
The SAT-Tableau Calculus

Uwe Keller1 and Stijn Heymans2,3

1 Semantic Technology Institute (STI) Innsbruck, University of
Innsbruck,E-mail: uwe.keller@sti-innsbruck.at

2 Knowledge Based Systems Group, Institute of Information Systems, Technical University of
Vienna, E-mail: heymans@kr.tuwien.ac.at

3 Computational Web Intelligence, Department of Applied Mathematics and Computer
Science, Ghent University, E-mail: Stijn.Heymans@UGent.be

1 Introduction

Recently, [7] pointed out that the increasing use of Description Logics (DLs) in areas
such as e-Science and the Semantic Web is already stretching the capabilities of exist-
ing DL systems, posing a range of challenges for future research on reasoning methods
for DL. A key problem is the provision of efficient algorithms that allow (advanced)
applications (i) to scale up to knowledge bases of practical relevance and (ii) to lever-
age expressive languages for capturing domain knowledge. However, expressiveness of
DLs comes at a price: the theoretically high (worst-case) complexity of relevant rea-
soning tasks. Hence, it is very unlikely that there exists a single method that performs
well in all possible cases. Rather, one can expect that specific techniques perform well
on particular classes of problems. This motivates the investigation of novel approaches
to DL reasoning.

The SAT problem for Propositional Logics on the other hand is a core problem in
artificial intelligence. A wealth of algorithms [6] and effective optimization techniques
(e.g. [10]) have been designed. Today, the community reached a state where SAT solvers
can tackle large-scale problems in industrial applications. A substantial empirical and
theoretical body of knowledge on the classes of problems on which certain algorithms
perform specifically well has been acquired over the years. Moreover, research on the
propositional SAT problem is still a very active field of research. Novel algorithms are
still being introduced as it has been demonstrated recently e.g. with the invention of
Survey Propagation [1].

It seems therefore natural to investigate how to integrate and exploit state-of-the-art
SAT solvers in DL reasoning. In this paper, we present and discuss a particular, rather
natural approach to achieve such an integration: the SAT-Tableau Calculus is a novel
calculus for Description Logic reasoning. It achieves the integration of a wide range of
known SAT solvers into tableau-based DL reasoning.

Our calculus can be understood as a SAT-Modulo-Theories (SMT) approach [11]
that is based on a specific theory-reasoning component. The theory reasoner maintains
a finite representation of a (possibly infinite) Kripke-structure and guides the generation
of this structure by systematic interaction with a SAT solver. The evolution of the struc-
ture is realized by (fairly common) tableau-based completion rules for DLs. The ap-
proach therefore combines the power of modern SAT solving techniques with the most
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flexible and successful inference technique for DL reasoning, namely tableau-based
procedures. In contrast to standard SMT-based methods, our approach is not bound to
a specific SAT solver but allows to change the SAT solver during the DL reasoning
process on demand. Hence, the resulting integration is modular, loose and extremely
flexible.

We are not the first ones to investigate the use of SAT solvers for DL reasoning. Per-
haps the earliest explicit approach in this direction is KSAT [5]. KSAT had a decisive
influence in the development of modern optimized tableau-based systems, e.g. [15].
KSAT is certainly the approach that is closest related to SAT-Tableau and would nowa-
days be characterized as a SMT-based procedure. In fact, it can be derived from the
SAT-Tableau Calculus as presented in the following as a special case [9]. Recently,
there have been further approaches [12,14] that use SAT solvers for DL reasoning in
specific ways different from the SAT-Tableau Calculus. Both showed promising results
when being tested on rather simple logics. For a more detailed discussion, we refer
to [9].

Our solution improves upon these approaches in various significant ways:

– Type of SAT solver that can be integrated: the SAT-Tableau Calculus takes an
abstract view on SAT solving algorithms and treats SAT solvers as black-boxes. In
principle, any algorithm that is able to generate propositional models can be inte-
grated within the SAT-Tableau Calculus. Prominent examples are DPLL or Clause
Learning procedures, OBDDs, Stochastic Local Search (SLS) Methods, Random-
ized Algorithms, Resolution- and Analytic Tableau variants, or even very new SAT
methods such as B-Cubing or Survey Propagation. By design of the calculus, vari-
ous SAT solvers can be used simultaneously and changed during runtime as needed.

– Expressiveness of DLs that can be handled: the approach cleanly separates two
levels of reasoning: the purely propositional level and the purely modal level. The
latter is dealt with by a tableau construction procedure. Therefore, the method nat-
urally works for any DL for which a standard tableau-based inference system can
be designed or is already known. This especially includes expressive DLs that lack
the finite model or the tree model property (e.g. SHOINor SROIQ).

– Reasoning task that can be supported: we present our calculus here for testing
the satisfiability of a concept. We further allow to consider background knowl-
edge in form of a terminology (or TBox). The latter is not covered by any of the
approaches mentioned above. Being a tableau-method, the SAT-Tableau Calculus
can naturally be used for a more generic problem to which a variety of interesting
reasoning tasks for DLs can be reduced efficiently, i.e. checking ABox consistency.
Hence, the SAT-Tableau Calculus can be extended to ABox reasoning, whereas this
seems not possible or unclear for the above mentioned approaches.

– The way heuristic search can be performed in implementations: calls to a SAT
solver in our approach can be seen as (atomic) macro-inference steps. Our presen-
tation of the calculus takes an abstract view on a propositional SAT solver as an
entity that returns propositional models for an input problem. We do not require
to only deliver a single model, but in general an (arbitrary) set of models is re-
turned. Since these propositional models are the (atomic) elements to determine
(potentially costly and failing) extensions to the Kripke-structure maintained in the



The SAT-Tableau Calculus 3

theory reasoning component, our calculus can take an informed (heuristic) decision
what models to choose to guide the tableau-construction process . This is not the
case in current tableau-based systems. Therefore, our calculus naturally suggests a
possibility for forward search heuristics at a conceptually suitable level.

By considering instantiations of the SAT-Tableau Calculus with a specific SAT
solver, we cannot only derive decision procedures that are well-known [9] (and are
amongst the most successful procedures for DL reasoning so far), but we get immedi-
ately a range of novel decision procedures that have not been thought of yet, such as
BDD-Tableau or SLS-Tableau. Combining two well-investigated areas of research al-
lows further to exploit implementation and optimization techniques from both domains.
Hence, we expect that the SAT-Tableau-derived procedures can be at least competitive
with state-of-the-art systems, but have a lot of potential to lead us beyond what is cur-
rently possible.

Given the flexibility of integrating manifold types of SAT solvers, our tableau calcu-
lus inherently is able to adapt better to specific DL problem sets. Since there are various
algorithms that work well on different types of SAT problems, we gain flexibility to
adapt to the specific kind of SAT problems encountered in a particular application. For
these reasons we consider our approach as specifically appealing in regard of the above
mentioned research challenges (i) and (ii) identified in [7].

In this paper, we consider the DL ALC and the problem of checking concept sat-
isfiability wrt. general terminologies. We skip formal definitions as they are common
knowledge within the DL community [3]. For further details and formal proofs, we
refer the interested reader to an extended technical report [9].

2 The SAT-Tableau Calculus

We introduce the SAT-tableau calculus as an abstract non-deterministic method for de-
ciding concept satisfiability wrt. a terminology T . The abstract calculus can be refined
into various deterministic inference procedures by setting a specific deterministic proce-
dure for propositional reasoning and a deterministic strategy for applying the individual
inference rules. In particular, standard tableau calculi for DLs are concrete instances
of the SAT-tableau calculus which use a specific propositional deduction strategy. Cor-
rectness, completeness, and termination can be discussed on the level of the abstract
procedure without considering specific details of the propositional deduction method
but merely focussing on abstract properties of propositional SAT methods. Complete-
ness, correctness, and termination of any concrete instance can then be established very
easily by verifying a refinement condition demonstrating that the SAT procedure has
the required abstract properties.

2.1 A Propositional Logic Perspective on Description Logics

We start by defining the most elementary concepts and notions that are needed to de-
scribe our calculus. These notions in principle reflect the informal idea of separating
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propositional reasoning and modal reasoning in a two-phased process as motivated in-
formally in Section 3 of [9]. Our presentation here is inspired by [13], a beautiful, infor-
mal introduction to SMT in general by Roberto Sebastiani. We specialize this generic
viewpoint to the case of DLs and give formal proofs for our setting.

Definition 1 (Concept Subexpressions, Concept Subexpression Literal). Let Σ be
a signature and C ∈ C(Σ), i.e., a concept expression over the signature Σ. A concept
subexpression of C is a subexpression C ′ of C such that C ′ ∈ C(Σ). We denote the set
of all concept subexpressions of C by sub(C), i.e. the smallest set of concept expres-
sions that contains C and is closed under concept subexpressions. We call a concept
subexpression C ′ of C a strict concept subexpression iff. C ′ 6= C. A concept subex-
pression literal is a concept subexpression C ∈ sub(C) or its complement ¬C. We
denote by sublit(C) the set of concept subexpression literals.

Note that, for any concept C the size of sub(C) is linearly bounded in the size of
C. The same holds for sublit(C).

Definition 2 (Propositional Atom, Propositional Literal). Let Σ be a signature and
C ∈ C(Σ). A propositional atom of C is a concept subexpression C ′ of C that is not of
the form D uD′, D tD′, or ¬D and is not itself a strict concept subexpression of any
propositional atom of C. A propositional literal of C is a propositional atom C ′ of C
or its negation ¬C ′. We denote the set of all propositional atoms of C by patoms(C)
and the set of all propositional literals by pliterals(C).

Essentially, the definition specifies a propositional atom of C as being any longest
(or in regard of the syntax tree top-most) non-propositionally decomposable concept
subexpression of C. Clearly, for any concept C it holds that patoms(C) ⊆ sub(C) and
therefore the size of patoms(C) and pliterals(C) is linearly bounded in the size of C.

Definition 3 (Propositional Interpretation, Partial Propositional Truth Assignment).
Let Σ be a signature and C ∈ C(Σ). A propositional interpretation for C is a set µ of
propositional literals of C such that for any propositional atom A of C either A ∈ µ or
¬A ∈ µ (and not both). A partial propositional truth assignment for C is a subset of
a propositional interpretation µ of C. For two partial propositional truth assignments
µ1, µ2 we say µ2 extends µ1 if µ1 ⊆ µ2.

The following definition provides the basis for a propositional view on concept
expressions:

Definition 4 (Propositional Satisfaction, Entailment). Let Σ be a signature and C ∈
C(Σ). A propositional interpretation µ satisfies C propositionally , denoted by µ |=0 C,
inductively as follows: for any A ∈ patoms(C), µ |=0 A iff. A ∈ µ; µ |=0 ¬C iff.
µ 6|=0 C; µ |=0 C u D iff. µ |=0 C and µ |=0 D; µ |=0 C t D iff. µ |=0 C or
µ |=0 D. A partial propositional truth assignment π satisfies C propositionally (or is a
propositional model of C) iff. all propositional interpretations µ extending π satisfy C
propositionally. Propositional satisfiability is extended to sets C of concepts as usual:
π |=0 C iff. π |=0 C for all C ∈ C. A concept expression C propositionally entails a
concept expression D (denoted by C |=0 D) iff. every propositional model of C is a
propositional model of D.
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The notion of propositional satisfaction of concept expressions is identical to the
notion of satisfaction in Propositional Logics, i.e. if we consider concept expressions C
as propositional formulae over the signature patoms(C), where propositional atoms are
not being interpreted in detail, but only considered as atomic propositional symbols. We
defined the notion of satisfaction wrt. partial propositional interpretations since often it
is not necessary to assign a truth value to all propositional atoms to determine the truth
value of a concept under this interpretation. In fact, many SAT solvers (which are used
later) return only partial propositional interpretations.

Definition 5. Let Σ be a signature, C ∈ C(Σ) and M = {π1, . . . , πk} be a set of par-
tial propositional truth assignments for C. We say that M is sound for C iff. πi |=0 C
for all πi ∈ M. We say that M is complete for C iff. for any propositional interpreta-
tion µ of C such that µ |=0 C there is a πi ∈M such that πi ⊆ µ.

Sound and complete sets of partial propositional truth assignments can be seen as
compact representations of the propositional semantics (or models) of C.

We can show the following corollary which provides the basis for our approach:

Corollary 1. Let Σ be a signature, C ∈ C(Σ) and M = {π1, . . . , πk} be a sound and
complete set of partial propositional truth assignments for C. Then, C is satisfiable iff.
πi is satisfiable (under the DL semantics) for some πi ∈M.

In other words, the satisfiability of a concept C can be determined by an iter-
ated two-phase process: In the first phase we put on our “Propositional Logic glasses”
which abstract away from all non-propositional details of the input problem and per-
form boolean reasoning only, i.e. we (non-deterministically) guess a partial proposi-
tional truth assignment πi = {l1, . . . , lk} which satisfies C propositionally. In a second
step, we put on our “Description Logic glasses” and consider the resulting proposi-
tional model under DL semantics. We test if this way we can indeed derive a model.
We therefore check the joint satisfiability of all propositional literals lj ∈ πi under DL
semantics.

The set of concept expressions {l1, . . . , lk} that need to be considered during the
second phase are in general simpler than the concept C: it consists of propositional
literals only and therefore contains no further propositional structure (e.g. concept dis-
junctions) at the top-level. This means, that we are left with purely modal statements,
which request the existence of certain neighbors (of our current context or individual)
with specific properties. We can therefore solve the joint satisfiability of these modal
statements by explicitly constructing a graph of nodes which represent individuals in
the domain. The nodes are labeled with a set of concept expression which characterize
logical properties that must be satisfied by the respective individuals. Given an indi-
vidual under consideration and a propositional interpretation capturing the elementary
logical properties we assume the individual to have, we can extend the graph structure
straightforwardly according to the semantics of the modal concept constructors and the
required truth value for the propositional literal.

Such a graph structure is usually called tableau and technically underlies any tableau-
based decision procedure for DLs. We therefore describe a tableau-based approach and
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call our method SAT-Tableau Calculus. Further, the approach allows to apply all known
methods for ensuring the termination of the tableau-construction process, i.e. so-called
blocking techniques for expressive DLs or reasoning tasks that include terminologies.

Indeed, any individual created during the graph construction becomes an additional
DL satisfiability problem in itself: the individual is required to have certain logical
properties (specified as DL concept expressions) and we need to find a interpretation in
which the individual in fact satisfies these properties. We therefore can solve the created
satisfiability subproblems with the very same approach and iteratively apply our method
to the various nodes that we create in the graph structures. The explicit representation of
the tableau is used during the construction process to ensure that the single individual
views selected locally by the SAT solvers (by looking at local properties only), are
eventually globally consistent with each other.

This means we combine two orthogonal algorithms to form a general purpose DL
satisfiability test: (a) a propositional SAT procedure that can enumerate propositional
models of a (set of) concept(s) and (b) a tableau-construction process to ensure that the
selected propositional views on the individuals in the domain are globally consistent
with each other. In general, the algorithm for (b) differs amongst the various DLs (or
modal logics) and is the main point of variation.

Please note, that all proofs only use the propositional concept constructors and the
notion of a propositional atoms. Hence, all previous propositions, lemmas and corollar-
ies in fact (after a suitable adaption of the notion of a propositional atom) carry over to
any DL in which the propositional constructors are interpreted classically.

2.2 SAT-Tableau, Completion Graphs, Completion Rule System

Satisfiability testing is essentially a search problem: given a concept (and a terminology)
find an interpretation I such that the input concept describes a property that holds for
at least one individual in I. Hence, a natural first step is to derive the search space for
our procedure and representation of the search states.

Conceptually, we need to search all (relevant) interpretations over a given signature.
Hence, our search space consists of all (relevant) Σ-interpretations. We can consider an
interpretation I over a signature Σ as a graph structure, where each node represents an
individual, arcs denote inter-relations of individuals in I (that are labeled with the re-
spective role names) and each node is labeled with all the elementary logical properties
(i.e. a set of atomic concept names) that the individual possesses.

Definition 6 (SAT-Tableau). Let Σ be a signature, T be a terminology over Σ, and
C ∈ C(Σ). Let RC,T denote the set of role names occurring in C or T and 2S de-
note the powerset of a set S. A SAT-tableau for C wrt. T is a labeled graph T =
(V,E, l, s) with a non-empty set of vertices V, a function E : RC,T → 2V×V as-
signing role names occurring in C or T a set of edges between nodes in V, a function
l : V → 2sublit({C}∪T ) assigning to each node a set of concept subexpressions in C or
T or their complement, and a function s : V → 2pliterals(sub({C}∪T )) assigning to
each node a propositional interpretation for l(n) such that for all nodes n ∈ V it holds
that:

(P1) s(n) satisfies l(n) propositionally



The SAT-Tableau Calculus 7

(P2) for any ¬∃R.D ∈ s(n) and any 〈n, n′〉 ∈ E(R): ¬D ∈ l(n′)
(P3) for any ∃R.D ∈ s(n) there exists an 〈n, n′〉 ∈ E(R) such that D ∈ l(n′)
(P4) there exists a node n ∈ V such that C ∈ l(n)
(P5) for any D1 v D2 ∈ T : ¬D1 tD2 ∈ l(n)

Intuitively, l(n) marks any individual node n with a set of logical properties that n
must have, and s(n) selects a specific propositional view on the logical properties of n.

The single clauses in the definition intuitively capture the following: (P1) ensures
that our propositional view s(n) on n is indeed (propositionally) consistent with the
required logical properties l(n) of the individual. (P2) and (P3) ensure that the selected
propositional view on n is also consistent with the requirement under DL semantics,
i.e. s(n) satisfies also all modal requirements. (P4) ensures that there is an individual
present in the SAT-Tableau which satisfies the properties captured in the input concept
C, hence the input concept is shown to be satisfiable. Finally, (P5) requires that the
TBox axioms are satisfied, i.e. each individual satisfies the logical properties required
by any TBox axiom.

In essence, a tableau is a graph structure that represents an interpretation (or Kripke-
structure) for the signature that satisfies the input concept and a terminology (but might
contain redundant information about the logical properties of individuals, which are not
explicitly represented in a Kripke-structure.). Hence, tableau define goal states of our
model search procedure:

Lemma 1. Let Σ be a signature and C ∈ C(Σ) and T be a terminology over Σ. Then,
C is satisfiable wrt. T iff. there exists a SAT-tableau for C wrt. T .

In contrast to interpretations, tableau are purely syntactic structures which are ac-
cessible to algorithms. Therefore, Lemma 1 suggests a data structure and a procedure
determine the satisfiability of concepts wrt. terminologies: to check satisfiability, con-
struct (stepwise) a tableau for the input concept wrt. the given terminology. Unfortu-
nately, tableaus do not need to be finite. A second problem is to find the requirement set
l(n). What concepts need to go in there? (P2), (P3) and (P4) together suggest that these
sets can be found in a iterative process which essentially lets concept expressions flow
in the tableau-graph, starting from the node mentioned in (P4).

Hence, our procedure needs to work on finite representations of a partially con-
structed tableau for an input concept and a terminology. This data structure is called a
completion graph. Completion graphs represent the actual data structure that represents
search states in our model construction algorithm.

Definition 7 (SAT-Completion Graph). Let Σ be a signature, T be a terminology
over Σ, and C ∈ C(Σ). Let RC,T denote the set of role names occurring in C or T
and 2S denote the powerset of a set S. A SAT-completion graph for C wrt. T is a
labeled graph G = (V,E, p, r, π, state) with a non-empty but finite set of vertices V
representing individuals, a (possibly empty) set of edges E ⊆ V × V connecting in-
dividuals, a node label function p : V → 2sublit({C}∪T ) assigning to each node a set
of properties (as concept subexpressions in C or T ) that are required to hold for the
individual, a edge label function r : E → 2RC,T assigning roles names to edges in G, a
function π : V → 2pliterals(sub({C}∪T )) assigning to each node a partial propositional
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truth assignment for p(n), and a function state : V → {NOTASSIGNED, ASSIGNED,
UNSATISFIABLE, REASSIGN} capturing the processing status of each node in G. G
must contain a node n ∈ V with C ∈ p(n).
For any nodes n, n′ ∈ V with 〈n, n′〉 ∈ E and r(〈n, n′〉) = R, we call n′ an R-
successor of n in G. n is called ancestor of n′ in G if there is a path from n to n′ in G
whereby the single edges on the path can be labeled arbitrarily.
A completion graph G contains a clash if there exists a node n ∈ V such that state(n) =

UNSATISFIABLE. It is called clash-free if it does not contain any clash.

Essentially, a completion graph is very similar to a SAT-tableau, whereas the vari-
ety of properties constraining nodes, edges and interdependencies are not present yet.
Therefore, each SAT-tableau corresponds to a completion graph, whereas completion
graphs do not necessarily correspond to a SAT-tableau, but allow to represent SAT-
tableau partially. Consequently, they are a rather natural data structure for any process
that systematically and iteratively tries to construct a SAT-tableau.

Before we can present the abstract SAT-Tableau calculus TSAT in detail, we need to
introduce two further basic concepts , namely SAT solvers and blocking.

SAT-Solver. In order to construct a tableau (or completion graph), we need to find
propositional models for each individual node in the graph. We achieve this by a dedi-
cated algorithm, a SAT-Solver, whose internals are not interesting for our matters here.
Hence, we need an abstract model for a propositional solver. The following definition
captures our understanding formally:

Definition 8 (Propositional Solver). Let Σ be a signature. A propositional solver B is
an algorithm which takes as input any set C ⊆ C(Σ) of concepts and computes partial
truth assignments that are sound for C, i.e. B(C) = M for a set M = {π1, . . . , πk}
of partial truth assignments that are sound for C. A propositional solver B is called
complete iff. B(C) is a complete set of partial truth assignments for C. Let BS denote
the set of all propositional solvers.

In other words, a (complete) propositional solver is an algorithm that is capable of
computing and enumerating compact representations of (all) propositional models of
the given set of concepts C. An example for a complete boolean solver is the DPLL
procedure [4] (without the pure literal rule) when exhaustive backtracking over propo-
sitional models is performed (i.e the solver is repeatedly called again in the last search
state (after returning propositional model) to compute and enumerate steps-by-step all
models).

Blocking. A completion graph approximates a SAT-tableau, and eventually needs to
represent a SAT-tableau. Since SAT-tableau might be infinite themselves4, we needs to
some how find a way to (finitely) represent infinite pathes in a tableau within a com-
pletion graph instead of constructing these pathes explicitly. The idea is simple: we

4 In ALC this can only happen if we check concept satisfiability wrt. general terminologies
containing recursive definitions.
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equip the tableau-construction procedure with some means to detect that there is no
need to include a new individual in the completion graph to satisfy a particular modal
constraint, but that instead it can reuse an individual that is already present. This way,
we do not insert individuals unnecessarily.

A standard criterion to reuse an individual (called ancestor blocking ) is as follows:
an individual to be reused is an ancestor of the individual for which a suitable neighbor
needs to present and the attached property set contains at least all properties that this
individual needs possess:

Definition 9 (Ancestor Blocking). Let G be a completion graph. A node n ∈ G blocks
a node n′ ∈ G iff. n is an ancestor of n′ in G and p(n′) ⊆ p(n).

Ancestor blocking is a very simple form of blocking which is sufficient for simple
DLs such as ALC. For very expressive DLs (e.g. SHIQ), more sophisticated blocking
criteria are needed. Such criteria have already been developed (e.g. pairwise-ancestor-
blocking [8]) and can be integrated easily in the SAT-Tableau Calculus.

Constructing a SAT-Tableau. Our algorithm for checking concept satisfiability non-
deterministically constructs completion graphs for the input concept C by starting with
the simplest (or smallest) and in general not fully-expanded completion graph G0 for
C that can be defined as follows:

G0 := (V,E, p, r, π, state) with
V = {n0}, E = ∅, p = {n0 7→ {C}}, r = ∅, π = ∅,
state = {n0 7→NOTASSIGNED}

(1)

The algorithm then proceeds by iterative (non-deterministic) application of the com-
pletion rules described in Fig. 1. Note, that any application of a completion rule from
Fig. 1 to a completion graph for C wrt. T results again in a completion graph for C wrt.
T .

Definition 10 (Fully-expanded Completion Graph). A completion graph G is called
fully-expanded iff. none of the rules of the completion rules system in Fig. 1 is applica-
ble anymore.

In essence, by any application of any of the completion rules in our inference sys-
tem we convert a completion graph G into another completion graph G′ that either
satisfies an increasing number of the semantic constraints (P1) - (P5) that identify a
SAT-Tableau (and hence our goal state), or mark the completion graph as containing a
clash and therefore being a dead-end for our completion process. In a sense, we gener-
ate increasingly complete (under)approximations of a SAT-tableau (from which we can
immediately read of a model for the input concept and the given terminology).

This way, the algorithm eventually (i.e. in the limit of the construction process)
must create a fully-expanded completion graph for C wrt. T . This completion graph
either contains a clash (in which case we reached a dead-end and where not success-
ful in finding a model) or it is clash-free. In the latter case, we in fact found a (finite
representation) of a tableau and therefore a model.

For a detailed discussion of the rules in the completion rules system presented in
Fig. 1, we refer the reader to [9]
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Rule Description
→Select if 1. n is a node in G, state(n) ∈ {NOTASSIGNED, REASSIGN}

2. B ∈ S is some propositional solver
3. πj is some propositional model in B(p(n) ∪ π(n))

then set π(n) := πj and state(n) := ASSIGNED

→Clash if 1. n is a node in G, state(n) ∈ {NOTASSIGNED, REASSIGN}
2. B(p(n) ∪ π(n)) = ∅
3. B ∈ S is some complete propositional solver

then set state(n) := UNSATISFIABLE

→∃ if 1. n is node in G, state(n) ∈ {ASSIGNED, REASSIGN}
2. ci = ∃R.C ∈ π(n) and there does not exist an R-successor n′

of n in G such that C ∈ p(n′) and
3. there does not exist a node b in G such that b blocks n

then create a new R-successor n′ of n and
set p(n′) := {C} and set state(n′) = NOTASSIGNED and
set π(n′) := ∅

→∀ if 1. n is node in G, state(n) ∈ {ASSIGNED, REASSIGN}
2. ci = ¬∃R.C ∈ π(n) and n′ is an R-successor

of n in G such that ¬C 6∈ p(n′)
then set p(n′) := p(n′) ∪ {¬C} and set state(n′) = REASSIGN

→T if 1. n is node in G, state(n) 6= UNSATISFIABLE

2. C v D ∈ T and ¬C tD 6∈ p(n)
then set p(n) := p(n) ∪ {¬C tD} and set state(n) = REASSIGN

Fig. 1. Completion Rules of TSAT (wrt. a non-empty class S ⊆ BS of propositional
solvers)

2.3 Properties of the SAT-Tableau Calculus

We can now investigate the formal properties of the SAT-Tableau Calculus TSAT. It turns
out that TSAT allows to derive a variety of decision procedures for concept satisfiability
wrt. terminologies, if we require that the used set of propositional solvers S contains at
least one propositional solver which is complete, e.g. a DPLL procedure or OBDDs.

Lemma 2. Let Σ be a signature, T be a terminology over Σ and C ∈ C(Σ). Then, it
holds for TSAT that process of exhaustive application of the completion rules from Fig. 1
to the initial completion graph G0 terminates after finitely many steps and results in a
fully expanded completion graph G∗ for C wrt. T .

Lemma 3. Let Σ be a signature, T be a terminology over Σ and C ∈ C(Σ). Further,
let S contain at least one propositional solver B that is complete. Then, C has a SAT-
tableau wrt. T if there exist a fully expanded completion graph G∗ for C wrt. T that is
derived from G0 and clash-free.

Lemma 4. Let Σ be a signature, T be a terminology over Σ and C ∈ C(Σ). Further,
let S contain at least one propositional solver B that is complete. Then, there exists a
from G0 derived and fully-expanded completion graph G∗ for C wrt. T that is clash-
free, if C has a SAT-tableau wrt. T .
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Soundness, completeness and termination of the SAT-Tableau Calculus (wrt. suitable
set S of propositional solvers) is now an immediate consequence of the previous lem-
mas:

Definition 11 (Proof). Let Σ be a signature, T be a terminology over Σ and C ∈
C(Σ).

If there a fully-expanded clash-free completion graph G∗ for C wrt. T which can
be derived in TSAT from G0, then we say C is provable in TSAT from T . We denote this
situation by T `TSAT C.

Theorem 1 (Soundness, Completeness and Termination). The SAT-Tableau Calcu-
lus TSAT based on a set S of propositional solvers containing at least one complete
propositional solver B is a sound and complete decision procedure for checking satis-
fiability of concepts C ∈ C(Σ) wrt. terminologies T , i.e.

1. T `TSAT C iff. C is satisfiable wrt. T , and
2. T `TSAT C can be decided in finite time

Runtime Complexity. We can give an upper-bound on the runtime of the presented
non-deterministic algorithm for two specific cases: (1) If we consider empty termi-
nologies only, then our method non-deterministically constructs a tree whose depth is
linearly bounded in the size of the input concept and whose nodes have out-degrees
that are linearly bounded in the size of the input concept. Hence, the algorithm runs in
non-deterministic exponential time in the size of the input. (2) If we consider concept
satisfiability wrt. terminologies, then the algorithm constructs non-deterministically a
tree whose nodes’ out-degree is linearly bounded in the size of the input and whose
depth is exponentially bounded in the size of the input. Hence, the algorithm runs at
most in non-deterministic double exponential time in the size of the input. Not sur-
prisingly, the runtime bounds in both cases are the same as the ones for the standard
tableau algorithms presented e.g. in [2]. Given the worst-case complexity of detecting
concept satisfiability in ALC, it is clear that there is a lot of potential for optimiza-
tions, since the upper-bound for the algorithm runtime exceeds the known worst-case
complexity of the reasoning tasks significantly. In principle, this cannot be seen as a
weakness of the proposed procedure: in the past it has been demonstrated successfully,
that non-deterministic tableau-based calculi can be converted into efficient determinis-
tic decision procedures with acceptable runtime (see e.g. [15]) for many cases. In fact,
all major optimization techniques that are known should carry over in our SAT-Tableau
framework as presented here rather naturally.

3 Conclusions and Future Work

We presented the SAT-Tableau Calculus, a novel calculus for Description Logic (DL)
reasoning. It achieves the integration of a wide variety of known SAT solving algorithms
into tableau-based DL reasoning. The achieved integration is modular and extremely
flexible. Our approach improves on previous work on using (specific) SAT solvers for
DL reasoning in various significant ways. Most importantly, we extend the type of SAT
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solvers that can be used during the DL reasoning process, the expressiveness of DLs
that can be handled, the reasoning tasks that can be supported by the approach and the
way heuristic search can be performed in implementations.

Combining two well-investigated areas of research (i.e. SAT/SMT and tableau-
based reasoning) further allows to exploit implementation and optimization techniques
from both domains. Further, by considering instantiations of the SAT-Tableau Calculus
with a specific SAT solver, we can not only derive decision procedures that are well-
known [9](and are amongst the most successful procedures for DL reasoning so far),
but we get immediately a range of novel decision procedures that have not been thought
of yet. Hence, we expect that the SAT-Tableau-derived procedures can be at least com-
petitive with state-of-the-art systems, but have a lot of potential to lead us beyond what
is currently possible.

Future Work. An implementation of the SAT-Tableau Calculus for ALC as presented
here is ongoing and first evaluation results for specific instances (i.e. BDD-Tableau and
SAT-Tableau based on Stochastic Local Search-based SAT solvers) can be expected
soon. Concerning the theory, we will extend the SAT-Tableau calculus in various di-
mensions: (a) to more expressive DLs (e.g. SHOIN ) to investigate potential simplifi-
cations of standard tableau systems for these logics, (b) to allow for taking ABoxes and
RBoxes into account (and hence general DL knowledge bases), (c) to investigate block-
ing in a more principle way and, and finally (d) to revisit absorption as an optimization
technique with major practical relevance.
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