule (d1

3) to obtain a finite
motivation.

5.7 Application: CTL Reasoning using GgPs 191

• For a formula E(q U r) in clos(p), we introduce in Dp the rules

[E(q U r)](S)← [r](S) (d4)

[E(q U r)](S)← [q](S),next(S ,N), [E(q U r)](N) (d5)

based on the intuition that there is a path where q holds until r holds (and
r eventually holds) if either r holds at the current state (d4), or q holds at
the current state and there is some next state where again E(q U r) holds
(d5). The minimality will again make sure that we eventually must deduce
r with rule (d4).

• For a formula EXq in clos(p), we introduce in Dp the rule

[EXq](S)← next(S ,N), [q](N) (d6)

saying that EXq holds if there is some successor where q holds.

Note that replacing the generalized literal in (d2
3) with a double negation has

not the intended effect:

[AFq](S) ← not q ′(S)
q ′(S)← next(S ,N),not [AFq](N)

A (fragment) of an open answer set could then be

({s0, s1, . . .}, {next(s0, s1),next(s1, s2), . . . ,

[AFq](s0), [AFq](s1), . . .}) ,

such that one would conclude that [AFq] is satisfiable while there is a path
s0, s1, . . . where q never holds.

Example 5.73. Consider the absence of starvation formula (Example 2.25, pp.
55) t⇒ AFc. We rewrite this such that it does not contain⇒, i.e., we consider
the equivalent formula ¬(t∧¬AFc). For AP = {c, t}, the program G contains
the rules

[t](S) ∨ not [t](S)←
[c](S) ∨ not [c](S)←

next(S ,N) ∨ not next(S ,N)←
succ(S)← next(S ,N)

← S = S ,not succ(S)

The program Dp, with p ≡ ¬(t ∧ ¬AFc), contains the rules

[¬(t ∧ ¬AFc)](S) ← not [t ∧ ¬AFc](S)
[t ∧ ¬AFc](S) ← [t](S), [¬AFc](S)

[¬AFc](S) ← not [AFc](S)
[AFc](S) ← [c](S)
[AFc](S) ← ∀N · next(S ,N)⇒ [AFc](N)

One can see that p is (CTL) satisfiable iff [p] is satisfiable w.r.t. G ∪Dp.

192 5 Guarded Open Answer Set Programming

Theorem 5.74. Let p be a CTL formula. p is satisfiable iff [p] is satisfiable
w.r.t. the GgP G ∪Dp.

Proof. For the “only if” direction, assume p is satisfiable. Then there exists a
model K = (S,R,L) of p such that K, s |= p, for a state s ∈ S. Define

M ≡ {next(s, t) | (s, t) ∈ R} ∪ {succ(s) | (s, t) ∈ R}

∪ {[q](s) | K, s |= q ∧ q ∈ clos(p)} .

Then [p](s) ∈M ; we show that (S,M) is an open answer set of G ∪Dp.

1. M is a model of P ≡ ((G ∪Dp)
x(S,M)
S)M .

• Free rules (g1) are always satisfied by M .
• Free rules (g2) are always satisfied by M .
• Take a rule succ(s) ← next(s , t) ∈ P with M |= next(s , t). Then,

by definition of M , (s, t) ∈ R such that, again by definition of M ,
succ(s) ∈M .

• There are no constraints ← s = s ∈ P . Indeed, otherwise succ(s) 6∈
M , such that there is no t ∈ S for which (s, t) ∈ R, a contradiction
since R is total.

• Take a rule [¬q](s) ← ∈ P originating from (d1). Then [q](s) 6∈ M ,
such that, by definition ofM , K, s 6|= q. By definition of |= for CTL, we
then have that K, s |= ¬q, such that, by definition of M , [¬q](s) ∈M .

• Take a rule r : [q ∧ r](s) ← [q](s), [r](s) ∈ P , with M |= body(r).
Similarly to the previous case, we have that M |= [q ∧ r](s).

• Take a rule [AFq](s) ← [q](s) ∈ R with [q](s) ∈ M . Then, K, s |= q,
by definition of M , such that K, s |= AFq, and, by definition of M ,
[AFq](s) ∈M .

• Take a rule r : [AFq](s) ← [AFq](t1), . . . ∈ R, originating from (d2
3),

with M |= body(r). By definition of the GeLi-reduct, we have that for
all ti in r, next(s , ti) ∈ M , such that (s, ti) ∈ R. Thus, we have that
for all ti where (s, ti) ∈ R, then K, ti |= AFq, such that K, s |= AFq.
Thus, by definition of M , we have that [AFq](s) ∈M .

• Take a rule [E(q U r)](s) ← [r](s) ∈ R, with [r](s) ∈ M . Then
K, s |= r, such that K, s |= E(q U r), and thus, by definition of M ,
[E(q U r)](s) ∈M .

• Take a rule r : [E(q U r)](s) ← [q](s),next(s , t), [E(q U r)](t) ∈ R,
with M |= body(r). Then K, s |= q, (s, t) ∈ R, K, t |= E(q U r),
such that K, s |= E(q U r), and by definition of M , we have that
[E(q U r)](s) ∈M .

• Take a rule r : [EXq](s) ← next(s , t), [q](t) ∈ R with M |= body(r).
Similarly as before, it follows that [EXq](s) ∈M .

2. M is a minimal model of P . Assume not, then there is a N ⊂M , model of
P . We show that this leads to a contradiction, by showing that M ⊆ N .
• next(s, t) ∈ M , then next(s , t) ← ∈ P , and since N is a model, we

have that next(s, t) ∈ N .

5.7 Application: CTL Reasoning using GgPs 193

• succ(s) ∈ M , then (s, t) ∈ R, such that next(s , t) ∈ M , and thus, by
the previous next(s, t) ∈ N . Thus, succ(s)← next(s , t) ∈ P is applied
w.r.t. N such that succ(s) ∈ N .

• [¬q](s) ∈M . Then K, s |= ¬q, by definition of M , such that K, s 6|= q,
and thus [q](s) 6∈M . Thus, [¬q](s)←∈ P , and since N is a model, we
have that [¬q](s) ∈ N .

The rest of the cases are handled by induction on the structure of a literal.
• BASE CASE: [P](s) ∈M for a P ∈ AP . With the free rule, we again

have that [P](s) ∈ N .
• INDUCTION HYPOTHESIS: Assume that for q and r: if [q](s) ∈M ,

then [q](s) ∈ N , and similarly for r.
• INDUCTION:

– [q ∧ r](s) ∈ M , then K, s |= q and K, s |= r, such that [q](s) ∈ M
and [r](s) ∈M . By induction, we have that [q](s) ∈ N and [r](s) ∈
N . Thus with [q ∧ r](s) ← [q](s), [r](s) ∈ P applied w.r.t. N , we
have that [q ∧ r](s) ∈ N .

– Take [AFq](s) ∈M (and thus, K, s |= AFq). Assume, by contradic-
tion, that [AFq](s) 6∈ N . Then
a) K, s |= ¬q. Indeed, otherwise, K, s |= q, such that [q](s) ∈ M ,

and, by induction, [q](s) ∈ N . With [AFq](s) ← [q](s) ∈ P , we
then have that [AFq](s) ∈ N , a contradiction.

b) ∃(s, s′) ∈ R · [AFq](s′) 6∈ N . Indeed, otherwise, the body of
the GeLi-reduct of (d2

3) would be applied w.r.t. N such that
[AFq](s) ∈ N , a contradiction.

With the same reasoning, we have that
a) K, s′ |= ¬q, and
b) ∃(s′, s′′) ∈ R · [AFq](s′) 6∈ N .
Continuing this way, one can construct a path s0 = s, s1 = s′, s2 =
s′′, . . . where K, si |= ¬q, for all 1 ≤ i. Thus, K, s |= EG¬q, a
contradiction with K, s |= AFq, such that [AFq](s) ∈ N .

– [E(q U r)](s) ∈ M . Then there is path (s0, s1), . . . , (sn−1, sn) ∈ R
with s = s0, such that K, si |= q, 1 ≤ i < n and K, sn |= r. Then
[q](si) ∈ M , 1 ≤ i < n, and [r](sn) ∈ M . By induction, we have
that [q](si) ∈ N , 1 ≤ i < n, and [r](sn) ∈ N . With rule (d4), we
have that [E(q U r)](sn) ∈ N . Since next(si , si+1) ∈ N , we have
then, with rule (d5), that [Eq U r](sn−1) ∈ N . Continuing this way,
we have that [E(q U r)](s) ∈ N .

– [EXq](s) ∈ M , then there is a t, such that next(s , t) ∈ M (and
thus in N), and with K, t |= q. Thus [q](t) ∈M , and, by induction,
[q](t) ∈ N , such that with (d6), we have that [EXq](s) ∈ N .

For the “if” direction, assume (U,M) is an open answer set of G ∪ Dp

such that [p](s) ∈M for some s, where p is a CTL formula. Define the model
K = (U,R,L) with R = {(s, t) | next(s, t) ∈ M}, and L(s) = {P | [P](s) ∈
M ∧ P ∈ AP}. Remains to show that K is a structure and K, s |= p.

194 5 Guarded Open Answer Set Programming

The relationR is total, indeed, assume not, then there is a t ∈ U , which has
no successors in R. Then, there is no next(t , t ′) ∈M , such that succ(t) 6∈M ,
and the constraint (g3) gives a contradiction. We prove per induction on the
structure of a CTL formula q, that

K, s |= q ⇐⇒ [q](s) ∈M .

• BASE CASE: q is a proposition P . It is immediate from the definition of
K that: K, s |= P ⇐⇒ [P](s) ∈M .

• INDUCTION HYPOTHESIS: It is proved for formulas q and r.
• INDUCTION:

– We have K, s |= ¬q ⇐⇒ K, s 6|= q ⇐⇒ [q](s) 6∈ M , where the latter
is due to the induction hypothesis. Assume K, s |= ¬q, then [¬q](s)←
∈ P , and since M is an answer set, we have that [¬q](s) ∈ M . The

other way around, assume [¬q](s) ∈M , then by minimality ofM , there
must be an applied rule with [¬q](s) in the head. Thus (d1) is applied
and [q](s) 6∈M , such that K, s |= ¬q.

– We have K, s |= q ∧ r ⇐⇒ K, s |= q ∧ K, s |= r ⇐⇒ [q](s) ∈
M ∧ [r](s) ∈ M , where the latter is due to the induction hypothesis.
AssumeK, s |= q∧r, then [q](s) ∈M∧[r](s) ∈M , such that, sinceM is
an answer set, with rule (d2), [q∧r](s) ∈M . Assume [q∧r](s) ∈M , then
by minimality of M , [q](s) ∈M ∧ [r](s) ∈M , such that K, s |= q ∧ r.

– We have K, s |= AFq iff ∀π, π0 = s · ∃1 ≤ i ·K,πi |= q.
Assume K, s |= AFq then for all chains next(s , π1) ∈M, . . ., there is a
πi such that [q](πi) ∈M . Assume, by contradiction, that [AFq](s) 6∈M .
Then, by rules (d1

3) and (d2
3), [q](s) 6∈M and there is a next(s , s ′) ∈M

such that [AFq](s′) 6∈M . We repeat the reasoning for s′ = π1, such that
[q](π1) 6∈M and there is a next(π1 , s

′′) ∈M such that [AFq](s′′) 6∈M .
We can continue this ad infinitum such that we defined a path π with
π0 = s and no i such that [q](πi) ∈M . This is a contradiction.
The other way around, assume [AFq](s) ∈ M , then, by minimality of
M , there is either a [q](s) ∈ M , in which case we are done, since, by
induction, K, s |= q and thus K, s |= AFq, or we have that for all s′

where next(s , s ′) ∈ M , [AFq](s′) ∈ M . We can continue our argument
for s′, and, by minimality of M , eventually we have to deduce that
on every path π from s′ (and thus from s), there is some πi such that
K,πi |= q.

– We have K, s |= E(q U r) iff ∃π, πj · π0 = s ∧ ∀1 ≤ i < j ·K,πi |= q ∧
K,πj |= r iff there exist next(s , π1) ∈M, . . ., and ∀1 ≤ i < j · [q](πi) ∈
M ∧ [r](πj) ∈ M , where the latter is by the induction hypothesis.
Assume K, s |= E(q U r), then ∀1 ≤ i < j · [q](πi) ∈ M ∧ [r](πj) ∈ M .
By (d4), we have that [E(q U r)](πj) ∈M . By (d5), we then have that
[E(q U r)](πj−1) ∈ M , and continuing the application of (d5), we end
up with [E(q U r)](s) ∈M .
Assume [E(q U r)](s) ∈ M . By minimality of M , we then have either
[r](s) ∈ M or [q](s) ∈ M , next(s , s ′) ∈ M , and [E(q U r)](s′) ∈ M .

5.7 Application: CTL Reasoning using GgPs 195

In the former case, we have K, s |= r and thus K, s |= E(q U r). In
the latter case, we have, again by minimality, either [r](s′) ∈ M or
[q](s′) ∈ M , next(s ′, s ′′) ∈ M , and [E(q U r)](s′′) ∈ M . In the for-
mer case, we have [q](s) ∈ M , next(s , s ′) ∈ M , and [r](s′) ∈ M and
thus K, s |= E(q U r). In the latter case, we continue the construc-
tion. By minimality, this must eventually end with a constructed path
next(s , π1) ∈ M, . . ., and ∀1 ≤ i < j · [q](πi) ∈ M ∧ [r](πj) ∈ M such
that K, s |= E(q U r).

– We have K, s |= EXq iff ∃(s, t) ∈ R · K, t |= q iff ∃next(s , t) ∈M ·
[q](t) ∈ M , where the latter is by the induction hypothesis. Assume
K, s |= EXq then ∃next(s , t) ∈M · [q](t) ∈M , with (d6), we then have
that [EXq](s) ∈M .
Assume [EXq](s) ∈ M , then by minimality of M and rule (d6), there
is a next(s , t) ∈M such that [q](t) ∈M , and thus K, s |= EXq.

ut

Since CTL satisfiability checking is exptime-complete (see Theorem 2.26,
pp. 56) and satisfiability checking w.r.t. GgPs is 2-exptime-complete (see
Theorem 5.69, pp. 188), the reduction from CTL to GgPs does not seem to
be optimal. However, we can show that the particular GgP G∪Dp is a bound
GgP for which reasoning is indeed exptime-complete and thus optimal.

The width of a formula ψ is the maximal number of free variables in its
subformulas [Grä02b]. We define bound programs by looking at their first-
order form and the arity of its predicates.

Definition 5.75. Let P be a gP. Then, P is bound if every formula in sat(P)
is of bounded width and the predicates in P have a bounded arity.

For a CTL formula p, one has that G ∪Dp is a bound GgP.

Theorem 5.76. Let p be a CTL formula. Then, G ∪Dp is a bound GgP.

Proof. Every subformula of formulas in sat(G ∪Dp) contains at most 2 free
variables and the maximum arity of the predicates is 2 as well. ut

Theorem 5.77. Satisfiability checking w.r.t. bound GgPs is
exptime-complete.

Proof. Let P be a bound GgP. We have that (P f)p is bound and one can check

that ∃X·p(X,0, q)∧
∧
gcompgl((P f)p) is of bounded width. Note that formula

(5.19) on pp. 170 contains a p(X). The condition that each formula in sat(P)
is of bounded width is not enough to guarantee that p(X) has bounded width.
Add, e.g., ground rules r to P with increasing arities of predicates. Although
the width of formulas in sat(P) remains constant (no variables are added), the
arity of p(X) in Formula (5.19) increases, thus increasing the width. Hence,
the restriction that the arity of predicates in P should be bounded as well.

By Theorem 5.56 and 5.57, one can reduce satisfiability checking of a
bound GgP to satisfiability of a µGF-formula with bounded width. The latter

196 5 Guarded Open Answer Set Programming

can be done in exptime by Theorem 1.2 in [GW99], such that satisfiability
checking w.r.t. bound GgPs is in exptime.

The exptime-hardness follows from Theorem 5.74 and the exptime-
hardness of CTL satisfiability checking (Theorem 2.26). ut

6

Description Logics Reasoning via Open Answer
Set Programming

In Section 6.1, we reduce satisfiability checking in the DL SHIQ to satisfi-
ability checking under IWA w.r.t. CoLPs, and in Section 6.2, we show how
a DL that adds constants and conjunction/disjunction of roles and removes
transitive roles from SHIQ, the DL ALCHOQ(t,u), can be simulated by
acyclic FoLPs. The DL ALCHOQ(t,u) extended with DL-safe rules can be
simulated using free acyclic EFoLPs as shown in Section 6.3. Section 6.4 de-
scribes the DL DLR which supports n-ary relations; a fragment of DLR,
so-called DLR−{≤}, can be simulated by bound guarded programs. We dis-
cuss in Section 6.5 some of the advantages and disadvantages of using open
answer set programming instead of DLs for knowledge representation. Finally,
we give an overview of related work in Section 6.6.

6.1 Simulating SHIQ

Consider the following knowledge base Σ (modified from Example 2.24):

Personnel ≡ Management tWorkers t ∃boss .Management
Management v (∀take orders .Management) u (≥ 3 boss .Workers)

The first axiom expresses that personnel consists exactly of the managers,
workers, and those people that are the boss of some managers. The second
axiom says that every manager takes only orders from other managers and is
the boss of at least 3 workers. Additionally, we assume Σ contains the axiom
Trans(boss), indicating that if x is a boss of y and y is a boss of z, then x is
a boss of z.

A model of this knowledge base is I = ({j, w1, w2, w3,m}, ·I), with ·I

defined by

198 6 Description Logics Reasoning via Open Answer Set Programming

WorkersI = {w1, w2, w3}

ManagementI = {m}

PersonnelI = {j, w1, w2, w3,m}

bossI = {(j,m), (m,w1), (m,w2), (m,w3), (j, w1), (j, w2), (j, w3)}

take ordersI = ∅

We translate the two axioms as three CoLP constraints (the first axiom actu-
ally corresponds to two terminological axioms)1:

← Per(X),not (Man tWor t ∃boss .Man)(X)
← not Per(X), (Man tWor t ∃boss .Man)(X)
← Man(X),not ((∀tak .Man) u (≥ 3 boss .Wor))(X)

Intuitively, we associate with the concept expressions on either side of v in
a terminological axiom a new predicate name. We conveniently denote this
new predicate like the corresponding concept expression. The constraints sim-
ulate the behavior of the terminological axioms. E.g., if there is a Man(x) in
an open answer set, and there is no ((∀tak .Man) u (≥ 3 boss .Wor))(x), we
have a contradiction. This corresponds to the DL behavior of the correspond-
ing axiom: if x ∈ ManagementI and x 6∈ ((∀tak.Man) u (≥ 3 boss .Wor))I ,
we have a contradiction as the axiom requires that ManI ⊆ ((∀tak.Man) u
(≥ 3 boss .Wor))I for models I.

Note that we do not encode the transitivity of boss directly as a con-
straint ← boss(X ,Y), boss(Y ,Z),not boss(X ,Z), as this is not a CoLP rule
(and cannot be written as one). Instead, we take into account transitivity of
roles when defining concept expressions that contain transitive roles (such as
∃boss .Man , see below).

After having translated the axioms as CoLP constraints, it remains to de-
fine the newly introduced predicates according to the DL semantics. Consider
the first constraint

← Per(X),not (Man tWor t ∃boss .Man)(X)

We define Per as a free predicate:

Per(X) ∨ not Per(X)←

Intuitively, the DL semantics gives an open (first-order) interpretation to its
concept names: a domain element is either in the interpretation of a concept
name or not.

Similarly, we have, for that particular constraint, the free rules

1 We use short names for compactness: Man for Management, Wor for Workers,
Per for Personnel, tak for take orders. Furthermore, we assume that a logic pro-
gram may contain predicate names starting with a capital letter; this should not
lead to confusion with variables, which appear only as arguments of predicates.

6.1 Simulating SHIQ 199

Man(X) ∨ not Man(X) ←
Wor(X) ∨ not Wor(X) ←

boss(X ,Y) ∨ not boss(X ,Y)←

Note that boss is a role name, so we introduce it as a binary predicate. The
predicate (Man tWor t ∃boss .Man) can be defined by the rules:

(Man tWor t ∃boss .Man)(X) ← Man(X)
(Man tWor t ∃boss .Man)(X) ← Wor(X)
(Man tWor t ∃boss .Man)(X) ← (∃boss .Man)(X)

Intuitively, if (Man tWor t ∃boss .Man)(x) is in an open answer set, then, by
minimality of open answer sets, there has to be either a Man(x), Wor(x), or
a (∃boss .Man)(x). Vice versa, if either Man(x), Wor(x), or a (∃boss .Man)(x)
is in the open answer set, then (Man tWor t ∃boss .Man)(x) has to be as
well since the rules must be satisfied. This corresponds exactly to the DL
semantics for concept disjunction.

The predicate (∃boss .Man) is defined by the rules

(∃boss .Man)(X) ← boss(X ,Y),Man(Y)
(∃boss .Man)(X) ← boss(X ,Y), (∃boss .Man)(Y)

The rules explicitly say that (∃boss .Man)(x) holds in an open answer set
iff there is some chain boss(x , u0), . . . , boss(un , y), and Man(y) that hold in
that open answer set. By transitivity of boss , we should indeed have then that
(x, y) ∈ bossI such that x ∈ (∃boss.Man)I .

The second constraint does not yield any new rules. The last constraint

← Man(X),not ((∀tak .Man) u (≥ 3 boss .Wor))(X)

introduces a new free rule for the tak predicate:

tak(X ,Y) ∨ not tak(X ,Y)←

and a rule that defines concept conjunction as conjunction in the body of a
rule:

((∀tak .Man) u (≥ 3 boss .Wor))(X) ← (∀tak .Man)(X), (≥ 3 boss .Wor)(X)

The predicate (∀tak .Man) is defined corresponding to the DL equivalence
∀tak.Man ≡ ¬∃tak.¬Man:

(∀tak .Man)(X) ← not (∃tak .¬Man)(X)
(∃tak .¬Man)(X) ← tak(X ,Y), (¬Man)(Y)

(¬Man)(X) ← not Man(X)

which also shows that negated concept expressions are defined using not.
Further note that, since tak is not transitive, we have no recursion in the rule

200 6 Description Logics Reasoning via Open Answer Set Programming

for ∃tak .¬Man like for ∃boss .Man : ∃tak .¬Man should hold only when there
is a direct tak -connection with a Man element.

Finally, the number restriction is defined as follows:

(≥ 3 boss .Wor)(X)← boss(X ,Y1), boss(X ,Y2), boss(X ,Y3),
Wor(Y1),Wor(Y2),Wor(Y3),
Y1 6= Y2, Y1 6= Y3, Y2 6= Y3

It uses inequality to ensure that there are at least 3 different boss successors
y of some x that are workers in an open answer set iff (≥ 3 boss .Wor)(x) is
in the open answer set.

Before giving the formal translation, define the closure clos(C,Σ) of a
SHIQ concept expression C and a SHIQ knowledge base Σ as the smallest
set satisfying the following conditions:

• C ∈ clos(C,Σ),
• for each C v D an axiom in Σ (role or terminological), {C,D} ⊆

clos(C,Σ),
• for each Trans(R) in Σ, {R} ⊆ clos(C,Σ),
• for every D in clos(C,Σ), we have

– if D = ¬D1, then {D1} ⊆ clos(C,Σ),
– if D = D1 tD2, then {D1, D2} ⊆ clos(C,Σ),
– if D = D1 uD2, then {D1, D2} ⊆ clos(C,Σ),
– if D = ∃R.D1, then {R,D1}∪{∃S.D1 | Sv∗R,S 6= R,Trans(S) ∈ Σ} ⊆

clos(C,Σ),
– if D = ∀R.D1, then {∃R.¬D1} ⊆ clos(C,Σ),
– if D = (≤ n Q .D1), then {(≥ n + 1 Q .D1)} ⊆ clos(C,Σ),
– if D = (≥ n Q .D1), then {Q,D1} ⊆ clos(C,Σ).

Note that for a R− ∈ clos(C,Σ), we do not necessarily add R to the closure,
instead, we replace in the CoLP translation occurrences of inverted roles R−

by the inverted predicate Ri. Concerning the addition of the extra ∃S.D1

for ∃R.D1 in the closure, note that x ∈ (∃R.D1)
I holds if there is some

(x, y) ∈ RI with y ∈ DI1 or if there is some Sv∗R with S transitive such
that (x, u0) ∈ SI , . . . , (un, y) ∈ SI with y ∈ DI1 . The latter amounts to
x ∈ (∃S.D1)

I . Thus, in the open answer set setting, we have that ∃R.D1(x)
is in the open answer set if R(x, y) and D1(y) hold or ∃S.D1(x) holds for
some transitive subrole S of R. The predicate ∃S.D1 will be defined by adding
recursive rules, as in the above example, hence the inclusion of such predicates
in the closure (which will be used to define the actual CoLP translation).

Furthermore, for a (≤ n Q .D1) in the closure, we add {(≥ n + 1 Q .D1)},
since we will base our definition of the former predicate on the DL equivalence
(≤ n Q .D1) ≡ ¬(≥ n + 1 Q .D1).

Formally, we define Φ(C,Σ) to be the following CoLP, obtained from the
SHIQ knowledge base Σ and the concept expression C:

6.1 Simulating SHIQ 201

• For each terminological axiom C v D ∈ Σ, add the constraint

← C (X),not D(X) (6.1)

• For each role axiom R v S ∈ Σ, add the constraint

← r(X ,Y),not s(X ,Y) (6.2)

where

r ≡

{

Qi for R = Q−, Q a role name

Q for R = Q,Q a role name

and similarly for s, i.e., replace (·)− by (·)i.
• Next, we distinguish between the types of concept expressions that appear

in clos(C,Σ). For each D ∈ clos(C,Σ):
– if D is a concept name, add

D(X) ∨ not D(X)← (6.3)

– if D is a role name, add

D(X ,Y) ∨ not D(X ,Y)← (6.4)

– if D is an inverted role name R− for a role name R, add

Ri(X ,Y) ∨ not Ri(X ,Y)← (6.5)

– if D = ¬E, add
D(X)← not E (X) (6.6)

– if D = E u F , add
D(X)← E (X),F (X) (6.7)

– if D = E t F , add
D(X)← E (X)
D(X)← F (X)

(6.8)

– if D = ∃Q.E, add
D(X)← q(X ,Y),E (Y) (6.9)

where

q ≡

{

Ri for Q = R−, R a role name

R for Q = R,R a role name

and for all Sv∗Q, S 6= R, with Trans(S) ∈ Σ, add rules

D(X)← (∃S .E)(X) (6.10)

If Trans(Q) ∈ Σ, we further add the rule

D(X)← q(x , y),D(Y) (6.11)

202 6 Description Logics Reasoning via Open Answer Set Programming

– if D = ∀R.E, add

D(X)← not (∃R.¬E)(X) (6.12)

– if D = (≤ n Q .E), add

D(X)← not (≥ n + 1 Q .E)(X) (6.13)

– if D = (≥ n Q .E), add

D(X)← q(X ,Y1), . . . , q(X ,Yn),E (Y1), . . . ,E (Yn),∪i 6=j {Yi 6= Yj }
(6.14)

where

q ≡

{

Ri for Q = R−, R a role name

R for Q = R,R a role name

Rule (6.9) is what one would intuitively expect for the exists restriction.
However, in case Q is transitive this rule is not enough. Indeed, if q(x, y),
q(y, z), E(z) are in an open answer set, one expects (∃Q.E)(x) to be in it as
well if Q is transitive. However, we have no rules enforcing q(x, z) to be in the
open answer set (as remarked above, this leads to non-CoLP rules). We can
solve this by adding to (6.9) the rule (6.11), such that such a chain q(x, y),
q(y, z), with E(z) in the open answer set correctly deduces D(x).

It may still be that there are transitive subroles of Q that need the same
recursive treatment as above. To this end, we introduce rule (6.10).

We do not need such a trick with the number restrictions since the roles
Q in a number restriction are required to be simple, i.e., without transitive
subroles.

Finally, note how we treat inverted roles, we replace inverted roles R−

by inverted predicates Ri, which have, under the IWA (see pp. 72), a similar
semantics.

Theorem 6.1. Let Σ be a SHIQ knowledge base and C a SHIQ concept
expression. Then, Φ(C,Σ) is a CoLP, with a size that is polynomial in the
size of C and Σ.

Proof. Observing the rules in Φ(C,Σ), it is clear that this program is a CoLP.
The size of the elements in clos(C,Σ) is linear and the size of clos(C,Σ)

is polynomial in C and Σ. The size of the CoLP Φ(C,Σ) is polynomial in the
size of clos(C,Σ). The only non-trivial case in showing the latter arises by

the addition of rule (6.14) which introduces n(n−1)
2 inequalities for a number

restriction (≥ n Q .E). We assume, as is not uncommon in DLs (see, e.g.,
[Tob01]), that the number n is represented in unary notation

11 . . . 1
︸ ︷︷ ︸

n

such that the number of introduced inequalities is quadratic in the size of the
number restriction. ut

6.1 Simulating SHIQ 203

Theorem 6.2. A SHIQ concept expression C is satisfiable w.r.t. a SHIQ
knowledge base Σ iff the predicate C is satisfiable under IWA w.r.t. Φ(C,Σ).

Proof. For the “only if” direction, assume the concept expression C is satis-
fiable w.r.t. Σ, i.e., there exists a model I = (∆I , ·I) with CI 6= ∅. Define
(U,M) such that U ≡ ∆I and

M ≡ {C(x) | x ∈ CI , C ∈ clos(C,Σ), C a concept expression}

∪ {Ri(x, y) | (x, y) ∈ (R−)I , R− or R in clos(C,Σ), R a role name}

∪ {R(x, y) | (x, y) ∈ RI , R− or R in clos(C,Σ), R a role name} .

We have that (U,M) is an open answer set under IWA of Φ(C,Σ) that satisfies
C:

1. (U,M) is an open interpretation under IWA of Φ(C,Σ). By the DL se-
mantics of inverted roles and the definition of M , we have that R(x, y) ∈

M ⇐⇒ Ri(y, x) ∈ M such that the IWA (Equation (3.1), pp. 72) is
satisfied.

2. Since CI 6= ∅ there clearly is an x ∈ U such that C(x) ∈M .

3. M is a model under IWA of Φ(C,Σ)
M
U . We check that every rule in

Φ(C,Σ)MU is satisfiable:
a) Take a rule ← C(x) originating from (6.1). Then, D(x) 6∈ M , such

that x 6∈ DI , by definition of M , and x 6∈ CI by C v D. Thus,
C(x) 6∈M and the rule is satisfied.

b) Rules originating from (6.2) can be done similarly.
c) Rules originating from the free rules (6.3), (6.4), and (6.5) are satisfied.

d) Take a rule D(x) ←∈ Φ(C,Σ)
M
U originating from (6.6) such that

E(x) 6∈ M and thus x 6∈ EI , or, equivalently, x ∈ (¬E)I = DI

such that D(x) ∈M .
e) Take a ruleE u F (x)← E(x), F (x) originating from (6.7) with E(x) ∈

M and F (x) ∈M . Then, x ∈ (E u F)I = DI such that D(x) ∈M .
f) Rules originating from (6.8) can be done like the previous case.
g) Take a rule (∃Q.E)(x) ← q(x, y), E(y) originating from (6.9) with a

body true in M . Then, (x, y) ∈ QI and y ∈ EI such that x ∈ (∃Q.E)I

and (∃Q.E)(x) ∈M .
h) Take a rule D(x) ← (∃S.E)(x) originating from (6.10) with a body

true in M . Then, x ∈ (∃S.E)I such that there is a (x, y) ∈ SI and
y ∈ EI . Thus, with Sv∗Q, (x, y) ∈ QI and x ∈ (∃Q.E)I such that
(∃Q.E)(x) ∈M .

i) Take a rule D(x)← q(x, y), D(y) originating from (6.11) with a body
true in M . Then, (x, y) ∈ QI and y ∈ (∃Q.E)I such that there is a
(y, z) ∈ QI and z ∈ EI . Since Q is transitive, we have that (x, z) ∈
QI with z ∈ EI such that x ∈ (∃Q.E)I and, by definition of M ,
D(x) ∈M .

204 6 Description Logics Reasoning via Open Answer Set Programming

j) Take a rule D(x) ← originating from (6.12) such that (∃R.¬E)(x) 6∈
M . Thus, x 6∈ (∃R.¬E)I such that x ∈ (∀R.E)I and D(x) ∈M .

k) Take a rule D(x)← originating from (6.13) such that
(≥ n + 1 Q .E)(x) 6∈ M , and thus, x 6∈ (≥ n + 1 Q .E)I , such that
x ∈ (≤ n Q .E)I and D(x) ∈M .

l) Take a rule D(x) ← q(x, y1), . . . , q(x, yn), E(y1), . . . , E(yn) with a
body true in M . Then (x, y1) ∈ QI , . . . , (x, yn) ∈ QI and y1 ∈
EI , . . . , yn ∈ EI with all yi pairwise different such that x ∈ (≥
n Q .E)I , and D(x) ∈M .

4. M is a minimal model under IWA of Φ(C,Σ)
M
U . Assume not, then there

is a model under IWA N of Φ(C,Σ)MU , such that N ⊂M . We prove that
M ⊆ N , which leads to a contradiction. Take l ∈ M . We distinguish
between the following cases for l:
a) l = R(x, y) for a role name R. Then, by definition of M , (x, y) ∈ RI

for R or R− in clos(C,Σ).
• If R ∈ clos(C,Σ), then R is free and we have that R(x, y) ←∈

Φ(C,Σ)
M
U such that R(x, y) ∈ N .

• If R− ∈ clos(C,Σ), then Ri is free. Since (x, y) ∈ RI , we have

that (y, x) ∈ (R−)
I

and thus Ri(y, x) ∈ M . Then, Ri(y, x) ←∈

Φ(C,Σ)
M
U such that Ri(y, x) ∈ N . Since N satisfies the IWA, we

have that R(x, y) ∈ N .

b) l = Ri(x, y) for a role name R. This can be done like the previous.
c) l = E(x) for a concept expression E ∈ clos(C,Σ). We look at the

structure of E and prove this by induction:
i. BASE: E = A, A a concept name. By rule (6.3), E(x) ←∈

Φ(C,Σ)
M
U such that E(x) ∈ N .

ii. INDUCTION HYPOTHESIS: Assume it is proved for concept ex-
pressions E′, C1, and C2.

iii. E = ¬E′. Since E(x) ∈ M , we have that x ∈ (¬E′)I such that

x 6∈ E′I and E′(x) 6∈M . Then, E(x)← in Φ(C,Σ)
M
U and E(x) ∈

N .
iv. E = C1 uC2, then x ∈ (C1 uC2)

I such that x ∈ CI1 and x ∈ CI2 .
Then C1(x) ∈M and C2(x) ∈M . By induction, we have C1(x) ∈
N and C2(x) ∈ N . With rule (6.7), we have that E(x) ∈ N .

v. E = C1 t C2. Again per induction, and similar to the previous
case.

vi. E = ∃Q.E′. From E(x) ∈ M we get x ∈ (∃Q.E′)I and thus

there is a y such that (x, y) ∈ QI and y ∈ E′
I
. By definition

of M , q(x, y) ∈ M and E′(y) ∈ M . From q(x, y) ∈ M , we have,
by the above, that q(x, y) ∈ N . By induction, we also have that
E′(y) ∈ N . With rule (6.9), we then have that E(x) ∈ N .

6.1 Simulating SHIQ 205

vii. E = ∀Q.E′. From E(x) ∈ M , we have that x ∈ EI such that

x 6∈ (∃Q.¬E′)I and (∃Q.¬E′)(x) 6∈M . Thus, E(x)←∈ Φ(C,Σ)
M
U

such that E(x) ∈ N .
viii. E = (≤ n Q .E ′). From (≤ n Q .E ′)(x) ∈ M we have that x ∈

(≤ n Q .E ′)I , such that x 6∈ (≥ n + 1 Q .E ′)I and thus E(x)←∈

Φ(C,Σ)
M
U , such that E(x) ∈ N .

ix. E = (≥ n Q .E ′). Then x ∈ EI such that there are at least n

different yi such that (x, yi) ∈ QI and yi ∈ E′
I and thus q(x, yi) ∈

M and E′(yi) ∈ M such that q(x, yi) ∈ N and, by induction,
E′(yi) ∈ N . With rule (6.14), we then have that E(x) ∈ N .

For the “if” direction. Assume (U,M) is an open answer set under IWA of
Φ(C,Σ) with C(u) ∈M . Define an interpretation I ≡ (∆I , ·I), with ∆I ≡ U ,
and AI ≡ {x | A(x) ∈M}, for concept names A,

RI ≡ {(x, y) | r(x, y) ∈M} ∪
⋃

Trans(S)∈Σ,Sv∗ R

({(x, y) | s(x, y) ∈M})∗

for role names or inverted role names R, where ()∗ denotes transitive closure

and r is as before (equal to R if R is a role name, and Qi if R = Q− for a
role name Q), and similarly for s. Intuitively, we define R like M defines it,
but since M does not ensure transitivity of roles, we transitively close every
subrole S of R that is declared to be transitive in Σ.

We have that (R−)
I

= {(x, y) | (y, x) ∈ RI} for a role name R. In-

deed, assume (x, y) ∈ (R−)
I
, then either Ri(x, y) ∈ M or there is a Sv∗R−,

Trans(S) ∈ Σ such that (x, y) ∈ ({(u, v) | s(u, v) ∈ M})∗. In the former
case, R(y, x) ∈ M since M satisfies the IWA and thus (y, x) ∈ RI . In
the latter case, there is a s(x, u0) ∈ M, . . . , s(un, y) ∈ M . If S is a role

name, we have s = S such that Si(y, un) ∈ M, . . . , Si(u0, x) ∈ M other-
wise S(y, un) ∈M, . . . , S(u0, x) ∈M . Since Sv∗R−, we have that S−v∗R and
Trans(S−) ∈ Σ and thus (y, x) ∈ RI .

The other direction is similar.

Claim.
x ∈ DI ⇐⇒ D(x) ∈M,D a concept expression .

We prove the claim by induction on the structure of D.

1. D = A where A is a concept name. Immediate by the definition of AI .
2. D = ¬D′.

x ∈ (¬D′)I ⇔ x 6∈ D′I

⇔ D′(x) 6∈M (by induction)
⇒ D(x) ∈M (by rule (6.6))

206 6 Description Logics Reasoning via Open Answer Set Programming

¬D′(x) ∈M ⇒ D′(x) 6∈M (M minimal and with rule (6.6))

⇒ x 6∈ D′I (by induction)
⇒x ∈ (¬D′)I

3. D = D1 uD2.

x ∈ (D1 uD2)
I ⇔ x ∈ DI1 and x ∈ DI2
⇔ D1(x) ∈M and D2(x) ∈M (by induction)
⇒ D1 uD2(x) ∈M (by rule (6.7))

D1 uD2(x) ∈M⇒ D1(x) ∈M and D2(x) ∈M
(M minimal, and rule (6.7))

⇒ x ∈ D1
I ∩D2

I (by induction)
⇒x ∈ (D1 uD2)

I

4. D = D1 tD2. Like the previous case.
5. D = ∃Q.D′. For the “only if” direction, assume x ∈ DI , then there is

a (x, y) ∈ QI and y ∈ D′I . By induction, we have that D′(y) ∈ M . By
definition of QI , we have that either q(x, y) ∈ M or (x, y) ∈ ({(u, v) |
s(x, y) ∈M})∗ for some Sv∗Q with Trans(S) ∈ Σ.
In the former case, we have with rule (6.9) that D(x) ∈ M . In the lat-
ter case, we have that s(x, u0) ∈ M, . . . , s(un, y) ∈ M . Since ∃S.D′ ∈
clos(C,Σ), we have that ∃S.D′(un) ∈ M with rule (6.9). Repeatedly ap-
plying rule (6.11), yields ∃S.D′(x) ∈M . By rule (6.10), we then have that
D(x) ∈M .

For the “if” direction, assume D(x) ∈M . Then, D(x) ∈ T in for a finite n.
We prove it by induction on n. Looking at rules (6.9), (6.10), and (6.11),
we have that n > 1, such that the base case of our induction is n = 2.

• BASE CASE. Assume D(x) ∈ T i2. Then neither (6.10) nor (6.11)
could have been used to deduce this (since their bodies contain a literal

that cannot be in T i1). Thus, by rule (6.9), we have that q(x, y) ∈
M and D′(y) ∈ M . Thus, by induction on the structure of concept

expressions, we have that y ∈ D′I and, with (x, y) ∈ QI , we have that
x ∈ DI .

• INDUCTION HYPOTHESIS. Assume that for concept expressions of

the form ∃S.D′ and some y ∈ U with (∃S.D′)(y) ∈ T in−1
, we have

y ∈ (∃S.D′)I .

• INDUCTION. Take (∃S.D′)(y) ∈ T in. Then one of the rules originat-
ing from (6.9), (6.10), and (6.11) must have an applied body true in

T in−1
.

– Take (6.9) such that s(y, z) ∈M and D′(z) ∈M . By induction on
the structure of concept expressions, we have that (y, z) ∈ SI and

z ∈ D′I such that y ∈ (∃S.D′)I .

6.1 Simulating SHIQ 207

– Take (6.10) such that (∃S′.D′)(y) ∈ T in−1
for S′v∗ S with S′ 6= S

and Trans(S′) ∈ Σ. Then, by induction, y ∈ (∃S′.D′)I such that

there is a (y, z) ∈ S′
I

and z ∈ D′
I
. We have that s′(y, z) ∈ M

or there is a Rv∗ S′, Trans(R) ∈ Σ, such that (y, z) ∈ ({(u, v) |
r(u, v) ∈M})∗. In the former case, we have with constraints (6.2)
that s(y, z) ∈M and thus (y, z) ∈ SI . In the latter case, we have,
since Rv∗ S, Trans(R) ∈ Σ, that (y, z) ∈ SI . Thus y ∈ (∃S.D′)I .

– Take (6.11), then s(y, z) ∈ M and (∃S.D′)(z) ∈ M ∩ T in−1
.

Thus (y, z) ∈ SI and, by induction, z ∈ (∃S.D′)I such that
y ∈ (∃S.D′)I .

6. D = ∀R.D′.

x ∈ (∀R.D′)I ⇔ x 6∈ (∃R.¬D′)I

⇔ ∃R.¬D′(x) 6∈M (by the previous)
⇒ ∀R.D′(x) ∈M (by rule (6.12))

∀R.D′(x) ∈M⇒ ∃R.¬D′(x) 6∈M (M minimal, and rule (6.12))
⇒ x 6∈ (∃R.¬D′)I (by the previous)
⇒x ∈ (∀R.D′)I

7. D = (≤ n Q .D ′).

x ∈ (≤ n Q .D ′)I ⇔ #{y | (x, y) ∈ QI ∧ y ∈ D′I} ≤ n
⇒ #{y | q(x, y) ∈M ∧D′(y) ∈M} ≤ n (by induction)
⇒ #{y | q(x, y) ∈M ∧D′(y) ∈M} 6≥ n+ 1
⇒ (≥ n + 1 Q .D ′)(x) 6∈M (M minimal)
⇒ (≤ n Q .D ′)(x) ∈M (by (6.13))

(≤ n Q .D ′)(x) ∈M ⇒ (≥ n + 1 Q .D ′)(x) 6∈M (M minimal)
⇒ #{y | q(x, y) ∈M ∧D′(y) ∈M} ≤ n (by (6.14))
⇒ #{y | (x, y) ∈ QI ∧ y ∈ D′I} ≤ n (Q simple)
⇒ x ∈ (≤ n Q .D ′)I

8. D = (≥ n Q .D ′).

x ∈ (≥ n Q .D ′)I ⇔ #{y | (x, y) ∈ QI ∧ y ∈ D′I} ≥ n
⇒ #{y | q(x, y) ∈M ∧D′(y) ∈M} ≥ n (Q simple)
⇒ (≥ n Q .D ′)(x) ∈M (by rule (6.14))

(≥ n Q .D ′)(x) ∈M ⇔ #{y | q(x, y) ∈M ∧D′(y) ∈M} ≥ n (M is min.)
⇒ #{y | (x, y) ∈ QI ∧ y ∈ D′I} ≥ n (by induction)
⇒ x ∈ (≥ n Q .D ′)I

We can now check that I satisfies every terminological axiom D1 v D2.
Take x ∈ DI1 and x 6∈ DI2 , then we have just shown that D1(x) ∈ M and
D2(x) 6∈M , and by rule (6.1), this gives a contradiction.

Take a role axiom R1 v R2. Take (x, y) ∈ RI1 . Then r1(x, y) ∈M or there
is some Sv∗R1, Trans(S) ∈ Σ, such that (x, y) ∈ ({(u, v) | s(u, v) ∈ M})∗. In

208 6 Description Logics Reasoning via Open Answer Set Programming

the former case, we have by the constraint (6.2), that r2(x, y) ∈M such that
(x, y) ∈ RI2 . In the latter case, we have that Sv∗R2 and Trans(S) ∈ Σ such
that (x, y) ∈ RI2 .

If Trans(R) ∈ Σ, then RI should be transitive. Take (x, y) ∈ RI and
(y, z) ∈ RI . We distinguish between four cases (we only prove the first one,
the others are similar).

• r(x, y) ∈ M and (y, z) ∈ ({(u, v) | s(u, v) ∈ M})∗ for some Sv∗R and
Trans(S) ∈ Σ. Thus, there is some s(y, u0) ∈ M, . . . , s(un, z) ∈ M . We
have that S v S1 v S2 v . . . v R such that, by constraints (6.2),
s1(y, u0) ∈M, . . . , s1(un, z) ∈M , and, finally, r(y, u0) ∈M, . . . , r(un, z) ∈
M . Since Rv∗R, Trans(R) ∈ Σ, and r(x, y) ∈ M ,r(y, u0) ∈ M , . . .,
r(un, z) ∈M we have that (x, z) ∈ RI .

• (x, y) ∈ ({(u, v) | s1(u, v) ∈M})
∗ for some S1v∗R and Trans(S1) ∈ Σ, and

(y, z) ∈ ({(u, v) | s2(u, v) ∈M})∗ for some S2v∗R and Trans(S2) ∈ Σ.
• (x, y) ∈ ({(u, v) | s(u, v) ∈ M})∗ for some Sv∗R and Trans(S) ∈ Σ, and

r(y, z) ∈M .
• r(x, y) ∈M and r(y, z) ∈M .

Remains to check that CI is not empty. We have that C(u) ∈M , and we
know that this is only possible if u ∈ CI . ut

By the exptime-hardness of SHIQ satisfiability checking, we have a similar
lower bound for satisfiability checking under IWA w.r.t. CoLPs.

Theorem 6.3. Satisfiability checking under IWA w.r.t. CoLPs is exptime-
hard.

Proof. Satisfiability checking of SHIQ concept expressions w.r.t. a SHIQ
knowledge base is exptime-complete (Corollary 6.29 in [Tob01]). By Theorem
6.2 and Theorem 6.1, we can polynomially reduce such satisfiability checking
to satisfiability checking under IWA w.r.t. CoLPs. ut

We have an exptime upper bound for satisfiability checking under IWA w.r.t.
CoLPs such that the completeness follows.

Theorem 6.4. Satisfiability checking under IWA w.r.t. CoLPs is exptime-
complete.

Proof. Membership follows from Theorem 3.39 (pp. 94) and hardness from
Theorem 6.3. ut

6.2 Simulating ALCHOQ(t, u)

In this section, we consider the DL that can be obtained from SHIQ by
allowing for nominals (O), role disjunction (t), and role conjunction (u), and

6.2 Simulating ALCHOQ(t,u) 209

by removing the support for transitive and inverse roles. The resulting DL is
ALCHOQ(t,u) (leaving out transitivity yields ALC instead of S).

Consider the knowledge base from Example 2.24:

Personnel ≡ Management tWorkers t {john}
{john} v ∃boss .Management

Management v (∀take orders .Management) u (≥ 3 boss .Workers)

where boss is not transitive – it was in the previous section. Personnel consists
exactly of the managers, workers, and a particular individual john where john
is the boss of some manager.

We show how to translate ALCHOQ(t,u) satisfiability checking w.r.t.
ALCHOQ(t,u) knowledge bases to the type of programs where constants
are allowed: FoLPs (see Chapter 4), in particular acyclic FoLPs. The above
knowledge base translates, similar to the previous section, to the constraints

← Per(X),not (Man tWor t {john})(X)
← not Per(X), (Man tWor t {john})(X)
← {john}(X),not (∃boss .Man)(X)
← Man(X),not ((∀tak .Man) u (≥ 3 boss .Wor))(X)

with the definition of the predicates as follows:

Per(X) ∨ not Per(X) ←
Man(X) ∨ not Man(X) ←
Wor(X) ∨ not Wor(X) ←

boss(X ,Y) ∨ not boss(X ,Y) ←
tak(X ,Y) ∨ not tak(X ,Y) ←
(Man tWor t {john})(X) ← Man(X)
(Man tWor t {john})(X) ←Wor(X)
(Man tWor t {john})(X) ← {john}(X)

(∃boss .Man)(X) ← boss(X ,Y),Man(Y)
((∀tak .Man) u (≥ 3 boss .Wor))(X) ← (∀tak .Man)(X), (≥ 3 boss .Wor)(X)

(∀tak .Man)(X) ← not (∃tak .¬Man)(X)
(∃tak .¬Man)(X) ← tak(X ,Y), (¬Man)(Y)

(¬Man)(X) ← not Man(X)
(≥ 3 boss .Wor)(X) ← boss(X ,Y1), boss(X ,Y2),

boss(X ,Y3),
Wor(Y1),Wor(Y2),Wor(Y3),
Y1 6= Y2, Y1 6= Y3, Y2 6= Y3

The only predicate that is not yet defined is {john}. We define such nominals
by facts:

{john}(john) ←

such that, intuitively, the only x that makes {john}(x) true in an open an-
swer set is john. The other new constructs in ALCHOQ(t,u), compared to

210 6 Description Logics Reasoning via Open Answer Set Programming

SHIQ, are role conjunction and disjunction. A role expression boss t tak can
be translated by the rules

(boss t tak)(X ,Y)← boss(X ,Y)
(boss t tak)(X ,Y)← tak(X ,Y)

and boss u tak by

(boss u tak)(X ,Y)← boss(X ,Y), tak(X ,Y)

We define the closure, taking into account nominals and role expressions:
the closure clos(C,Σ) of an ALCHOQ(t,u) concept expression C and an
ALCHOQ(t,u) knowledge base Σ is the smallest set satisfying the following
conditions:

• C ∈ clos(C,Σ),
• for each C v D an axiom in Σ (role or terminological), {C,D} ⊆

clos(C,Σ),
• for every D in clos(C,Σ), we have

– if D = ¬D1, then {D1} ⊆ clos(C,Σ),
– if D = D1 tD2, then {D1, D2} ⊆ clos(C,Σ),
– if D = D1 uD2, then {D1, D2} ⊆ clos(C,Σ),
– if D = ∃R.D1, then {R,D1} ⊆ clos(C,Σ),
– if D = ∀R.D1, then {∃R.¬D1} ⊆ clos(C,Σ),
– if D = (≤ n Q .D1), then {(≥ n + 1 Q .D1)} ⊆ clos(C,Σ),
– if D = (≥ n Q .D1), then {Q,D1} ⊆ clos(C,Σ).

Note that nominals {o} are not in the above case analysis; they are considered
base objects, such as concept names and role names. Further note that we
assumed that D can be both a role and a concept expression (for t and u).

Formally, we define Φ(C,Σ) to be the following acyclic FoLP, obtained
from the ALCHOQ(t,u) knowledge base Σ and the concept expression C:

• For each terminological axiom C v D ∈ Σ, add the constraint

← C (X),not D(X) (6.15)

• For each role axiom R v S ∈ Σ, add the constraint

← R(X ,Y),not S (X ,Y) (6.16)

• Next, we distinguish between the types of concept and role expressions
that appear in clos(C,Σ). For each D ∈ clos(C,Σ):
– if D is a concept name, add

D(X) ∨ not D(X)← (6.17)

– if D is a role name, add

D(X ,Y) ∨ not D(X ,Y)← (6.18)

6.2 Simulating ALCHOQ(t,u) 211

– if D = {o}, add
D(o)← (6.19)

– if D = ¬E, add
D(X)← not E (X) (6.20)

– if D = E u F , D a concept expression, add

D(X)← E (X),F (X) (6.21)

– if D = E t F , D a concept expression, add

D(X)← E (X)
D(X)← F (X)

(6.22)

– if D = E u F , D a role expression, add

D(X ,Y)← E (X ,Y),F (X ,Y) (6.23)

– if D = E t F , D a role expression, add

D(X ,Y)← E (X ,Y)
D(X ,Y)← F (X ,Y)

(6.24)

– if D = ∃Q.E, add
D(X)← Q(X ,Y),E (Y) (6.25)

– if D = ∀R.E, add

D(X)← not (∃R.¬E)(X) (6.26)

– if D = (≤ n Q .E), add

D(X)← not (≥ n + 1 Q .E)(X) (6.27)

– if D = (≥ n Q .E), add

D(X)← Q(X ,Y1), . . . ,Q(X ,Yn),E (Y1), . . . ,E (Yn),∪i 6=j {Yi 6= Yj}
(6.28)

Theorem 6.5. Let Σ be an ALCHOQ(t,u) knowledge base and C an
ALCHOQ(t,u) concept expression. Then, Φ(C,Σ) is an acyclic FoLP, with
a size that is polynomial in the size of C and Σ.

Proof. Observing the rules in Φ(C,Σ), it is clear that this program is a FoLP.
Furthermore, it is acyclic: rules with non-empty head correspond to concept
or role expression definitions with positive bodies that contain only concept
or role expressions that are structurally smaller. E.g., a concept disjunction
D tE is defined by rules (D t E)(X)← D(X),E (X).

The polynomiality of the size of Φ(C,Σ) can be seen like in the proof of
Theorem 6.1. ut

212 6 Description Logics Reasoning via Open Answer Set Programming

Theorem 6.6. An ALCHOQ(t,u) concept expression C is satisfiable w.r.t.
an ALCHOQ(t,u) knowledge base Σ iff the predicate C is satisfiable w.r.t.
Φ(C,Σ).

Proof. For the “only if” direction, assume the concept expression C is satisfi-
able w.r.t. Σ, i.e., there exists a model I = (∆I , ·I) with CI 6= ∅. We rename
the singleton element from {o}I ⊆ ∆I as o, which is possible by the unique
name assumption. We construct the open answer set (U,M) with U ≡ ∆I

and M ≡ {C(x) | x ∈ CI , C ∈ clos(C,Σ), C concept expression} ∪ {R(x, y) |
(x, y) ∈ RI , R ∈ clos(C,Σ), R role expression}.

We have that (U,M) is an open answer set of Φ(C,Σ) that satisfies C:

1. Since CI 6= ∅ there clearly is an x ∈ U such that C(x) ∈M .

2. M is a model of Φ(C,Σ)
M
U . We check that every rule in Φ(C,Σ)

M
U is

satisfied:
a) Rules (6.15), (6.16), (6.17), (6.18), (6.20), (6.21), (6.22), (6.25), (6.26)

(6.27), and (6.28) can be done as in the proof of Theorem 6.2.

b) Take a rule D(o)←∈ Φ(C,Σ)
M
U originating from (6.19). We have that

o ∈ {o}I such that, by definition of M , D(o) ∈M .
c) Take a rule E u F (x, y) ← E(x, y), F (x, y) originating from (6.23)

with E(x, y) ∈ M and F (x, y) ∈ M . Then, (x, y) ∈ (E u F)I = DI

such that D(x, y) ∈M .
d) Rules originating from (6.24) are similar as the previous.

3. M is a minimal model of Φ(C,Σ)
M
U . Assume not, then there is a model N

of Φ(C,Σ)MU , such that N ⊂ M . We prove that M ⊆ N , which leads to
a contradiction. Take l ∈ M . We distinguish between the following cases
for l:
a) l = E(x, y) for a role expression E ∈ clos(C,Σ). We look at the

structure of E and prove this by induction:
i. BASE: E a role name. By rule (6.18), E(x, y)←∈ Φ(C,Σ)

M
U such

that E(x, y) ∈ N .
ii. INDUCTION HYPOTHESIS: Assume it is proved for role expres-

sions C1 and C2.
iii. E = C1 u C2, then (x, y) ∈ (C1 u C2)

I such that (x, y) ∈ CI1 and
(x, y) ∈ CI2 . Then C1(x, y) ∈M and C2(x, y) ∈M . By induction,
we have C1(x, y) ∈ N and C2(x, y) ∈ N . With rule (6.23), we then
have that E(x, y) ∈ N .

iv. E = C1 t C2. Again per induction, and similar to the previous
case.

b) l = E(x) for a concept expression E ∈ clos(C,Σ). This can be done
as in the proof of Theorem 6.2.

For the “if” direction. Assume (U,M) is an open answer set of Φ(C,Σ)
with C(u) ∈ M . Define an interpretation I ≡ (∆I , ·I), with ∆I ≡ U , AI ≡
{x | A(x) ∈ M} for concept names A, RI ≡ {(x, y) | R(x, y) ∈ M} for role
names R and {o}I = {o}, for o ∈ cts(Φ(C,Σ)).

6.2 Simulating ALCHOQ(t,u) 213

We have that |{o}I | = 1.
Furthermore, one can show, along the lines of the proof of Theorem 6.2,

that
x ∈ DI ⇐⇒ D(x) ∈M,D a concept expression

and
(x, y) ∈ DI ⇐⇒ D(x, y) ∈M,D a role expression

It is then easy to check that I satisfies every terminological axiom D1 v D2

as well as every role axiom.
It remains to check that CI is not empty. We have that C(u) ∈M and we

know that this is only possible, by the above, if u ∈ CI . ut

We investigated decidability for FoLPs (which contain constants) in Chapter
4 by a reduction to finite answer set programming and as such obtained re-
stricted types of FoLPs: local, semi-local, and acyclic FoLPs. This need for
restricted FoLPs explains why we did not consider transitivity of roles for sim-
ulation (and thus we simulated ALCHOQ(t,u) instead of SHOQ(t,u)). To
simulate transitivity one needs rules such as (6.11): D(X)← Q(X ,Y),D(Y)
which are not acyclic such that they cannot be rewritten as local FoLPs that
have the bounded finite model property.

We did not allow for inverse roles since FoLPs do not allow for inverted
predicates (they lead to infinity programs and a reduction to finite answer set
programming is no longer possible).

On a final note on the choice of ALCHOQ(t,u): we did not allow for
role negations ¬R2 in addition to role conjunction and disjunction. We could
simulate such a negation by rules

(¬R)(X ,Y)← not R(X ,Y)

However, such rules are neither CoLP nor FoLP rules (there is no positive
atom that connects X and Y) such that a simulation into a (known) decidable
fragment of programs under the open answer set semantics is not possible.

We have an exptime lower bound for acyclic FoLPs.

Theorem 6.7. Satisfiability checking w.r.t. acyclic FoLPs is exptime-hard.

Proof. Since satisfiability checking of the sublanguage AL w.r.t. a set of ax-
ioms is exptime-complete [BCM+03], we have, with Theorems 6.5 and 6.6,
the hardness result. ut

Theorem 6.8. Satisfiability checking w.r.t. EFoLPs (Q,R) where Q ∪ R is
acyclic is exptime-hard.

Proof. Satisfiability checking w.r.t. an acyclic FoLP P can be reduced to sat-
isfiability checking w.r.t. to the EFoLP (P, ∅) where P ∪∅ is acyclic such that
with Theorem 6.7 the result follows. ut

2 (¬R)I ≡ ∆I \RI .

214 6 Description Logics Reasoning via Open Answer Set Programming

Theorem 6.9. Satisfiability checking w.r.t. free acyclic EFoLPs is exptime-
hard.

Proof. Satisfiability checking w.r.t. an acyclic FoLP P can be reduced to sat-
isfiability checking w.r.t. to the free acyclic EFoLP (P, ∅) such that with The-
orem 6.7 the result follows. ut

Theorem 6.10. Satisfiability checking w.r.t. local FoLPs is exptime-hard.

Proof. By Theorem 4.24 (pp. 134) and Theorem 4.25, we can reduce satisfi-
ability checking w.r.t. acyclic FoLPs to local FoLPs such that, by the exp-
time-hardness of the former, also satisfiability checking w.r.t. local FoLPs is
exptime-hard. ut

Theorem 6.11. Satisfiability checking w.r.t. local EFoLPs is exptime-hard.

Proof. Satisfiability checking w.r.t. a local FoLP P can be reduced to satisfi-
ability checking w.r.t. to the local EFoLP (P, ∅) such that with Theorem 6.10
the result follows. ut

Theorem 6.12. Satisfiability checking w.r.t. semi-local FoLPs is exptime-
hard.

Proof. Every local FoLP is semi-local, by definition of semi-local FoLPs (see
Definition 4.12, pp. 124), such that by Theorem 6.10, the result follows. ut

Theorem 6.13. Satisfiability checking w.r.t. semi-local EFoLPs is exptime-
hard.

Proof. Satisfiability checking w.r.t. a semi-local FoLP P can be reduced to
satisfiability checking w.r.t. to the semi-local EFoLP (P, ∅) such that with
Theorem 6.12 the result follows. ut

6.3 Simulating ALCHOQ(t, u) with DL-safe Rules

In [MSS04], integrated reasoning of DLs with DL-safe rules was introduced.
DL-safe rules are unrestricted Horn clauses where only the communication
between the DL knowledge base and the rules is restricted; they enable one
to express knowledge inexpressible with DLs alone, e.g., triangular knowledge
such as [MSS04]

BadChild(X) ← GrChild(X), parent(X ,Y), parent(Z ,Y), hates(X ,Z)

saying that a grandchild that hates its sibling is a bad child.
We introduce DL-safe rules like in [MSS04]. For a DL knowledge base Σ

let NC and NR be the concept and role names in Σ and NP is a set of unary

6.3 Simulating ALCHOQ(t,u) with DL-safe Rules 215

or binary3 predicate symbols such that NC ∪ NR ⊆ NP . A DL-atom is an
atom of the form A(s) or R(s, t) for A ∈ NC and R ∈ NR. A DL-safe rule is a
rule of the form a ← b1 , . . . , bn where a and bi, 1 ≤ i ≤ n, are regular atoms4

and every variable in the rule appears in a non-DL-atom in the rule body.
Note that symbols o from {o} may be used as constants in DL-safe rules. A
DL-safe program is a finite set of DL-safe rules. Let cts(Σ,P) be the set of
individuals and constants in Σ or P , i.e.,

cts(Σ,P) ≡ {o | {o} ∈ Σ} ∪ cts(P) .

We provide an alternative semantics based on DL interpretations like in
[HPS04b] rather than on the first-order interpretations used in [MSS04]. How-
ever, both semantics are compatible as indicated in [MSS04]. For (Σ,P) and
an interpretation I = (∆I , ·I) of Σ5 we extend I for NP and cts(P) such
that for unary predicates p ∈ NP , pI ⊆ ∆I , for binary predicates f ∈ NP ,
fI ⊆ ∆I ×∆I , and o ∈ ∆I for o ∈ cts(P). Such an extended interpretation
is, by definition, an interpretation of (Σ,P).

A binding for an interpretation I of (Σ,P) is a function σ : vars(P) ∪
cts(Σ,P)→ ∆I with σ(o) ≡ o for o ∈ cts(Σ,P); it maps constants/nominals
and variables to domain elements. A unary atom a(s) is then true w.r.t. σ and
I if σ(s) ∈ aI , and a binary atom f(s, t) is true w.r.t. σ and I if (σ(s), σ(t)) ∈
fI . A rule r is satisfied by I iff for every binding σ w.r.t. I that makes the
atoms in the body true, the head is also true. An interpretation of (Σ,P) is
a model if it is a model of Σ and it satisfies every rule in P .

In Section 6.2, we reducedALCHOQ(t,u) satisfiability checking to acyclic
FoLP satisfiability checking. We can reduce satisfiability checking of predicates
in NP w.r.t. ALCHOQ(t,u) knowledge bases extended with DL-safe rules to
satisfiability checking w.r.t. free acyclic EFoLPs.6 We provide some intuition
with an example.

Take a knowledge base Σ

∃manf .Co u ∃has price v Product ,

expressing that if something is manufactured in some country and it has a
price then it is a product.7 We have some facts in a DL-safe program P about
the world we are considering:

is product of (p, c1)← manf (p, japan) ←
is product of (p, c2)← Co(japan) ←

3 In [MSS04], n-ary predicates are allowed.
4 No equality is allowed.
5 We assume, with loss of generality (by the unique name assumption), that for

nominals {o} in Σ, there is a o ∈ ∆I such that {o}I = {o}.
6 In [MSS04], the SHOIN (D) DL is considered instead of ALCHOQ(t,u).
7 ∃has price is shorthand for ∃has price.>, where >I ≡ ∆I for every interpreta-

tion I. For the formal EFoLP translation, we can assume that > is equivalent to
A t ¬A for some concept A.

216 6 Description Logics Reasoning via Open Answer Set Programming

saying that p is a product of company c1 and company c2, that p is manufac-
tured in Japan and that Japan is a country. Those facts are vacuously DL-safe
since they do not contain variables. Additionally, we have a DL-safe rule in
P saying that if a product is a product of 2 companies then those companies
are competitors8,

r1 : competitors(C1, C2)← Product(P), is product of(P,C1),

is product of(P,C2)

Note that this is indeed a DL-safe rule since every variable occurs in a
is product of atom, which is a non-DL-atom in the body of the rule. The
only DL-atom in the rule is Product(P). A model I of (Σ,P) is I =
({japan, c1 , c2 , p, x}, ·I) with ·I defined as follows:

CoI = {japan}

ProductI = {p}

manf I = {(p, japan)}

has priceI = {(p, x)}

is product of I = {(p, c1), (p, c2)}

competitorsI = {(c1 , c2)}

We translate (Σ,P) to a free acyclic EFoLP: the DL axiom is translated
to the constraint

← (∃manf .Co u ∃has price)(X),not Product(X)

where we introduce predicates corresponding to the concept expressions. Fur-
thermore, we define these predicates by the rules

(∃manf .Co u ∃has price)(X) ← (∃manf .Co)(X), (∃has price)(X)
(∃manf .Co)(X) ← manf (X ,Y),Co(Y)
(∃has price)(X) ← has price(X ,Y)

Product(X) ∨ not Product(X)←
Co(X) ∨ not Co(X) ←

manf (X ,Y) ∨ not manf (X ,Y)←
has price(X ,Y) ∨ not has price(X ,Y)←

Since DL-safe rules have essentially a first-order interpretation it may be
that (c1, c2) ∈ competitorsI for a model I of (Σ,P) without any justification
in I: the body of r1 in P does not need to be satisfied in order to have

8 Actually, to correspond entirely with the desired semantics, we need to indicate
that C1 and C2 are different companies. This seems to be not possible with the
DL-safe rules in [MSS04], however, it is with EFoLPs using 6=.

6.3 Simulating ALCHOQ(t,u) with DL-safe Rules 217

(c1, c2) ∈ competitorsI . The open answer set semantics, however, only deduces
competitors(c1 , c2) in an open answer set if the body of r1 is satisfied in that
open answer set, since otherwise the open answer set would not be minimal
(one could omit competitors(c1 , c2) and still have an open answer set).

To solve this, we introduce for each predicate q of a DL-safe program, a free
rule: competitor(C1 ,C2) ∨ not competitor(C1 ,C2) ← . One has then always
a motivation for competitor(C1 ,C2), mimicking the first-order semantics.

Formally, we define the acyclic FoLP χ(Σ,P) like the Φ(C,Σ) from Section
6.2 where C is some arbitrary concept from Σ with additionally the following
free rules added:

p(X) ∨ not p(X)← ,

for each unary p ∈ NP \NC and

p(X ,Y) ∨ not p(X ,Y)← ,

for each binary p ∈ NP \NR.

Theorem 6.14. Let (Σ,P) consist of an ALCHOQ(t,u) knowledge base Σ
and a DL-safe program P . Then, (χ(Σ,P), P) is a free acyclic EFoLP, with
a size that is polynomial in the size of Σ and P .

Proof. As in Theorem 6.5, we have that χ(Σ,P) is an acyclic FoLP. Further-
more, P contains only unary and binary predicates such that (χ(Σ,P), P)
is an EFoLP and since χ(Σ,P) contains free rules for every predicate in P ,
(χ(Σ,P), P) is a free acyclic EFoLP.

The polynomiality of the size of χ(Σ,P) can be seen like in the proof of
Theorem 6.5. ut

Theorem 6.15. Let Σ be an ALCHOQ(t,u) knowledge base, P a DL-safe
program, and p a unary predicate in NP . Then, p is satisfiable w.r.t. (Σ,P)
iff p is satisfiable w.r.t. (χ(Σ,P), P).

Proof. From [MSS04] (Theorem 1), we have that I is a model of (Σ,P) iff I
is a model of (Σ,P ′) with P ′ ≡ Pcts(Σ,P), which follows from the DL-safeness,
i.e., every variable in P must appear in a non-DL atom.

For the “only if” direction, assume p is satisfiable w.r.t. (Σ,P ′), i.e., there
exists a model I = (∆I , ·I) with pI 6= ∅. We construct the open answer set
(U,M) with U ≡ ∆I and M ≡ {q(x) | x ∈ qI , q ∈ (χ(Σ,P ′), P ′), q unary} ∪
{r(x, y) | (x, y) ∈ rI , r ∈ (χ(Σ,P ′), P ′), r binary }.

We have that (U,M) is an open answer set of (χ(Σ,P ′), P ′) that satisfies
p:

1. Since pI 6= ∅ there is an x ∈ U such that p(x) ∈M .

2. M is a model of R ≡ R1 ∪ R2 ≡ χ(Σ,P ′)
M
U ∪ P

′M . We check that every
rule in R is satisfied:
a) That every rule in R1 is satisfied can be done as in the proof of The-

orem 6.6.

218 6 Description Logics Reasoning via Open Answer Set Programming

b) Take a rule l ← β ∈ R2 = Pcts(Σ,P) originating from l ← β ∈ P .9

Assume that β ⊆M (β does not contain equality atoms). Take q(s) ∈
β, then s ∈ cts(Σ,P). Since q(s) ∈M , we have that s ∈ qI , such that
q(s) is true in I. We can repeat this argument for binary atoms and
conclude that the body β is true in I. Since I is a model of Pcts(Σ,P),
we have that l is true in I, from which we can deduce that l ∈M .

3. M is a minimal model of R. Assume not, then there is a model N of R,
such that N ⊂M . We prove that M ⊆ N , which leads to a contradiction.
Take l ∈M . We distinguish between the following cases for l:
a) l = E(x, y) for a binary predicate E ∈ preds(Φ(C,Σ)), i.e., a role

expression in Σ. This can be done like in the proof of Theorem 6.6.
b) l = E(x) for a unary predicate E ∈ preds(Φ(C,Σ)), i.e., a concept

expression in Σ. This can be done like in the proof of Theorem 6.6.
c) l = q(x) for a unary predicate q ∈ NP \NC. By definition, we have

that q(X)∨not q(X)←∈ χ(Σ,P ′), and thus q(x)←∈ χ(Σ,P ′)MU and
q(x) ∈ N .

d) l = q(x, y) for a binary predicate q ∈ NP \NR. Similar as the above.

For the “if” direction, assume (U,M) is an open answer set of R with
p(u) ∈ M . Define an interpretation I ≡ (∆I , ·I), with ∆I ≡ U , pI ≡ {x |
p(x) ∈ M} for unary predicates p ∈ NP , qI ≡ {(x, y) | q(x, y) ∈ M} for
binary predicates q ∈ NP , 10 and {o}I = {o}, for nominals {o} in Σ.

We have that |{o}I | = 1 and the unique name assumption holds.
Furthermore, one can show, along the lines of the proof of Theorem 6.6,

that

x ∈ DI ⇐⇒ D(x) ∈M,D a concept expression

(x, y) ∈ DI ⇐⇒ D(x, y) ∈M,D a role expression

x ∈ qI ⇐⇒ q(x) ∈M, q unary in NP \NC

(x, y) ∈ qI ⇐⇒ q(x, y) ∈M, q binary in NP \NR

One can check that I satisfies every terminological axiom D1 v D2 as well as
every role axiom.

Take a rule l ← β ∈ Pcts(Σ,P) with β true in I. By the above, we have
that β is true in M such that, since l ← β ∈ PM

cts(Σ,P), l is true in M and thus
l true in I.

It remains to check that pI is not empty. We have that p(u) ∈M and we
know that this is only possible, by the above, if u ∈ pI . ut

6.4 Simulating DLR−{≤}

The DL DLR [CDGL97, BCM+03] is a DL that supports n-ary relations,
instead of just unary and binary ones. Since guarded programs allow for n-

9 Note that β does not contain negation as failure by definition of DL-safe programs.
10 Since NC ∪NR ⊆ NP this also defines the concept and role names of Σ.

6.4 Simulating DLR−{≤} 219

ary predicates, it is interesting to investigate to which extent DLR can be
simulated by guarded programs under an open answer set semantics.

We introduce DLR as in [BCM+03]. The basic building blocks in DLR
are concept names A and relation names P where P denotes arbitrary n-ary
relations for 2 ≤ n ≤ nmax and nmax is a given finite nonnegative integer.
Role expressions R and concept expressions C can be formed according to
the following syntax rules:

R→ >n | P | ($i/n : C) | ¬R | R1 uR2

C → >1 | A | ¬C | C1 u C2 | ∃[$i]R | ≤k[$i]R

where we assume i is between 1 and n in ($i/n : C), and similarly in ∃[$i]R
and ≤ k[$i]R if R is an n-ary relation. Moreover, we assume that the above
constructs are well-typed, e.g., R1 u R2 is defined only for relations of the
same arity. The semantics of DLR is given by interpretations I = (∆I , ·I)
such that CI ⊆ ∆I , RI ⊆ (∆I)n for an n-ary relation R, and the following
conditions are satisfied (P,R,R1, and R2 have arity n):

>In ⊆ (∆I)n

PI ⊆ >In

(¬R)I = >In\R
I

(R1 uR2)
I = RI1 ∩RI2

($i/n : C)I = {(d1, . . . , dn) ∈ >
I
n | di ∈ C

I}

>I1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \CI

(C1 u C2)
I = C1

I ∩ C2
I

(∃[$i]R)I = {d ∈ ∆I | ∃(d1, . . . , dn) ∈ RI · di = d}

(≤k[$i]R)I = {d ∈ ∆I | |{(d1, . . . , dn) ∈ RI | di = d}| ≤ k}

Note that in DLR the negation of role expressions is defined w.r.t. >In instead
of w.r.t. ∆I . A DLR knowledge base consists of terminological axioms and
role axioms defining subset relations between concept expressions and role
expressions (of the same arity) respectively.

We consider a fragment of DLR, which we call DLR−{≤}, i.e., DLR with-
out the expressions ≤k[$i]R since such expressions cannot be simulated with
guarded programs.

Example 6.16. Consider the concept expression ≤ 1[$1]R where R is a binary
role (this concept expression corresponds to the number restriction ≤ 1R).
One would simulate the ≤ again by negation as failure:

≤ 1 [$1]R(X)← not q(X)

220 6 Description Logics Reasoning via Open Answer Set Programming

for some new q with q defined as follows:

q(X)← R(X ,Y1),R(X ,Y2),Y1 6= Y2

However, the latter rule is not a guarded rule – there is no atom that contains
X , Y1, and Y2 – and it is not loosely guarded since Y1 and Y2 do not appear
together in an atom in the body (they appear together in a naf-atom). So, in
general, expressing number restrictions such as ≤ k[$i]R is out of reach for
guarded programs.

Define the closure clos(C,Σ) of a DLR−{≤} concept expression C and a

DLR−{≤} knowledge base Σ as the smallest set satisfying the following con-
ditions:

• C ∈ clos(C,Σ),
• >1 ∈ clos(C,Σ),
• for each C v D an axiom in Σ (role or terminological), {C,D} ⊆

clos(C,Σ),
• for everyD in clos(C,Σ), clos(C,Σ) should contain every subformula that

is a concept expression or a role expression,
• if clos(C,Σ) contains n-ary relation names, it must contain >n.

Formally, we define Φ(C,Σ) to be the following bound GP, obtained from the
DLR knowledge base Σ and the concept expression C:

• For each terminological axiom C v D ∈ Σ, add the constraint

← C (X),not D(X) (6.29)

• For each role axiom R v S ∈ Σ where R and S are n-ary, add the
constraint

← R(X1 , . . . ,Xn),not S(X1 , . . . ,Xn) (6.30)

• For each >n ∈ clos(C,Σ), add the free rule

>n(X1 , . . . ,Xn) ∨ not >n(X1 , . . . ,Xn)← (6.31)

Furthermore, for each n-ary relation name P ∈ clos(C,Σ), we add the
constraint

← P(X1 , . . . ,Xn),not >n(X1 , . . . ,Xn) (6.32)

Intuitively, the latter rule ensures that PI ⊆ >In. We add a constraint

← not >1 (X) (6.33)

which enforces that for every element x in the universe, >1(x) is true
in the open answer set. The latter rule ensures that >I1 = ∆I for the
corresponding interpretation. It can be guarded with X = X .

• Next, we distinguish between the types of concept and role expressions
that appear in clos(C,Σ). For each D ∈ clos(C,Σ):

6.4 Simulating DLR−{≤} 221

– if D is a concept name, add

D(X) ∨ not D(X)← (6.34)

– if D is an n-ary relation name, add

D(X1 , . . . ,Xn) ∨ not D(X1 , . . . ,Xn)← (6.35)

– if D = ¬E for a concept expression E, add

D(X)← not E (X) (6.36)

Note that we assume that such a rule is guarded by X = X .
– if D = ¬R for an n-ary role expression R, add

D(X1 , . . . ,Xn)← >n(X1 , . . . ,Xn),not R(X1 , . . . ,Xn) (6.37)

Note that if DLR negation was defined w.r.t. to (∆I)n instead of >In,
we would not be able to write the above as a guarded rule.

– if D = E u F for concept expressions E and F , add

D(X)← E (X),F (X) (6.38)

– if D = E u F for n-ary role expressions E and F, add

D(X1 , . . . ,Xn)← E(X1 , . . . ,Xn),F(X1 , . . . ,Xn) (6.39)

– if D = ($i/n : C), add

D(X1 , . . . ,Xi , . . . ,Xn)← >n(X1 , . . . ,Xi , . . . ,Xn),C (Xi) (6.40)

– if D = ∃[$i]R, add

D(X)← R(X1 , . . . ,Xi−1 ,X ,Xi+1 , . . . ,Xn) (6.41)

Theorem 6.17. Let Σ be a DLR−{≤} knowledge base and C a DLR−{≤}

concept expression. Then, Φ(C,Σ) is a bound GP, with a size that is polyno-
mial in the size of C and Σ.

Proof. Observing the rules in Φ(C,Σ), it is clear that this program is a GP.
Furthermore, every rule contains at most nmax variables which is also the
bound for the arity of the predicates such that Φ(C,Σ) is a bound GP by
Definition 5.75 (pp. 195).

The size of clos(C,Σ) is linear in C and Σ. The size of the GP Φ(C,Σ) is
polynomial in the size of clos(C,Σ)11 such that the result follows. ut

11 The size of Φ(C,Σ) is polynomial in the size of clos(C,Σ) provided the size of C
and Σ increases such that the n in an added n-ary role expression is polynomial
in the size of the maximal arity of role expressions in C and Σ. Although the
size of C and Σ increases linearly upon adding a relation name R with arity 2n,
where n is the maximal arity of relation names in C and Σ, the size of Φ(C,Σ)
increases exponentially: one needs to add, e.g., rules

>2n (X1 , . . . ,X2n) ∨ not >2n (X1 , . . . ,X2n)←

222 6 Description Logics Reasoning via Open Answer Set Programming

Theorem 6.18. A DLR−{≤} concept expression C is satisfiable w.r.t. a
DLR−{≤} knowledge base Σ iff the predicate C is satisfiable w.r.t. Φ(C,Σ).

Proof. The proof is along the lines of the proofs of Theorem 6.2 and 6.6. ut

Satisfiability checking of a DLR concept expression w.r.t. a DLR knowl-
edge base is exptime-complete [CDGL98]. At least for the fragmentDLR−{≤}

of DLR, the reduction, via Theorem 6.18, to open answer set programming
w.r.t. bound GPs is optimal as satisfiability checking w.r.t. bound GPs is in
exptime (with Theorem 5.77 and the fact that every GP is a GgP).

6.5 Discussion: OASP vs. DLs

In this section, we discuss some of the advantages and disadvantages of open
answer set programming (in particular of the decidable fragments described
in the previous chapters) versus description logics in the context of knowledge
representation and reasoning.

Using EFoLPs instead of an ALCHOQ(t,u) knowledge base with DL-safe
rules on top has the advantage of nonmonotonicity by means of negation as
failure in both the FoLP part and the arbitrary program part, whereas both
DLs and DL-safe rules are monotonic (DL-safe rules are Horn clauses and
thus do not allow for negation as failure).

Example 6.19. Add a rule to the company example knowledge base, expressing
that if John is not married, he works late at the office:

works late(john) ← not married(john)

Adding such a rule to our knowledge will have the effect that every open
answer set includes the literal works late(john), i.e., John always works late.
However, consecutively adding the newly acquired knowledge that John is
actually married with a rule

married(john) ←

will make sure that John never works late in answers to our current knowl-
edge. This type of nonmonotonicity is one of the main strengths of logic pro-
gramming paradigms for knowledge representation; it was identified in [BS03]
as one of the requirements on a logic for reasoning on the Web. DLs lack this
feature and are monotonic, e.g., one could try to translate the above rule as
the following DL axiom.

¬Married u {john} v Works late u {john}

However, interpretations satisfying this axiom have a choice in making John
work later or not (there are interpretations where John is married and others
where he is not), such that adding that John is married would not invalidate
any previously concluded facts.

6.5 Discussion: OASP vs. DLs 223

As was shown in the previous sections, expressive DLs can be simulated using
open answer set programming. However, DLs have only a limited set of con-
structs while CoLPs or EFoLPs have a flexible rule presentation which often
allows for a more compact representation of knowledge than would be possible
in DLs.

Example 6.20. One can represent the knowledge that a team must at least
consist of a technical expert, a secretary, and a team leader, where the leader
and the technical expert are not the same, by the following rule.

team(X)← has member(X ,Y1), tech(Y1), has member(X ,Y2),

secret(Y2), leader(X ,Y3), Y1 6= Y3

Note that this definition of a team does not exclude non-listed members to
be part of the team. Moreover, in the presence of other rules with team in
the head, a team may be qualified by one of those rules. E.g., including a fact
team(007), would qualify 007 as a team, regardless of its members. Compared
with DL qualified number restrictions (≥ n R.C) where one indicates that
there are more than n R-successors that are of type C, CoLPs and EFoLPs can
constrain different successor relationships (has member and leader) instead
of just one (R). Moreover, they can be very specific about which successors
should be different and which ones may be equal (Y1 may be equal to Y2, but
should be different from Y3), or to which different types the successors belong
(tech and secret) instead of one type (C).

Using inverted predicates, one can rewrite the above rule as the CoLP rule

team(X)← is member of i(X ,Y1), tech(Y1), is member of i(X ,Y2),

secret(Y2), leader(X ,Y3), Y1 6= Y3

Intuitively, one can mix inverted predicates is member of i with normal pred-
icates leader . However, in DL number restrictions ≤ R.C you either qualify
over a role or an inverted role name.

Representing such generalized number restrictions using DLs would be
significantly harder while arguably less succinct.

We can explicitly close the domain when using open answer set programming,
i.e., only allow reasoning with constants and thus forbidding the use of anony-
mous elements to make deductions. Indeed, one can, as in [GP93], simply add
the rules H (a)← for every constant a, and a constraint ← not H (X) such
that all domain elements must be constants. A similar intervention, restrict-
ing the reasoning to individuals, is impossible within standard DLs and was
one of the arguments to extend DLs with nonmonotonic tools [DNR02]. One
could enforce closed domain reasoning in DLs by working internally with the
translation to open answer set programming.

224 6 Description Logics Reasoning via Open Answer Set Programming

A clear (current) disadvantage of using OASP instead of DLs is the lack of
practical algorithms and associated reasoners in the former. Note that prac-
tical does not necessarily mean optimal: although the theoretical complex-
ity of, e.g., SHIQ, is exptime-complete, practical tableau algorithms run
in 2-nexptime in the worst case [Tob01]. The reason is that the exptime-
completeness of SHIQ satisfiability checking results from a translation to
checking non-emptiness of 2ATA (see, e.g., [CGL02]) where the latter is in
exptime w.r.t. to the number of states. However, although the number of
states of the translated automaton is polynomial in the size of the SHIQ
concept that one is checking (such that one has an exptime upper bound
for SHIQ satisfiability checking as well), the size of the whole automaton
is much larger: one defines transition functions for an exponential number of
labels. Thus, the automata approach is not practically implementable.

As decidability of CoLPs is also shown by a reduction to 2ATA, we expect
a similar effect: good theoretical complexity, bad worst-case reasoners.

Decidability of CoLPs (Chapter 3) and guarded programs (Chapter 5) was
shown by a reduction to automata and fixed point logic respectively such that
no practical algorithms for these fragments are available. We have, however,
an actual algorithm for satisfiability checking w.r.t. local FoLPs, i.e., by a
reduction to finite answer set programming, but the 2-exptimeΣ

p
2 complexity

again illustrates the very high cost of such algorithms.

6.6 Related Work

We distinguish between two lines of research involving the reconciliation of
DLs and logic programming paradigms: the approach that tries to simulate
DLs reasoning with logic programming by taking a DL knowledge base and
reducing it to a program such that both conclude the same regarding satisfia-
bility checking (see Section 6.6.1) and the approach that unites the strengths
of DLs and LP by letting them coexist and interact, but without reducing one
formalism to the other per se (see Section 6.6.2). We will refer to the former
approach as simulating and the latter as integrating.

Open answer set programming can be considered to be a simulating ap-
proach: in Sections 6.1, 6.2, and 6.4, we simulate satisfiability checking in
SHIQ, ALCHOQ(t,u), and DLR−{≤} by CoLPs, acyclic FoLPs, and bound
guarded programs respectively. On the other hand, it can also be classified in
the integrating approach: [MSS04] described an extension of DLs with DL-
safe rules with one associated semantics (which thus falls in the integrating
approach). We showed a simulation of this approach using the language of
free acyclic EFoLPs in Section 6.3.

In the following sections, we discuss typical examples of each category and
highlight the differences with open answer set programming.

6.6 Related Work 225

6.6.1 Simulation of DLs in Rule-based Paradigms

[GHVD03] imposes restrictions on the occurrence of DL constructs in termi-
nological axioms to enable a simulation using Horn clauses, i.e., clauses of the
form a ← b1 , . . . , bn where a, bi, 1 ≤ i ≤ n, are non-equality atoms. Note that
the Horn clauses are interpreted under a FOL semantics (no minimality), and
as such the mapping is not actually to a LP paradigm but to a rule-based
paradigm in the broader sense.

The translation from terminological axioms to Horn clauses maps, e.g., an
axiom C1 u C2 v D, for concept names C1, C2, and D, to a Horn clause

D(X)← C1 (X),C2 (X)

and a D v C1 u C2 to
C1 (X)← D(X)
C2 (X)← D(X)

Not all DL constructs can be encoded as Horn clauses. E.g., axioms contain-
ing disjunction on the right hand side, as in D v C tD, universal restriction
on the left hand side, or existential restriction on the right hand side are pro-
hibited since Horn clauses cannot represent them. Moreover, neither negation
of concept expressions nor number restrictions can be represented. This re-
sults in a type of DLs that is less expressive than, e.g., ALCHOQ(t,u) which
we simulated.

In [AB02], the DL ALCQI is successfully translated into a logic program
under the answer set semantics. However, to take into account infinite inter-
pretations [AB02] presumes, for technical reasons, the existence of function
symbols, which leads, in general, to undecidability of reasoning.

In a first phase [AB02] defines a type of interpretations I = (∆I , ·I)
where ∆I equals a fixed finite Herbrand Universe of constants. Thus, instead
of modifying the answer set semantics with open domains, [AB02] closes the
DL domain. One can then introduce rules

top(a)←

for each a in the Herbrand Universe such that DL interpretations and answer
sets speak about the same domain. Concepts b can be introduced by rules

b(X) ← top(X),not not b(X)
not b(X) ← top(X),not b(X)

and similarly for roles. The rest of the constructs can then be defined similarly
like we did in the previous sections. Inverse roles are taken care of by rules

r(X ,Y)← p(Y ,X)

if R = P− for a role name P .

226 6 Description Logics Reasoning via Open Answer Set Programming

In the second phase, [AB02] takes care of the general case (i.e., with nor-
mal, possibly infinite, DL interpretations) by introducing the rules

top(a′)←
top(f (X))← top(X)

which generates an infinite Herbrand Universe, intended to simulate the
openness. However, adding function symbols yields undecidable answer set
programming in general, and it is not discussed why the obtained translation
would be decidable (note that the rule introducing the function symbol is not
ω-restricted).

[HMS03] and [Swi04] simulate reasoning in DLs with a LP formalism by
using an intermediate translation to first-order clauses. In [HMS03], SHIQ
knowledge bases are reduced to first-order formulas, on which basic superpo-
sition calculus is then applied. The result is transformed into a function-free
version which is translated to a disjunctive Datalog program. It would be in-
teresting to see whether a similar technique can work to reduce, e.g., guarded
programs, to disjunctive Datalog programs under a finite answer set seman-
tics. However, [HMS03]’s technique uses basic superposition calculus which is
only applicable to first-order logic. As described in Chapter 5, we can reduce
satisfiability checking under the open answer set semantics to satisfiability
checking of fixed point logic formulas. As the latter are first-order extensions,
one would need an extension of the basic superposition calculus that can cope
with this; we are not aware of any such extensions.

[Swi04] translates ALCQI concept expressions to first-order formulas,
grounds them with a finite number of constants, and transforms the result
to a logic program. One can use a finite number of constants by the finite
model property of ALCQI; in the presence of terminological axioms this is
no longer possible since the finite model property is lost.

The approach is interesting since it provides efficient reasoning for a par-
ticular DL – its efficiency is comparable to that of DLP [PS99]. We focused
in Chapter 4 on finding a particular fragment of programs under the open
answer set semantics that could be reduced to finite answer set programming,
resulting in acyclic FoLPs. Acyclic FoLPs can simulate satisfiability checking
of ALCHOQ(t,u) concept expressions w.r.t. a ALCHOQ(t,u) knowledge
base. From that viewpoint, we also reduce a particular DL to finite answer set
programming, the basic difference being that [Swi04] allows for inverse roles
and prohibits axioms while we allow for axioms and prohibit inverse roles (and
include support for nominals).

In [VBDDS97], the simulation of a DL with acyclic axioms in open logic
programming (see Section 3.6.4, pp. 106) is shown. More specifically, open
logic programming simulates reasoning in the DL ALCN , N indicating the
use of unqualified number restrictions, where terminological axioms consist of
non-recursive concept definitions; ALCN is a subclass of ALCHOQ(t,u).

Essentially, this shows that there are other LP approaches that are just as
viable as open answer programming to simulate DLs; the main contribution of

6.6 Related Work 227

this dissertation is however, the identification of decidable subclasses for open
answer set programming. And as such, translations of DLs can be shown to
fall in such decidable fragments; the approach of [VBDDS97] requires careful
investigation of the SLDNFA proof procedure (which is incomplete in general).

6.6.2 Integration of DLs and Rule-based Paradigms

In [LR96], the DL ALCNR (R stands for role intersection) is extended with
Horn clauses

q(Y)← p1 (X1), . . . , pn(Xn)

where the variables in Y must appear in X1 ∪ . . . ∪ Xn; p1, . . . , pn are ei-
ther concept names, role names, or ordinary predicates not appearing in the
DL part, and q is an ordinary predicate. Note that ALCNR is less general
than the DL ALCHOQ(t,u) that we considered. There is no safeness in the
sense that every variable must appear in a non-DL atom (i.e., with an ordi-
nary predicate), as it was in, e.g., [MSS04]. The semantics is like in [MSS04]:
extended interpretations that satisfy both the DL and clauses part (as FOL
formulas).

Query answering is undecidable if recursive Horn clauses are allowed, but
decidability can be regained by restricting the DL part or by enforcing that
the clauses are role safe (each variable in a role atom R(X,Y) for a role R
must appear in a non-DL atom). Note that the latter restriction is less strict
than the DL-safeness of [MSS04], where also variables in concept atoms A(X)
need to appear in non-DL atoms. On the other hand, [MSS04] allows for
the more expressive DL SHOIN (D), and the head predicates may be DL-
atoms as well. In relation with our work: we simulated [MSS04]’s approach
for ALCHOQ(t,u) (which is more expressive than ALCNR) in Section 6.3
where we needed the DL-safeness and not just role safeness as in [LR96].

An AL-log [DLNS98] system consists of two subsystems: an ALC knowl-
edge base and a set of Horn clauses of the above form, where variables in the
head must appear in the body, only concept names besides ordinary predi-
cates are allowed in the body (thus no role names), and there is a safeness
condition as in [MSS04] saying that every variable appears in a non-DL atom.
As argued in [MSS04], the approach in [MSS04] is more general since more
expressive DLs than ALC are allowed, role atoms are allowed and the head
predicate does not need to be ordinary. Since we simulated [MSS04]’s ap-
proach – if atoms are unary or binary and for the ALCHOQ(t,u) DL – we
can also simulate AL-log reasoning.

In [Ros05], an extension of the results in [Ros99], r-hybrid knowledge bases
are defined. The alphabet of predicates A is the disjoint union of structural
(read DL) predicates AP and predicates AR. An r-hybrid knowledge base
is a pair (T ,P) where the first component is a DL12 where T contains no

12 Actually, [Ros05] considers the more general case of first-order theories.

228 6 Description Logics Reasoning via Open Answer Set Programming

predicates from AR (intuitively, AR are the ordinary predicates from the rule
part), and P is a disjunctive program where each rule R has the form [Ros05]:

p1(X1) ∨ . . . ∨ pn(Xn)← r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk),

not u1(W1), . . . , not uh(Wh)

where the ri, ui are predicates from AR, i.e., ordinary predicates, and si are
predicates from AP , i.e., the si(Zi) are DL-atoms. Furthermore, each variable
in R must occur in one of the ri(Yi)’s. The latter condition is exactly the
safeness condition from [MSS04]. However, [Ros05] allows for disjunction in
the head and negation as failure in the body for non-DL atoms. Moreover, the
semantics for r-hybrid knowledge bases differs from [MSS04]’s semantics. Intu-
itively, due to safeness, one can restrict oneself again to the version of P that
is grounded with the constants in the knowledge base. Next, one can, given an
extended interpretation of the DL knowledge base and the program, remove
the DL-atoms from P by applying a reduct-like construction. An extended in-
terpretation is then an NM-model if its projection onto the DL concepts and
roles satisfies the DL knowledge base, and the projection onto the ordinary
predicates is an answer set of the reduced ground program.

This approach is very expressive and decidable for DLs like SHOIN (D).
Moreover, it extends [MSS04] in the sense that an actual answer set semantics
is used instead of a first-order one. The approach in [Ros05], using the DL
ALCHOQ(t,u) and rules consisting of unary and binary predicates, cannot
be reduced to free acyclic EFoLPs since the arbitrary rule component in the
latter implements a first-order semantics by imposing that all head predicates
should be free. This worked for simulating [MSS04] since the interpretation of
the rules is first-order, but will not work for simulating [Ros05].

In [ELST04a, EIST05, ELST04b] description logic programs are intro-
duced; atoms in the program component may be dl-atoms

DL[S1op1p1, . . . , Smopmpm;Q](t)

where Si are concepts or roles, pi are (ordinary) predicates, Q(t) is a concept
inclusion axiom, its negation, a concept C(t) or its negation ¬C(t) for a term t,
a role R(t1, t2) or ¬R(t1, t2), opi is one of three operators that can, intuitively,
indicate the augmentation of Si or ¬Si in the DL part with the extension of
pi (which is defined by the rules), or a constraining of Si to pi. The semantics
is given by an interpretation that is a subset of the Herbrand Base of the
program part grounded with constants or individuals from the combined DL
and program. A ground dl-atom DL[S1op1 p1, . . . , Smopmpm;Q](t) is true in
such an interpretation if, intuitively, adding to the DL the assertions deduced
from the Siopipi, the query Q(t) to that modified DL holds. E.g., if opi means
augmenting Si, then assertions Si(e) are added to the DL knowledge base for
each pi(e) in the interpretation; one can thus query the knowledge in the DL
part and each query can also provide the DL with information that the rule
part deduced, yielding a bi-directional flow of information.

6.6 Related Work 229

In [ELST04a], the semantics for the programs is an answer set seman-
tics, while in [ELST04b] a well-founded semantics is investigated. Both dis-
cuss the expressiveness and complexity for the expressive DLs SHIF(D) and
SHOIN (D). In [EIST05], the results of an implementation with experiments
were reported.

Finally, SWRL [HSB+04] is a Semantic Web Rule Language and extends
the syntax and semantics of OWL DL (i.e., SHOIN (D)) with unary/binary
Datalog RuleML [Rul], i.e., Horn-like rules. This extension is undecidable
[HPS04b].

7

Conclusions and Directions for Future
Research

In order to solve the lack of modularity in answer set programming with a
closed world assumption, we defined open answer set programming. Although
open answer set programming solves the problem with closed-domain rea-
soning, it is undecidable in general. We showed this by reducing the domino
problem – is there a tiling of the infinite plane using a finite set of domino
types – to open answer set programming. We subsequently identified 3 families
of logic programs for which reasoning under the open answer set semantics is
decidable. Those 3 families include different types of syntactically restricted
logic programs and were categorized according to 3 different decidability vehi-
cles (two-way alternating tree automata, finite answer set programming, and
guarded fixed point logic):

• Reasoning with Conceptual Logic Programs (CoLPs) was reduced to check-
ing non-emptiness of two-way alternating tree automata, which yielded an
exptime upper bound for reasoning – satisfiability checking – with CoLPs.
Predicates in CoLPs are unary or binary, rules have a tree structure, and
inverted predicates are allowed. Although restricted, they are still expres-
sive enough for conceptual modeling as we illustrated by translating a
particular ORM model. Furthermore, CoLPs can simulate reasoning in
the expressive description logic SHIQ. The latter reduction implies exp-
time-completeness.

• Forest Logic Programs (FoLPs) were identified and reasoning w.r.t. sev-
eral types of FoLPs was reduced to finite answer set programming. FoLPs
add support for constants to CoLPs. E.g., for local FoLPs this yielded
a 2-exptimeΣ

p
2 upper bound. A simulation of the DL ALCHOQ(t,u),

which includes nominals, yielded an exptime lower bound.
Note the significant complexity gap between this exptime-hardness and
2-exptimeΣ

p
2 membership for local FoLPs. Intuitively, this can be under-

stood by looking at an analogous phenomenon in DLs: the DL SHIQ is
exptime-complete, but practical reasoners for SHIQ are in 2-nexptime
[Tob01]. Similarly, the reduction to finite open answer set programming of

232 7 Conclusions and Directions for Future Research

local FoLPs can be seen as an effective reasoning algorithm and thus less
optimal than theoretically attainable. Future work includes a tightening
of the upper complexity bound; note that a reduction to tree automata is
not immediately applicable as FoLPs do not have the tree model property.
We further extended FoLPs with arbitrary ground rules and showed that
such EFoLPs can simulate expressive DLs that are extended with DL-safe
rules. This illustrated how an integration of DLs and rules can be embed-
ded in open answer set programming. The arbitrary ground rules may only
contain unary and binary predicates. Future work includes checking how
to cope with arbitrary n-ary predicates in this ground rule part.

• Guarded programs allow for n-ary predicates, which makes them, in this
respect, more expressive than CoLPs or FoLPs. They are, however, less
liberal in their use of inequality. Decidability of reasoning with guarded
programs is based on a reduction to guarded fixed point logic, an extension
of first-order logic with fixed point formulas. This allows to characterize
a logic program by a fixed point logic formula where the latter formula
can be seen as an extension of Clark’s completion. Moreover, the resulting
fixed point logic formula can be translated to a Datalog lite program, i.e.,
a stratified program with generalized literals with a fixed point semantics.
This reduces an open answer set semantics to a fixed point (bottom-up)
semantics for stratified programs which is remarkable as it shows that
negation as failure (under an answer set semantics) can be seen as semantic
sugar (one can, e.g., express, the circular knowledge a(X)← not b(X) and
b(X)← not a(X), which is not stratified).
We further showed that normal (finite) answer set programming can be
reduced to decidable (loosely) guarded open answer set programming such
that the latter is an extension of the former. We extended guarded pro-
grams with generalized literals which led to the simulation of computa-
tion tree logic. Moreover, Datalog lite can be simulated by such extended
guarded programs, showing equivalence of Datalog lite, (alternation-free)
guarded fixed point logic, and guarded programs with generalized literals.
Reasoning is 2-exptime-complete in general, and exptime-complete for
bound guarded programs (with generalized literals). Finally, we showed

how the DL DLR−{≤}, which allows for n-ary roles, can be simulated by
bound guarded programs.

We defined several classes of logic programs, decidable for the open answer
set semantics, and illustrated their expressiveness by simulations of several ex-
pressive DLs (possibly with DL-safe rules). Moreover, we have native support
for nonmonotonicity by means of negation as failure, a feature that is miss-
ing in standard DLs. Additionally, the rule-based syntax allows for a more
succinct expression of knowledge than the more rigid DL syntax.

The DL SHOIQ has support for both nominals (O) and inverse roles (I).
On the other hand, CoLPs contain inverted predicates but no constants and
vice versa for FoLPs. It is interesting to check whether one can allow for both

7 Conclusions and Directions for Future Research 233

inverted predicates and constants and still have decidable reasoning. Note
that a program with inverted predicated cannot be reduced to finite answer
set programming (like we did with local FoLPs) as inverted predicates may
lead to programs that have only infinite open answer sets. A program with
constants cannot be reduced to a tree automaton (like we did with CoLPs)
as constants, induce, at best, forest models instead of tree models. So, the
combination of inverted predicates and constants seems to be not trivial.

We plan to look into the correspondence with Datalog and use decidability
results for Datalog satisfiability checking, as, e.g., in [HMSS01], to search for
decidable fragments under an open answer set semantics.

Although adding generalized literals to guarded programs does not increase
the complexity of reasoning, it does seem to increase expressivity: one can, for
example, express infinity axioms. Given the close relation with Datalog lite
and the fact that Datalog lite without generalized literals cannot express
well-founded statements, it seems unlikely that guarded programs without
generalized literals can express infinity axioms; this is subject to further re-
search.

We only considered generalized literals in the positive body. If the an-
tecedents in generalized literals are atoms, it seems intuitive to allow also
generalized literals in the negative body. E.g., take a rule α ← β, not [∀X ·
b(X) ⇒ a(X)]; it seems natural to treat not [∀X · b(X) ⇒ a(X)] as
∃X · b(X) ∧ ¬a(X) such that the rule becomes α ← β, b(X), not a(X). A
rule like [∀X · b(X)⇒ a(X)] ∨ α← β is more involved and it seems that the
generalized literal can only be intuitively removed by a modified GeLi-reduct.

We established the equivalence of open ASP with GgPs, alternation-free
µGF, and Datalog lite. Intuitively, Datalog lite is not expressive enough to
simulate normal µGF since such µGF formulas could contain negated fixed
point variables, which would result in a non-stratified program when trans-
lating to Datalog lite [GGV02]. Open ASP with GgPs does not seem to
be sufficiently expressive either: fixed point predicates would need to appear
under negation as failure, however, the GL-reduct removes naf-literals, such
that, intuitively, there is no real recursion through naf-literals. Note that it is
unlikely (but still open) whether alternation-free µGF and normal µGF are
equivalent, i.e., whether the alternation hierarchy can always be collapsed.

We simulated DLR−{≤} with bound guarded programs. However, we did
not need to use the full power of bound guarded programs. E.g., DLR−{≤}

does not support nominals while bound guarded programs allow for con-
stants. We could extend DLR−{≤} with nominals, resulting in the, to the
best of our knowledge, yet unexplored DL, DLRO−{≤}. Furthermore, while
normally only nominals {o} are allowed, we could allow for general nominals
{(o1, o2, . . . , on)}, i.e., an n-ary tuple of individuals. The translation to bound
guarded programs would contain then rules

{(o1 , o2 , . . . , on)}(o1 , o2 , . . . , on)←

234 7 Conclusions and Directions for Future Research

defining the particular role nominal {(o1, o2, . . . , on)} as an n-ary predicate
that is only true for the tuple (o1, o2, . . . , on).

Equilibrium logic is a nonmonotonic system for propositional logic, de-
fined in [Pea96]. The semantics of propositional formulas is given by equilib-
rium models. Interestingly, for logic programs, equilibrium models coincide
with answer sets. In [PV04], equilibrium logic is extended for first-order logic.
Since open answer set programming extends answer set programming by open
domains, or, equivalently, considers those first-order interpretations (U,M) for
which M is an answer set of P grounded with U , it would be interesting to
see whether first-order equilibrium logic is a generalization of open answer set
programming. In particular, whether a first-order equilibrium model of a logic
program (with variables) corresponds to an open answer set of that program.

Moreover, since first-order equilibrium logic is undecidable in general, one
could attempt to identify decidable fragments of first-order equilibrium logic
by using a translation to guarded fixed point logic. This would require the
characterization of an equilibrium model as a fixed point of an operator defined
w.r.t. some reduct of a general first-order formula (instead of a logic program
with variables like for open answer set programming).

In [HV02], we extend the DL SHOQ(D) with a preference order. This
order indicates whether a certain axiom is more preferred than another and
may defeat the meaning of that axiom. For example, we could be tempted
to assume that, in general, movie stars are bright people. If we came to the
discovery that movie stars residing in Hollywood are actually not that clever,
we would not be able to retain this information consistently. However by
defeating the rule saying that movie stars are clever with the rule saying they
are not if they are Hollywood stars, we can still retain a consistent knowledge
base.

In addition to adding a preference order on axioms, implementing the
notion of defeat, we introduce in [HV02] an order on the models of such a
description logic knowledge base, taking into account the order on the axioms.
Nonmonotonicity is then introduced by preferring models that defeat as few
axioms as possible, and if defeat cannot be avoided, we select those models
that defeat less preferred axioms.

The ideas applied in [HV02] for defeasible description logics, were first
defined in the context of answer set programming in [VNV02]. In preferred
answer set programming rules may be defeated and a preference order on rules
induces a preference on the extended answer sets.

Given the correspondence between DLs and open answer set program-
ming (i.e., the simulation of the former with the latter) and the fact that
open answer set programming extends normal finite answer set programming,
a unifying preferred open answer set programming would have several de-
sired features of different kinds of knowledge representation formalisms: open
domain reasoning, flexible rule-based representation, nonmonotonicity, and
resolution of conflicts using preference.

References

[AB02] G. Alsaç and C. Baral. Reasoning in Description Logics using Declar-
ative Logic Progamming. Technical report, Arizona State University,
2002. [4, 225, 226]

[ABC00] M. Arenas, L. Bertossi, and J. Chomicki. Specifying and Querying
Database Repairs using Logic Programs with Exceptions. In Proc. of
the 4th International Conference on Flexible Query Answering Systems,
pages 27–41. Springer, 2000. [44]

[AE01] P. C. Attie and E. A. Emerson. Synthesis of Concurrent Programs for
an Atomic Read/Write Model of Computation. ACM Trans. Program.
Lang. Syst., 23(2):187–242, 2001. [55]

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995. [3, 180, 184]

[ANB98] H. Andréka, I. Németi, and J. Van Benthem. Modal Languages and
Bounded Fragments of Predicate Logic. J. of Philosophical Logic,
27(3):217–274, 1998. [14, 82, 154]

[Bar03] C. Baral. Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press, 2003. [44, 48, 133, 136, 140,
163]

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider. The Description Logic Handbook. Cambridge University
Press, 2003. [4, 5, 49, 122, 213, 218, 219]

[Ben97] J. Van Benthem. Dynamic Bits and Pieces. In ILLC research report.
University of Amsterdam, 1997. [14, 153]

[BGG97] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem.
Perspectives of Mathematical Logic. Springer, 1997. Second printing
(Universitext) 2001. [27, 30, 67]

[BGH01] S. Bechhofer, C. Goble, and I. Horrocks. DAML+OIL is not
Enough. In Proceedings of the First Semantic Web Working Symposium
(SWWS’01), pages 151–159. CEUR, 2001. [49]

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scien-
tific American, pages 34–43, May 2001. [3, 49]

[Bon03] P.A. Bonatti. Finitary Open Logic Programs. In Answer Set Program-
ming: Advances in Theory and Implementation (ASP03), pages 84–97.
Volume 78 of CEUR Proc., 2003. [2, 108, 109, 111]

236 References

[Bon04] P. A. Bonatti. Reasoning with Infinite Stable Models. Artificial Intel-
ligence, 156:75–111, 2004. [105, 106]

[Bra77] R.J. Brachman. What’s in a Concept: Structural Foundations for Se-
mantic Networks. Int. Journal of Man-Machine Studies, 9(2):127–152,
1977. [49]

[BS85] R. J. Brachman and J. G. Schmolze. An Overview of the Kl-One
Knowledge Representation System. Cognitive Science, 9(2):171–216,
1985. [49]

[BS00] F. Baader and U. Sattler. Tableau Algorithms for Description Logics.
In Proc. of the International Conference on Automated Reasoning with
Tableaux and Related Methods (Tableaux 2000), volume 1847 of LNAI,
pages 1–18. Springer, 2000. [49]

[BS03] F. Bry and S. Schaffert. An Entailment Relation for Reasoning on the
Web. In Proc. of Rules and Rule Markup Languages for the Semantic
Web, LNCS, pages 17–34. Springer, 2003. [222]

[BvHH+] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuin-
ness, P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Lan-
guage Reference. [4, 49]

[Cac02] T. Cachat. Two-Way Tree Automata Solving Pushdown Games. In
E. Grädel, W. Thomas, and T. Wilke, editors, Automata, Logics, and
Infinite Games, volume 2500 of LNCS, pages 303–317. Springer, 2002.
[41]

[CDGL97] D. Calvanese, G. De Giacomo, and M. Lenzerini. Conjunctive Query
Containment in Description Logics with n-ary Relations. In Proc. of
the 1997 Description Logic Workshop (DL’97), pages 5–9, 1997. [218]

[CDGL98] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the Decidability
of Query Containment under Constraints. In Proc. of the 17th ACM
SIGACT SIGMOD SIGART Sym. on Principles of Database Systems
(PODS’98), pages 149–158, 1998. [222]

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of
Finite-state Concurrent Systems using Temporal Logic Specifications.
ACM Trans. Program. Lang. Syst., 8(2):244–263, 1986. [17, 54, 55]

[CGL02] D. Calvanese, G. De Giacomo, and M. Lenzerini. 2ATAs make DLs
easy. In Proc. of the 2002 Description Logic Workshop (DL’02), 2002.
[6, 224]

[CH82] A. K. Chandra and D. Harel. Horn Clauses and the Fixpoint Query
Hierarchy. In Proc. of PODS ’82, pages 158–163. ACM Press, 1982.
[14, 147]

[CI05] F. Calimeri and G. Ianni. External Sources of Computation for An-
swer Set Solvers. In C. Baral, G. Greco, N. Leone, and G. Terracina,
editors, 8th International Conference on Logic Programming and Non
Monotonic Reasoning (LPNMR 2005), number 3662 in LNAI, pages
105–118. Springer, 2005. [111]

[Cla87] K. L. Clark. Negation as Failure. In Readings in Nonmonotonic Rea-
soning, pages 311–325. Kaufmann, 1987. [107, 152]

[Col] A Disjunctive Encoding of 3-Colorability.
http://www.dbai.tuwien.ac.at/proj/dlv/examples/3col. [44]

[dBPLF05] J. de Bruijn, A. Polleres, R. Lara, and D. Fensel. OWL DL vs. OWL
Flight: Conceptual Modeling and Reasoning for the Semantic Web. In

References 237

Proc. of the International World Wide Web Conference (WWW 2005).
ACM, 2005. [54]

[DDS98] M. Denecker and D. De Schreye. SLDNFA: An Abductive Procedure for
Abductive logic programs. Journal of Logic Programming, 34(2):111–
167, 1998. [108]

[DEGV01] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and
Expressive Power of Logic Programming. ACM Computing Surveys,
33(3):374–425, 2001. [48, 94, 136, 140, 163]

[DLNS98] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrat-
ing Datalog and Description Logics. J. of Intelligent and Cooperative
Information Systems, 10:227–252, 1998. [4, 227]

[DNR02] F. Donini, D. Nardi, and R. Rosati. Description Logics of Minimal
Knowledge and Negation as Failure. ACM Trans. Comput. Logic,
3(2):177–225, 2002. [223]

[DvHB+00] S. Decker, F. van Harmelen, J. Broekstra, M. Erdmann, D. Fensel,
I. Horrocks, M. Klein, and S. Melnik. The Semantic Web - on the
respective roles of XML and RDF. IEEE Internet Computing, 2000.
[49]

[DVV99] M. De Vos and D. Vermeir. Choice Logic Programs and Nash Equilibria
in Strategic Games. In Proc. of Computer Science Logic (CSL’99),
volume 1683 of LNCS, pages 266–276. Springer, 1999. [44]

[EC82] E. A. Emerson and E. M. Clarke. Using Branching Time Temporal
Logic to Synthesize Synchronization Skeletons. Sciene of Computer
Programming, 2(3):241–266, 1982. [15, 55, 56]

[EFF+04] T. Eiter, W. Faber, M. Fink, G. Pfeifer, and S. Woltran. Complex-
ity of Model Checking and Bounded Predicate Arities for Non-ground
Answer Set Programming. In Didier Dubois, Christopher Welty, and
Mary-Anne Williams, editors, Proceedings Ninth International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR
2004), June 2-5, Whistler, British Columbia, Canada, pages 377–387.
Morgan Kaufmann, 2004. [136]

[EFL+00] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Planning
under Incomplete Knowledge. In Proc. of the First International Con-
ference on Computational Logic (CL 2000), volume 1861 of LNCS, pages
807–821. Springer, 2000. [44]

[EFL+02] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. The DLVk

planning system. In JELIA 2002 [JEL02], pages 541–544. [44]
[EFLP99] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. The Diagnosis Frontend

of the dlv System. AI Communications, 12(1-2):99–111, 1999. [44]
[EFLP00] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-

Solving Using the dlv System. Logic-Based Artificial Intelligence, pages
79–103, 2000. [44]

[EFST00] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Considerations on
Updates of Logic Programs. In Proc. of European Conference on Logic
in Artificial Intelligence (JELIA 2002), volume 1919 of LNAI, pages
2–20. Springer, 2000. [44]

[EG93] T. Eiter and G. Gottlob. Complexity Results for Disjunctive Logic
programming and Application to Nonmonotonic Logics. In Proceedings
of the 1983 International Logic Programming Symposium, pages 266–
279, Vancouver, 1993. MIT Press. [48]

238 References

[EG97] T. Eiter and G. Gottlob. Expressiveness of Stable Model Semantics for
Disjunctive Logic Programs with Functions. Journal of Logic Program-
ming, 33(2):167–178, 1997. [104]

[EG05] T. Eiter and G. Gottlob. Reasoning Under Minimal Upper Bounds
in Propositional Logic. Technical Report INFSYS RR-1843-05-06, TU
Wien, 2005. [66]

[EH82] E. A. Emerson and Joseph Y. Halpern. Decision Procedures and Ex-
pressiveness in the Temporal Logic of Branching Time. In Proc. of
the fourteenth annual ACM symposium on Theory of Computing, pages
169–180. ACM Press, 1982. [17, 54]

[EIST05] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Nonmonotonic
Description Logic Programs: Implemenation and Experiments. In 11th
International Conference on Logic for Programming, Artificial Intelli-
gence, and Reasoning (LPAR 2004), number 3452 in LNAI, pages 511–
527. Springer, 2005. [4, 228, 229]

[EJ00] E. A. Emerson and C. S. Jutla. The Complexity of Tree Automata and
Logics of Programs. SIAM J. Comput., 29(1):132–158, 2000. [44]

[ELST04a] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining
Answer Set Programming with DLs for the Semantic Web. In Proc.
of 9th International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR 2004), pages 141–151. Morgan Kaufmann,
2004. [4, 228, 229]

[ELST04b] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-
Founded Semantics for Description Logic Programs in the Semantic
Web. In Proc. of 3th International Workshop on Rules and Rule Markup
Languages for the Semantic Web (RULEML 2004), number 3323 in
LNCS, pages 81–97. Springer, 2004. [228, 229]

[Eme90] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, pages 995–1072. Elsevier
Science Publishers B.V., 1990. [17, 54, 55, 56, 122]

[FH91] F. and P. Hanschke. A Scheme for Integrating Concrete Domains
into Concept Languages. Technical Report RR-91-10, TU Dresden,
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, 1991.
[50]

[FHvH+00] D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and
M. Klein. OIL in a Nutshell. In R. Dieng et al., editor, Knowledge Acqui-
sition, Modeling, and Management, Proceedings of the European Knowl-
edge Acquisition Conference (EKAW-2000), LNAI. Springer-Verlag,
2000. [49]

[FL05] P. Ferraris and V. Lifschitz. Mathematical Foundations of Answer
Set Programming. In We Will Show Them! Essays in Honour of
Dov Gabbay, http://www.cs.utexas.edu/users/vl/papers/mfasp.ps,
2005. [48]

[Flu99] J. Flum. On the (Infinite) Model Theory of Fixed-point Logics. Models,
Algebras, and Proofs, pages 67–75, 1999. [56]

[FvHH+01] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F.
Patel-Schneider. OIL: An Ontology Infrastructure for the Semantic
Web. IEEE Intelligent Systems, 16(2):38–45, 2001. [49]

References 239

[GGV02] G. Gottlob, E. Grädel, and H. Veith. Datalog LITE: A deductive query
language with linear time model checking. ACM Transactions on Com-
putational Logic, 3(1):1–35, 2002. [14, 15, 16, 17, 180, 181, 182, 183,
188, 189, 233]

[GHO02] E. Grädel, C. Hirsch, and M. Otto. Back and Forth Between Guarded
and Modal Logics. ACM Transactions on Computational Logic, 3:418–
463, 2002. [155]

[GHVD03] B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Pro-
grams: Combining Logic Programs with Description Logic. In Proc.
of Twelfth International World Wide Web Conference (WWW 2003),
pages 48–57. ACM, 2003. [4, 225]

[GL88] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic
Programming. In Proc. of International Conference on Logic Program-
ming (ICLP 1988), pages 1070–1080. MIT Press, 1988. [1, 3, 13, 17, 44,
186]

[GP93] M. Gelfond and H. Przymusinska. Reasoning in Open Domains. In
Logic Programming and Non-Monotonic Reasoning, pages 397–413.
MIT Press, 1993. [2, 103, 104, 223]

[Grä99] E. Grädel. On the Restraining Power of Guards. Journal of Symbolic
Logic, 64(4):1719–1742, 1999. [14, 16, 188, 189]

[Grä02a] E. Grädel. Guarded Fixed Point Logic and the Monadic Theory of
Trees. Theoretical Computer Science, 288:129–152, 2002. [57, 172]

[Grä02b] E. Grädel. Model Checking Games. In Proceedings of WOLLIC 02, vol-
ume 67 of Electronic Notes in Theoretical Computer Science. Elsevier,
2002. [195]

[GW99] E. Grädel and I. Walukiewicz. Guarded Fixed Point Logic. In Proc. of
the 14th Annual IEEE Symposium on Logic in Computer Science (LICS
’99), pages 45–54. IEEE Computer Society, 1999. [13, 14, 56, 57, 58,
153, 154, 160, 166, 179, 188, 196]

[Hal01] T. Halpin. Information Modeling and Relational Databases. Morgan
Kaufmann Publishers, 2001. [4, 8, 96, 101]

[HFB+00] I. Horrocks, D. Fensel, J. Boekstra, S. Decker, M. Erdmann, C. Goble,
F. Van Harmelen, M. Klein, S. Staab, R. Studer, and E. Motta. The
Ontology Inference Layer OIL, 2000. [49]

[HM01] V. Haarslev and R. Moller. Description of the RACER System and its
Applications. In Proc. of Description Logics 2001, 2001. [49]

[HMS03] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− Descrip-
tion Logic to Disjunctive Datalog Programs. FZI-Report 1-8-11/03,
Forschungszentrum Informatik (FZI), 2003. [4, 226]

[HMSS01] A. Halevy, I. Mumick, Y. Sagiv, and O. Shmueli. Static Analysis in
Datalog Extensions. Journal of the ACM, 48(5):971–1012, 2001. [233]

[Hor98] I. Horrocks. The FaCT system. In Automated Reasoning with Analytic
Tableaux and Related Methods: International Conference Tableaux’98,
number 1397 in LNAI, pages 307–312. Springer, 1998. [49]

[HPS04a] I. Horrocks and P. Patel-Schneider. Reducing OWL Entailment to De-
scription Logic Satisfiability. J. of Web Semantics, 2004. To Appear.
[54]

[HPS04b] I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules
Language. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM, 2004. [4, 215, 229]

240 References

[HR00] M. R. A. Huth and Mark Ryan. Logic in Computer Science: Modelling
and Reasoning about Systems. Cambridge University Press, 2000. [55,
189]

[HS98] I. Horrocks and U. Sattler. A Description Logic with Transitive and
Converse Roles and Role Hierarchies. LTCS-Report 98-05, LuFg The-
oretical Computer Science, RWTH Aachen, Germany, 1998. [9]

[HS01] I. Horrocks and U. Sattler. Ontology Reasoning in the SHOQ(D) De-
scription Logic. In Proc. of IJCAI’01, pages 199–204. Morgan Kauf-
mann, 2001. [115]

[HS03] J. Hladik and U. Sattler. A Translation of Looping Alternating Au-
tomata to Description Logics. In Proc. of CADE-19, volume 2741 of
LNAI. Springer, 2003. [121]

[HSB+04] I. Horrocks, P. F. Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A Semantic Web Rule language Combining OWL and RuleML,
May 2004. [4, 229]

[HST99] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expres-
sive Description Logics. In Proc. of the 6th International Conference on
Logic for Programming and Automated Reasoning (LPAR’99), number
1705 in LNCS, pages 161–180. Springer, 1999. [7, 49, 53]

[HV02] S. Heymans and D. Vermeir. A Defeasible Ontology Language. In
Robert Meersman and Zahir Tari et al., editors, Confederated Interna-
tional Conferences: CoopIS, DOA, and ODBASE 2002, number 2519 in
Lecture Notes in Computer Science, pages 1033–1046. Springer, 2002.
[234]

[HV03a] S. Heymans and D. Vermeir. Integrating Description Logics and An-
swer Set Programming. In International Workshop on Principles and
Practice of Semantic Web Reasoning (PPSWR 2003), number 2901 in
LNCS, pages 146–159. Springer, December 2003. [20]

[HV03b] S. Heymans and D. Vermeir. Integrating Ontology Languages and
Answer Set Programming. In Fourteenth International Workshop on
Database and Expert Systems Applications, pages 584–588. IEEE Com-
puter Society, 2003. [20]

[HV03c] S. Heymans and D. Vermeir. Integrating Semantic Web Reasoning
and Answer Set Programming. In Answer Set Programming: Advances
in Theory and Implementation (ASP03), pages 194–208. Volume 78 of
CEUR Proceedings, 2003. [20]

[HVNV04] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Semantic Web
Reasoning with Conceptual Logic Programs. In Grigoris Antoniou and
Harold Boley, editors, 3th International Workshop on Rules and Rule
Markup Languages for the Semantic Web, number 3323 in LNCS, pages
113–127. Springer, 2004. [20]

[HVNV05a] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Guarded Open
Answer Set Programming. In Chitta Baral, Gianluigi Greco, Nicola
Leone, and Giorgio Terracina, editors, 8th International Conference on
Logic Programming and Non Monotonic Reasoning (LPNMR 2005),
number 3662 in LNAI, pages 92–104, Diamante, Italy, September 2005.
Springer. [20]

[HVNV05b] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Nonmonotonic
Ontological and Rule-Based Reasoning with Extended Conceptual Logic

References 241

Programs. In A. Goméz-Pérez and J. Euzenat, editors, 2nd European
Semantic Web Conference (ESWC 2005), number 3532 in LNCS, pages
392–407, Heraklion, Greece, 2005. Springer. [20]

[HVNV06] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Guarded Open
Answer Set Programming with Generalized Literals. In J. Dix and
S.J. Hegner, editors, Fourth International Symposium on Foundations
of Information and Knowledge Systems (FoIKS 2006), number 3861 in
LNCS, pages 179–200. Springer, 2006. [20]

[IS98] K. Inoue and Ch. Sakama. Negation as Failure in the Head. Journal of
Logic Programming, 35(1):39–78, 1998. [48, 132]

[JEL02] Proc. of European Conference on Logic in Artificial Intelligence (JELIA
2002), volume 2424 of LNAI. Springer, 2002. [237, 244]

[JM02] M. Jarrar and R. Meersman. Formal Ontology Engineering in the
DOGMA Approach. In Proc. of CoopIS/DOA/ODBASE, volume 2519
of LNCS, pages 1238–1254. Springer, 2002. [4]

[Koz83] D. Kozen. Results on the Propositional µ-calculus. Theor. Comput.
Sci., 27:333–354, 1983. [15, 56]

[Kun87] K. Kunen. Negation in Logic Programming. Journal of Logic Program-
ming, 4(4):289–308, 1987. [103]

[Lif02] V. Lifschitz. Answer Set Programming and Plan Generation. Artificial
Intelligence, 138(1-2):39–54, 2002. [11, 44, 47]

[LL03] J. Lee and V. Lifschitz. Loop Formulas for Disjunctive Logic Programs.
In Proc. of ICLP 2003, volume 2916 of LNCS, pages 451–465. Springer,
2003. [14, 152]

[LPF] N. Leone, G. Pfeifer, and W. Faber. The dlv Project – A Disjunctive
Datalog System. http://www.dbai.tuwien.ac.at/proj/dlv/. [44]

[LPV01] V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic
Programs. ACM Transactions on Computational Logic, 2(4):526–541,
2001. [64]

[LR96] A. Y. Levy and M. Rousset. CARIN: A Representation Language Com-
bining Horn Rules and Description Logics. In Proc. of ECAI’96, pages
323–327, 1996. [4, 227]

[LRS97] N. Leone, P. Rullo, and F. Scarcello. Disjunctive Stable Models: Un-
founded sets, Fixpoint Semantics, and Computation. Information and
Computation, 135(2):69–112, 1997. [44]

[LS99] O. Lassila and R. Swick. Resource Description Framework (RDF) Model
and Syntax Specification. W3C Recommendation, February 1999. [49]

[LS00] C. Lutz and U. Sattler. Mary Likes all Cats. In F. Baader and U. Sattler,
editors, Proc. of the 2000 International Workshop in Description Logics
(DL2000), number 33 in CEUR-WS, pages 213–226. RWTH Aachen,
2000. [6]

[LT84] J. Lloyd and R. Topor. Making Prolog More Expressive. J. Log. Pro-
gram., 1(3):225–240, 1984. [16]

[LZ02] F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of a Logic Pro-
gram by SAT Solvers. In Proc. of 18th National Conference on Artificial
Intelligence, pages 112–117. AAAI, 2002. [14]

[Min85] M. Minsky. A Framework for Representing Knowledge. In R. J. Brach-
man and H. J. Levesque, editors, Readings in Knowledge Representa-
tion, pages 245–262. Kaufmann, Los Altos, CA, 1985. [49]

242 References

[Mos74] Y.N. Moschovakis. Elementary Induction on Abstract Structures. North
Holland, 1974. [56]

[MS87] D.E. Muller and P.E. Schupp. Alternating Automata on Infinite Trees.
Theoretical Computer Science, 54(2-3):267–276, 1987. [39]

[MSS04] B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL
with Rules. In Proc. of International Semantic Web Conference (ISWC
2004), number 3298 in LNCS, pages 549–563. Springer, 2004. [4, 12,
214, 215, 216, 217, 224, 227, 228]

[MT91] V. W. Marek and M. Truszczyński. Autoepistemic Logic. Journal of
the ACM, 38(3):588–619, 1991. [48]

[MW84] Z. Manna and P. Wolper. Synthesis of Communicating Processes from
Temporal Logic Specifications. ACM Trans. Program. Lang. Syst.,
6(1):68–93, 1984. [55]

[NS96] I. Niemelä and P. Simons. Efficient Implementation of the Well-founded
and Stable Model Semantics. In Proc. of the 1996 Joint Interna-
tional Conference and Symposium on Logic Programming, pages 289–
303, 1996. [44]

[NS97] I. Niemelä and P. Simons. smodels - An Implementation of the Stable
Model and Well-founded Semantics for Normal Logic Programs. In
Proc. of the 4th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 1997), volume 1265 of LNAI, pages
420–429, 1997. [44]

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[21, 23, 24, 25, 26, 31, 163]

[Pea96] D. Pearce. A New Logical Characterisation of Stable Models and An-
swer Sets. In Proc. of Nonmonotonic Extensions of Logic Programming,
number 1216 in LNCS, pages 57–70. Springer, 1996. [234]

[PP90] H. Przymusinska and T. Przymusinski. Semantic Issues in Deductive
Databases and Logic Programs. In R. Banerji, editor, Formal Ap-
proaches to Artificial Intelligence: A Sourcebook. North-Holland, 1990.
[2]

[PS99] P. Patel-Schneider. DLP. In Proc. of the 1999 International Workshop
on Description Logics (DL’99), volume 22 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 1999. [226]

[PV04] D. Pearce and A. Valverde. Towards a First Order Equilibrium Logic
for Nonmonotonic Reasoning. In J.J. Alferes and J. Leite, editors, 9th
European Conference on Logics in Artificial Intelligence (JELIA 2004),
number 3229 in LNAI, pages 147–160. Springer, 2004. [234]

[Ros99] R. Rosati. Towards Expressive KR Systems Integrating Datalog and
Description Logics: Preliminary Report. In Proc. of DL’99, pages 160–
164, 1999. [227]

[Ros05] R. Rosati. On the Decidability and Complexity of Integrating Ontolo-
gies and Rules. Journal of Web Semantics, 3(1), 2005. [4, 227, 228]

[Rul] The Rule Markup Initiative. http://www.ruleml.org. [229]
[RWRR01] A. L. Rector, C. Wroe, J. Rogers, and A. Roberts. Untangling Tax-

onomies and Relationships: Personal and Practical Problems in Loosely
Coupled Development of Large Ontologies. In K-CAP 2001: Proc. of the
International Conference on Knowledge Capture, pages 139–146, New
York, NY, USA, 2001. ACM Press. [49]

References 243

[SC85] A. P. Sistla and E. M. Clarke. The Complexity of Propositional Linear
Temporal Logics. J. ACM, 32(3):733–749, 1985. [17, 54]

[Sch93] J. Schlipf. Some Remarks on Computability and Open Domain Seman-
tics. In Proc. of the Workshop on Structural Complexity and Recursion-
Theoretic Methods in Logic Programming, 1993. [3, 104]

[Sch95] J. Schlipf. Complexity and Undecidability Results for Logic Program-
ming. Annals of Mathematics and Artificial Intelligence, 15(3-4):257–
288, 1995. [104]

[Sim] P. Simons. smodels Homepage.
http://www.tcs.hut.fi/Software/smodels/. [44, 113]

[SN99] T. Soininen and I. Niemelä. Developing a Declarative Rule Language
for Applications in Product Configuration. In Proceedings of the First
International Workshop on Practical Aspects of Declarative Languages
(PADL 1999), number 1551 in LNCS, pages 305–319. Springer, 1999.
[44]

[SNTS01] T. Soininen, I. Niemelä, J. Tiihonen, and R. Sulonen. Representing
Configuration Knowledge with Weight Constraint Rules. In Proc. of the
AAAI Spring 2001 Symposium on Answer Set Programming: Towards
Efficient and Scalable Knowledge, 2001. [44]

[Swi04] T. Swift. Deduction in Ontologies via Answer Set Programming. In
Vladimir Lifschitz and Ilkka Niemelä, editors, Proc. of LPNMR 2004,
volume 2923 of LNCS, pages 275–288. Springer, 2004. [4, 226]

[SWM04] M. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Lan-
guage Guide. http://www.w3.org/TR/owl-guide/, 2004. [50]

[Syr01] T. Syrjänen. Omega-Restricted Logic Programs. In Proc. of the 6th In-
ternational Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR 2001), volume 2173 of LNCS, pages 267–279. Springer,
2001. [111, 113]

[Syr04] T. Syrjänen. Cardinality Constraint Programs. In Proc. of JELIA’04,
pages 187–200. Springer, 2004. [179]

[Tar55] A. Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applica-
tions. Pacific Journal of Mathematics, 5:285–309, 1955. [57]

[Tho90] W. Thomas. Automata on Infinite Objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, chapter 4, pages 133–191.
Elsevier Science Publishers B. V., 1990. [34, 35, 36]

[Tob01] S. Tobies. Complexity Results and Practical Algorithms for Logics in
Knowledge Representation. PhD thesis, LuFG Theoretical Computer
Science, RWTH-Aachen, Germany, 2001. [53, 163, 202, 208, 224, 231]

[UG96] M. Uschold and M. Grüninger. Ontologies: Principles, Methods, and
Applications. Knowledge Engineering Review, 11(2):93–155, 1996. [4,
49]

[Var97] M. Y. Vardi. Why is Modal Logic so Robustly Decidable? Technical
Report TR97-274, Rice University, April 12, 1997. [77]

[Var98] M. Y. Vardi. Reasoning about the Past with Two-Way Automata. In
Proceedings of the 25th Int. Coll. on Automata, Languages and Pro-
gramming (ICALP ’98), pages 628–641. Springer, 1998. [5, 35, 40, 41,
42, 44, 83, 120]

[VB97] K. Van Belleghem. Open Logic Programming as a Knowledge Represen-
tation Language for Dynamic Problem Domains. PhD thesis, Depart-

244 References

ment of Computer Science, K.U. Leuven, Leuven, Belgium, December
1997. [2, 106, 107, 108]

[VBDDS97] K. Van Belleghem, M. Denecker, and D. De Schreye. A Strong Cor-
respondence between DLs and Open Logic Programming. In Proc. of
International Conference on Logic Programming (ICLP 1997), pages
346–360. MIT Press, 1997. [4, 226, 227]

[vEK76] M. H. van Emden and R. A. Kowalski. The Semantics of Predicate Logic
as a Programming Language. Journal of the Association for Computing
Machinery, 23(4):733–742, 1976. [66, 168]

[VNV02] D. Van Nieuwenborgh and D. Vermeir. Preferred Answer Sets for Or-
dered Logic Programs. In JELIA 2002 [JEL02], pages 432–443. [44,
234]

[VNV03] D. Van Nieuwenborgh and D. Vermeir. Ordered Diagnosis. In Proc. of
the 10th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR2003), volume 2850 of LNAI, pages
244–258. Springer, 2003. [44]

[VRS91] A. Van Gelder, K. A. Ross, and J. Schlipf. The Well-Founded Semantics
for General Logic Programs. Journal of the ACM, 38(3):619–649, 1991.
[102, 108]

[VS93] A. Van Gelder and J. Schlipf. Commonsense Axiomatizations for Logic
Programs. Journal of Logic Programming, 17:161–195, 1993. [2, 102,
103]

Index

3-colorability 44
B-answer set 109
B-satisfiability checking 110

FP 187
Si 180

comp(P) 148
Σp

2 31
ALC 53

bpreds(P) 61, 72
cts(P) 61

edb(P) 180
fix(P) 148
fpf(P) 148

[GFP WX.ψ(W,X)](X) 57
Px(U,I) 164

gl(P) 148
κP 133
[LFP WX.ψ(W,X)](X) 57

in(Y) 145
live(P) 82, 119

C-complete 31
SHI 53
SH 53

S 53
index(q) 41

|= 46
ω-restricted 112
ω-restricted program 111, 179

ω-stratification 112
ω-stratum 112

ω-valuation 112
ψ(U,M) 57
preds(P) 61

U 180
ε 26
sat(P) 148

SHIQ 53
upreds(P) 61

vars(P) 61
ξg 176
k-belief set 103

p-gP 168
p-program 145

compgl(P) 169
gcompgl(P) 176
gcomp(P) 157

HP 105
not 45

ALCHOQ(t,u) 209
clos(C,Σ) 200, 210, 220
Datalog lite 180, 181

Datalog litem 187
Datalog liter 188

DLR−{≤} 220
DLR−{≤} 219
DLR 218

time(f(n)) 31
($i/n : C) 219

exptime 31
2-exptime 31
fact 49

GFP(ψ(U,M),χ) 57
P g 160

BP 46
P f 155
Kl-One 49

246 Index

LFP(ψ(U,M),χ) 57
LP 46
µGF 154
µLGF 154
µ(L)GF 14
nexptime 31
np 31
ntime(f(n)) 31
p 31
racer 49
SHIQ 200
SHIQ 19, 197
SHOIN (D) 54
SHOIQ 53
v∗ 52
2-nexptime 31
C-hard 31
2ATA 5, 35, 40

accepts 22, 24
action domino 29
acyclic program 133
algorithm 21
alphabet 21
alphabet domino 28
alternating automata 39
alternation-free 57, 181
annotation 41
anonymous 112
answer set

open 62, 73
answer set semantics 44
answer set solver 44
antecedent 164
applicable 46
applied 46
atom 45
atom dependency graph 105
axiom

role 52
terminological 52
transitivity 52

basic superposition calculus 226
binary rule 7, 81, 118
binding 215
body guard 154
bounded finite model property 117,

121, 122

cardinality constraint 179
closed world assumption 1
closure 200, 210, 220
CoLP 6, 77, 198

local 132
completion 147
complexity 31
complexity class 31
computation tree logic 54, 189
concatenation 33
concept 49
concept conjunction 50
concept disjunction 51
concept expression 50
concept name 50
conceptual logic program 6, 77
concrete domain 50
conditional literal 179
configuration 22
consequent 164
consistency checking 62
consistent 46
constraint 45
CTL 54, 189

DAML+OIL 49
dangling 79
data type exists restriction 51
data type value restriction 51
Datalog 180

basic 180
stratified 180

Datalog rule 180
dca 102
decidability 25
decidable 25
decides 24
decision problem 21
degree 82, 119, 120
depth 134, 142

maximum 134, 142
description logic programs 228
Description Logics 4
description logics 24, 49
dfa 103
DL see description logics, 49
dl-atoms 228
DL-safe 214

program 215

Index 247

rule 215
DLP 226
dlv 44
domain closure axiom 102
domain foundation axiom 103
domino conditions 68
domino problem 3, 25, 27
domino system 27
downward path 42
DTM 21

EER 96
EFoLP

acyclic 141
free acyclic 142, 215
local 139
semi-local 141

Entity Relationship Modeling 96
exclusion constraints 97
exists restriction 51
extended literal 45

FGP 155
finitary open program 111
finitary program 105
finite model theory 56
first-order logic 56
fixed point logic 13, 56, 145
fixed point translation 148
FLGP 154
FOL 56
FoLP 117

acyclic 135, 209
local 121, 124
semi-local 124

forest 33, 116
forest logic program 117
forest satisfiable 116
FPL 13, 56
free predicate 65
free rule 65
frontier 33
fully loosely guarded 154
function symbol 102

g-literal 164
Gelfond-Lifschitz reduct 47
GeLi-reduct 164
generalized literal 164

Datalog lite 180
guarded 175

generalized program 16, 164
GF 154
GgP

bound 195
GL-reduct 13, 47
GP 155

bound 220
gP 164
ground 46
guard 154
guarded fixed point logic 14, 154
guarded fragment 14, 82, 154
guarded gPs 16
guarded open answer set programming

145

halting problem 25
head guard 154
Herbrand Base 46, 61
Herbrand Universe 102, 105
hierarchical 107
Hoare’s logic 54
Horn clause 147

immediate consequence operator 66
inconsistent 47
individual 50
infinity axiom 58
infinity program 63
instance 21
integrating 224
interpretation 50

IWA 73
open 62

inverse role 50
inverted predicate 72
inverted world assumption 72
IWA 72

knowledge base 52
r-hybrid 227

label 80
labeled tree 32
language 24
least fixed point model 180
length 32

248 Index

LGF 153
LGP 154
linear temporal logic 54
live rule 82, 119
live state 37
local 139
local EFoLP 139
local FoLP 121
logic program 44, 45
loosely guarded fixed point logic 154
loosely guarded fragment 153
LP 45
LTL 54

mandatory constraints 97
merging domino 28
modal logics 77
model 55
monadic 181
monotonic 222
mutual exclusion 55

naf 45
naf-literal 45
NDTM 25
negation 51
negation as failure 45
negation-normal form 57
negative part 46
NFTA 34
NM-model 228
node 32
nominals 50
non-emptiness problem 35
nondeterministic 25
nonmonotonicity 222
normal logic programs 105
number restriction 53

generalized 223

OASP 3
object-role modeling 96
occurrence frequency 98
odd-cycle 105
odd-cyclic 105
OIL 49
OLP 107
OLP answer set 108
ontology language 49

open answer set 62, 165
open answer set programming 3
open answer set under IWA 73
open interpretation 62, 165
open interpretation under IWA 73
Open Logic Programming 106
open predicate 106
operates in time 31
oracle 25
ORM 8, 96
output 22
OWL 49
OWL DL 53

parity acceptance condition 40
partial order 33
path 32, 55
positive part 45
pre-interpretation 164
predicate

extensional 180
input 180

predicate dependency graph 107
propositions 45

qualified at least restriction 51
qualified at most restriction 51
qualified number restrictions 51
query

Datalog lite 181
query answering 62, 63

r.e. see recursively enumerable
Rabin tree automata (RTA) 35
rank 82, 120
reachability 21
recursion-free 188
recursive 24
recursively enumerable 24
reduced

polynomially 31
reduct 46
reduction function 31
regular 61
rejects 22
relation name 219
relational input structure 180
role 49
role conjunction 51

Index 249

role disjunction 52
role expression 51
role name 50

abstract 50
concrete 50

root 32
RTA 35

input-free 36
rule 45

safe 111
satisfiability checking 62
satisfied 46
Semantic Web 3, 49
Semantic Web Rule Language 229
semi-decidable 106
semi-local 124
sentence 57
simple program 46
simple role 52
simulating 224
small model property 122
smodels 44
solves 24
stable 47
starvation 55
state 21

begin state 22
strategy tree 40
stratum 180
strict partial 33
structural inheritance networks 49
subset constraints 97
subtree 33
successor 32
SWRL 229

tableau 56
temporal logic 54
temporal structure 55
term 45
tiling 27

tiling problem 27
time required by 31
TM 21
transition function 22
transitive closure 205
tree 32
k-ary 32
complete 32

tree automaton
nondeterministic finite 34

tree model property 77
tree model property under IWA 80
tree satisfiable under IWA 80
Turing Machine 21

deterministic 21
nondeterministic 25
oracle 25

two-way 39
two-way alternating tree automaton

5, 35, 40

unary rule 6, 80, 118
undecidable 25
unique name assumption 50
uniqueness constraints 96
universal query problem 2
universal TM 26
universe 61
unqualified at least restriction 51
unqualified at most restriction 51
unqualified number restrictions 51

value restriction 51

weakly safe 111
well-behaved automaton 86
well-behaved tree 86
width 195
word automaton 43

yes-instance 24
yields 22

