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Abstract. We present a multi-agent formalism based on extended answer set
programming. The system consists of independent agents connected via a com-
munication channel, where knowledge and beliefs of each agent are represented
by a logic program. When presented with an input set of literals from its prede-
cessor, an agent computes its output as an extended answer set of its program
enriched with the input, carefully eliminating contradictions that might occur.
It turns out that while individual agents are rather simple, the interaction strategy
makes the system quite expressive: e.g. the membership problem for a sequence
of n agents is ΣP

n -complete. This makes the formalism suitable for modelling
complex applications of MAS, for example cooperative diagnosis. Furthermore,
such systems can be realized by implementing an appropriate control strategy on
top of existing solvers such as DLV and SMODELS.

1 Introduction

In answer set programming ([22]) a logic program is used to intuitively describe the
requirements that must be fulfilled by the solutions of a certain problem. The answer
sets of the program, usually defined through (a variant/extension of) the stable model
semantics [18], then correspond to the solutions of the problem. This technique has
been successfully applied in problem areas such as planning [12, 22], configuration and
verification [28], diagnosis [11, 34] and game theory [9]. In the context of multi-agent
systems, answer set programming has been used in [1, 4, 10]. While [1] and [4] use the
basic answer set semantics to represent an agent’s domain knowledge, [10] applies an
extension of the semantics incorporating preferences among choices in a program.

The traditional answer set semantics, even in the absence of constraints, is not uni-
versal, i.e. some programs may not have any answer set at all. While natural, this poses
a problem in cases where there are no exact solutions, but one would appreciate to ob-
taine approximate ones, even if they violate some rules. For example, it is not acceptable
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that an airplane’s auto-pilot agent fails to work just because it has some contradictory
readings regarding the outside temperature. To achieve this, the extended answer set
semantics ([33]) allows problematic rules to be defeated: the rules a ← , b ← and
¬a ← b are clearly inconsistent and have no classical answer set, while both {a, b} and
{¬a, b} will be recognized as extended answer sets. In {a, b}, ¬a ← b is defeated by
a ← , while in {¬a, b}, a ← is defeated by ¬a ← b.

In this paper we use the extended answer set semantics to model the knowledge
and beliefs of a single agent. Each agent reasons over two languages, one public and
one private. This allows agents to dynamically decide which information they wish to
share with others, with only public information being made available. Agents may then
cooperate to select among the various possible solutions (extended answer sets) that are
presented to them. In the case that an agent, using the extended answer set semantics,
has a number of (approximate) solutions to a certain problem, it can rely upon other
agents to sort out which solutions are the better ones. In the absence of any extended
answer sets, the agent relies completely on the information received from the others,
e.g., when a company has to make up an emergency evacuation plan for a building,
one of the employees will make up all strategies that could be implemented for that
building. However, as she is probably not aware of all current regulations about such
strategies, her solutions are forwarded to the emergency services, who will only select
those plans that are conforming to all legal requirements. These legal candidate plans
are then presented to the firm’s management to select an optimal one (e.g. the cheapest)
for implementation.

To deal with problems like the one described above, we propose a multi-agent
framework that is capable of modelling hierarchical decision problems. To this end,
we consider a sequence of agents A1 . . . An, each having their private knowledge de-
scribed by a logic program. Intuitively, an agent A i communicates a solution she finds
acceptable to the next agent Ai+1 in the hierarchy. For such an Ai-acceptable solution,
Ai+1 computes a solution S that adds her knowledge to the given information. Pro-
vided that this new knowledge does not conflict with the information she received from
her predecessor Ai, she passes this solution to the following agent in line, i.e. A i+2.
In case agent Ai+1 is unable to provide any solutions of her own, she will simply pass
on information she obtained from the previous agents higher up in the hierarchy. When
her solution S conflicts with the solution offered by her predecessors, she sends S for
verification to her predecessor Ai. If Ai is able to find another possible solution T that
is consistent with S, the communication from Ai to Ai+1 starts over again with T as a
new input. In the case that none of the solutions of A i+1 survive the verification step,
Ai+1 has no other option than accepting the input from A i and send it to Ai+2.

It turns out that, although the agents are relatively simple in complexity terms, such
sequences of agents are rather expressive. More specifically, we show that arbitrary
complete problems of the polynomial hierarchy can be solved by such agent systems,
which make them suitable for encoding complex applications.

Computing the extended answer set semantics is located at the first level of the poly-
nomial hierarchy. Problems located at this first level can be directly solved using the
DLV [16] and SMODELS [26] answer set solvers. On the second level, only DLV remains
to perform the job directly. However, by using a “guess and check” fixpoint procedure,
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SMODELS can indirectly be used to solve problems at the second level [2, 14, 37].
Beyond the second level, there are still some interesting problems, such as the most
expressive forms of diagnostic reasoning, i.e. subset-minimal diagnosis on disjunctive
system descriptions [11] or preference-based diagnosis on ordered theories [34]. These
are located at the third level of the polynomial hierarchy, together with sequences of
weak constraints3 on disjunctive programs. For these problems, and problems located
even higher in the polynomial hierarchy, no direct computational vehicle is available.
The framework presented in this paper provides a means to effectively compute so-
lutions for such problems with each agent using SMODELS or DLV to compute better
solutions combined with an appropriate control strategy for the communication.

The remainder of the paper is organized as follows. In Section 2, we review the
extended answer set semantics. Section 3 presents the definitions for hierarchical agents
and agent systems. Section 4 discusses the complexity of the proposed semantics, while
Section 5 compares it with related approaches from the literature. Finally, we conclude
with directions for further research in Section 6.

2 Extended Answer Sets

In this section we provide a short overview of extended answer set semantics for simple
logic programs [32]. A literal is an atom a or a negated atom ¬a. For a set of literals
X , we take ¬X = {¬l | l ∈ X} where ¬¬a is a. When X ∩ ¬X = ∅ we say X
is consistent. A simple logic program (SLP) is a finite set of simple rules4 of the form
α ← β with α ∪ β a set of literals and |α| ≤ 1. If α = ∅, we call the rule a constraint.
The set α is the head of the rule while β is called the body.

For a program P , the set of all atoms that appear in the program (possibly negated)
is called the Herbrand Base BP . The set of all literals that can be formed using BP ,
denoted by LP , is defined by LP = BP ∪ ¬BP .

Any consistent subset I ⊆ LP is called an interpretation of P . A rule r = a ←
β ∈ P is satisfied by an interpretation I , denoted I |= r, if a ∈ I whenever β ⊆ I , i.e.
if r is applicable (β ⊆ I), then it must be applied (β ∪ {a} ⊆ I). On the other hand, a
constraint ← β is satisfied if β �⊆ I , i.e. the constraint is not applicable. The rule r is
said to be defeated w.r.t. I iff there exists an applied competing rule ¬a ← β ′ ∈ P . We
use PI ⊆ P to denote the reduct of P w.r.t. I , i.e. PI = {r ∈ P | I |= r}, the set of
rules satisfied by I .

If an interpretation I satisfies all rules in P , i.e. PI = P , I is called a model of P .
A model I is a minimal model or answer set of P iff no other model J of P exists such
that J ⊂ I . An extended answer set of P is any interpretation I such that I is an answer
set of PI and each unsatisfied rule in P \PI is defeated. The set of all extended answer
sets of a program P is denoted by AS(P ).

3 A weak constraint is a constraint that is “desirable” but may be violated if there are no other
options.

4 As usual, we assume that programs have already been grounded, i.e. the variables have been
replaced by constants.
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Example 1. Consider the following SLP P about diabetes.

hypoglycemia ← sugar ← hypoglycemia coke ← sugar
diabetes ← ¬sugar ← diabetes diet coke ← ¬sugar

Clearly, while this program has no traditional answer sets, it does have two extended an-
swer sets I = {diabetes, hypoglycemia, sugar, coke}and J = {diabetes, diet coke,
hypoglycemia,¬sugar}.

Note that the extended answer set semantics is universal for simple programs con-
taining no constraints [32]. This is not the case for general, constraint allowing, simple
programs, due to the fact that constraints cannot be defeated.

3 Hierarchical Agents

If humans want to share information or have discussions in an effective manner, it is
only normal that they use the same language; without, it would be impossible to es-
tablish any communication. So it is only natural that we assume that all agents in our
framework “speak the same language” which we denote as AL. Modelling an agent’s
knowledge and beliefs, it might not always be a good idea to pass on the entire answer
set, e.g., a manager is certainly not going to tell her employee that she cannot have a
meeting on Monday because she wants to have an extended weekend in Paris. Instead
she will simply say that Monday is out of the question. To allow this we need to perform
some filtering on the answer set before it is passed to the next agent. For this reason,
we consider agents that use two languages: a public language AL used for communi-
cation and a private languageAL ′ for private reasoning purposes. The latter allows the
manager in our example to tell her employee she cannot have the meeting on Monday,
without giving her the underlying reason that she is in Paris for a trip. On the other
hand, if it is a business trip, she could choose to communicate the reason. Information
received from other agents will be assumed private by default. If it needs to be passed
one simply adds a rule l← l ′ for each literal that could be received from the other agent.
Summarised, an agent will receive input in the language LAL, do some reasoning with
a program over LAL ∪LAL′ and will only communicate the part over LAL to the other
agents. In this context, we use l ′ to denote the private version of the literal l ∈ LAL in
LAL′ and we have for l ′ ∈ LAL′ that l′′ = l ∈ LAL. We extend the notation as usual
to a set X ⊆ LAL ∪ LAL′ , i.e. X ′ = {l′ | l ∈ X}.
Definition 1. For an agent language AL, a hierarchical agent A is a SLP such that
BA ⊆ AL ∪AL′. For such an agent A and a set of literals I ⊆ LAL, the agent input,
we use A(I) to denote the SLP A ∪ {l ′ ← | l ∈ I}.

An interpretation S ⊆ LAL is an agent answer set w.r.t. the agent input I if
– S = M ∩ LAL with M ∈ AS(A(I)), or
– S = I when AS(A(I)) = ∅.

We use AS(A, I) to denote the set of all agent answer sets of A w.r.t. input I .

The first condition of the agent answer set definition ensures that the agent only
communicates public information. The second condition makes that the agent answer
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set semantics is universal. In case our agent cannot produce an answer set, because of
constraints being violated, she will assume the input as the solution. This makes sense
in the context of hierarchical agents, as orders from a superior should be obeyed even if
they are in conflict with your own beliefs. As an employee, you should reschedule your
meeting with others if your boss can only make it on a time you already were booked
up.

Example 2. Take AL = {hypoglycemia, diabetes, sugar, coke, diet coke} and con-
sider the following diabetes agent A.

sugar ′ ← hypoglycemia′ ¬sugar ′ ← diabetes ′

diet coke ← ¬sugar ′ coke ← sugar ′

Intuitively, the above agent is set up to use information from a doctor agent concern-
ing hypoglycemia and diabetes to decide if a patient needs to have diet coke or normal
coke. In order to do so, she derives if the patient needs sugar or should not have sugar.
The patient only needs to be told that she can have either a diet coke or a normal coke,
hence diet coke and coke are the only literals in the public language.

Let I1 = ∅, I2 = {diabetes} and I3 = {hypoglycemia} be three agent inputs.
One can check that A has only one agent answer set w.r.t. I1 which is S1 = ∅. Similar,
feeding both I2 and I3 as input to A results in a single agent answer set, i.e. S2 =
{diet coke} and S3 = {coke} respectively.

As mentioned before, information an agent receives can be easily made public by
adding a rule l← l′ for each literal one wants to make public. Depending on the agent,
a large number of these literals have to be made public. To shorten the programs, we
introduce the short hand pass(S ) for {l ← l ′ | l ∈ S}, with S ⊆ AL the set of literals
that need to be made public if derived in the private part.

Using a combination of public and private information, it is possible to easily en-
code that for example certain input information should be considered more important
than the agent’s own knowledge or vice versa.

Example 3. Consider the following employee agent A1:

pass({rise, overworked})
overworked ← boss hated ′ ← overworked

happy ← ¬boss hated ′, rise′ ¬boss hated ′ ← rise ′

Obviously the agent will never publicly admit hating the boss. Given {rise} as
input, the agent produces two answer sets: {rise, overworked} and {rise, overworked ,
happy}.

Now that we have defined a single hierarchical agent and the semantics that comes
with it, we can start to connect them. As mentioned previously, we are interested in
multi-agent systems where some agents have more authority than others, yet require
information from others in order to make correct decisions. In the introduction, we
discussed the situation of a company that needs to implement an emergency evacuation
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plan. Although a manager needs to approve the emergency plan, she does not need to
verify legal issues or draw up the plans herself. She will stipulate the requirements that
need to be fulfilled for her approval. So, in this case we have the employee being on
top of the hierarchy generating all possible plans, followed by the legal office rejecting
those plans which are not safe. Finally, these plans will be matched against the criteria
set out by the manager. Since a plan is needed, she will be unable to reject them all.

We have a different situation when a head of department needs to arrange a meeting
with her staff. Obviously she will allow her staff to have a say in the organisation, but
at the end of the day her diary will take precedence over that of her staff. Here the head
of department will be on top of the hierarchy to generate all possible dates she can have
the meeting, which can then be verified by her staff.

The above two examples demonstrate that there can be a difference between the
agent hierarchy and the hierarchy of the people/things modelled by the agents. The
agent with the greatest power is the one generating all the candidate models. The effect
of the lower agents is proportional to their level in the hierarchy. In this paper, we restrict
to linearly connected agents, since such systems are already capable of representing the
most common forms of hierarchy.

Formally, a hierarchical agent system ( HAS ) is a linear sequence of hierarchical
agents A = (A1, . . . , An), where A1 is the source agent, i.e. the agent that starts all
communication. For a HAS A, we refer to the i-th agent as A i, while we use A<i to
denote the HAS consisting of the predecessors of A i, i.e. A<i = (A1, . . . , Ai−1).

We assume for our theoretical model that agents are fully aware of the agents that
they can communicate with (as the communication structure is fixed) and that they can
communicate by passing sets of literals over communication channels. When put to
practice in an open multi-agent environment, an agent would first engage in establish-
ing a community and the appropriate hierarchy before collaborating on establishing a
consensus on the answer sets. Furthermore, one would expect the set of literals encap-
sulated in a communication protocol.

Each agent in a HAS is a separate entity with its own reasoning skills, knowledge
and beliefs. Each agent has the right to remove or add information to the input as she
sees fit. To reflect this, we introduce an interpretation for a HAS A = (A1, . . . , An) as
a sequence of interpretations I = (I1, . . . , In), one for each agent, denoting the public
knowledge of each individual agent. For interpretations, we introduce the same notation
Ii and I<i as we did for hierarchical agent systems. An interpretation I is consistent iff⋃

1≤i≤n Ii is consistent. Given a sequence I and a set S, we will write (I, S) to denote
the new sequence obtained from concatenating I and S.

Example 4. Consider the HAS A = (A1, A2) with A1 = {meeting ←} and A2 =
{out of office ← meeting ′}. Then, ({meeting}, {out of office}) is an interpretation.

The solutions of such a hierarchical agent system, called hierarchical answer sets,
are defined inductively. For a HAS A, we will use AG(A) to denote the set of all hier-
archical answer sets of A.

Definition 2. Let AL be an agent language.
– A hierarchical answer set of a HAS A = (A1) is a consistent interpretation S such

that S1 ∈ AS(A1, ∅).
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– A hierarchical answer set of a HAS A = (A1, . . . , An) is a consistent interpreta-
tion S such that S<n is a hierarchical answer set of A<n, i.e. S<n ∈ AG(A<n),
and
1. Sn ∈ AS(An, Sn−1); or
2. Sn = Sn−1 iff ∀S′ ∈ AG(A<n) · ∀T ∈ AS(An, Sn−1) · (S′, T ) inconsistent.

The case of a single agent HAS is simple: hierarchical answer sets equal the agent’s
agent answer sets with empty input. The two conditions of the general case are the
encoding of the principle that an agent either has to be able to augment the input in a
consistent manner (condition 1) or convince itself that all the alternatives it can propose
are inconsistent with solutions that are acceptable by its predecessors. In that case, the
input will be accepted (condition 2). If not, the candidate will be rejected.

Example 5. Consider the following simple HAS A = (A1, A2, A3) with:
– the general director A1 of a company containing the following rules 5:

monday ⊕ tuesday ⊕ friday ← ¬wednesday ← ¬thursday ←
– the head of research A2 containing the rules:

monday ⊕ thursday ← ¬tuesday ← ¬wednesday ← ¬friday ←
– the project manager A3 containing the rules:

friday ⊕ wednesday ← ¬monday ← ¬tuesday ← ¬thursday ←
who attempts to arrange a meeting. The director agent produces three possible hierar-
chical answer sets for the HAS (A1), i.e.

– (M1) = ({monday,¬tuesday,¬wednesday,¬thursday,¬friday})
– (M2) = ({¬monday, tuesday,¬wednesday,¬thursday,¬friday})
– (M3) = ({¬monday,¬tuesday,¬wednesday,¬thursday, friday})

Let us now consider A<3 = (A1, A2). When we feed A2 with M1, we notice that
M1 is accepted. This means that (M1, M1) is a hierarchical answer set for A<3. Any
other answer set from A2 with input M1 leads to contradiction. When we use M2 as
input we have that M1 ∈ AS(A2, M2,) is clearly inconsistent with M2, but which is
consistent with an acceptable solution of the predecessors, i.e. (M1). This implies that
there is no hierarchical answer with M2 as input for A2. The same is true when M3 is
used as input. As a result, we have AG(A<3) = {(M1, M1)}.

Now that we have the hierarchical answer sets for A<3, we can define those of A.
When we compute the answer sets of A3 with M1 as input, we obtain two answer sets:
one assuming friday to be true and the other wednesday to be true. Both are inconsistent
with (M1, M1), so our project manager has no other option than to conform to M 1

herself, resulting in AG(A) = {(M1, M1, M1)}.
Now consider the rearranged HAS B = (A1, A3, A2), e.g. because A3 has prior

arrangements with clients who do not appreciate changes to their schedule. This change
would result in a different hierarchical answer set, namelyAG(B) = {(M3, M3, M3)}.

5 In the following we will use rules of the form a ⊕ b ⊕ c ← to denote the set of rules {a ←
; b ← ; c ← ; ¬a ← ; ¬b ← ; ¬c ← ; ← a, b ; ← a, c ; ← b, c ; ← ¬a,¬b,¬c},
i.e. an exclusive choice between a, b and c.
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Although we request that hierarchical answer sets are consistent, this does not mean
that internal inconsistencies cannot appear. Further, the system also allows for cheating
and/or lying.

Example 6. Consider the following HAS A = (A1, A2) with A1 = {a ←} and A2 =
{b ←;¬a′ ← b; c ← ¬a′; a ← a′}. This HAS produces two hierarchical answer sets:
({a}, {a, b}) and ({a}, {b, c}). In the latter case, the agent A2 knows that there would
be a contradiction if she would admit ¬a, so she decides to pretend she does not know
anything about ¬a and only states the implication of ¬a ′, i.e. the conclusion c.

Example 7. Consider the job selection procedure of a company. The first agent A 1 cor-
responds with the possible profiles of the applicants. Thus, each agent answer set of the
agent below corresponds with a possible applicant’s profile.

male ⊕ female ← old ⊕ young ← experienced ⊕ inexperienced ←

The decision which applicant gets the job goes through a chain of decision mak-
ers. First, the agent A2 of the human resources department implements company policy
which stipulates that experienced persons should be preferred over inexperienced ones.
Therefore, the agent passes through all of its input, except when it encounters a profile
containing inexperienced, which it changes to experienced, intuitively implementing
that an applicant with the same profile but experienced instead of inexperienced, would
be preferable. Further, the department is convinced that younger employees are ambi-
tious.

pass({male, female, old , young, experienced})
pass({¬male,¬female,¬old ,¬young,¬inexperienced})

experienced ← inexperienced ′

¬inexperienced ← inexperienced ′

ambitious ← young ′

On the next level of the decision chain, the financial department reviews the remain-
ing candidates. As young and inexperienced persons tend to cost less, it has a strong
desire to hire such candidates, which is implemented in the following agent A 3.

pass({male, female, young, inexperienced})
pass({¬male,¬female,¬old ,¬experienced})

inexperienced ← young ′, experienced ′ ¬experienced ← young ′, experienced ′

young ← young ′, experienced ′ ¬old ← young ′, experienced ′

young ← old ′, inexperienced ′ ¬old ← old ′, inexperienced ′

inexperienced ← old ′, inexperienced ′ ¬experienced ← old ′, inexperienced ′

inexperienced ← old ′, experienced ′ ¬inexperienced ← old ′, experienced ′

experienced ′ ← old , experienced ¬experienced ′ ← old , experienced
young ← old ′, experienced ′ ¬young ← old ′, experienced ′

old ← old ′, experienced ′ ¬old ← old ′, experienced ′

← old , experienced cheaper ← inexperienced
cheaper ← young
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Intuitively, this agent handles the four possible cases: when the input profile is from
a young and inexperienced person, nothing will be changed, indicating that the input
cannot be improved. On the other hand, if only one of the properties is not as desired,
e.g. young and experienced, then the only improvement would be a profile containing
both young and inexperienced. Finally, a profile containing old and experienced has
three possible improvements: the contradictory rules together with the constraint ensure
that the agent answer sets proposed by A3 will contain young or inexperienced, or both.

Finally, the management has the final call in the selection procedure. As the current
team of employees is largely male, the management prefers the new worker to be a
woman, as described by the next agent A4, which is similar to A2.

pass(AL \ {male,¬female, ambitious , cheaper})
female ← male ′ ¬male ← ¬female′ ← female′

One can check that the system (A1) has eight hierarchical answer sets, among them
are

(M1) = ({experienced ,¬inexperienced ,male,¬female, young,¬old }) ,

(M2) = ({experienced ,¬inexperienced ,male,¬female, old ,¬young}) ,

(M3) = ({experienced ,¬inexperienced , female,¬male, young,¬old }) ,

(M4) = ({experienced ,¬inexperienced , female,¬male, old ,¬young}) ,

(M5) = ({inexperienced ,¬experienced , female,¬male, young,¬old }) .

However, only four of these will survive agent A2, i.e. AG((A1, A2)) = {(M1, M1 ∪
{ambitious}), (M2, M2), (M3, M3 ∪{ambitious}), (M4, M4)}, which fits the human
resource policy to drop inexperienced people. Feeding M 5 as input to A2 yields one
agent answer set M3 ∪ {ambitious}, which is consistent with (M3) ∈ AG((A1)),
making (M5, M5) unacceptable as a solution for the system. Similarly, when agent A3

is taken into account, only (M1, M1 ∪ {ambitious}, M1 ∪ {cheaper}) and (M3, M3 ∪
{ambitious}, M3 ∪ {cheaper}) are contained in AG((A1, A2, A3)). Considering the
last agent A4, the HAS (A1, A2, A3, A4) yields a single hierarchical answer set,

(M3, M3 ∪ {ambitious}, M3 ∪ {cheaper}, M3) ,

which fits our intuition that, if possible, a woman should get the job.

Definitions 1 and 2 ensure that each single agent HAS has at least one hierarchical
answer set. Extending such a HAS with other agents, implies those successors can either
augment one of these solutions in a consistent manner or simply accept them. This
implies that an arbitrary HAS always provide at least one solution, i.e. the hierarchical
answer set semantics is universal.

Theorem 1. Let A be a HAS . Then,AG(A) �= ∅.
The hierarchical answer set semantics is monotonic.

Theorem 2. Let A = (A1, . . . , An) and B = (B1, . . . , Bm) with m > n such that
B<(n+1) = A. Then, ∀S ∈ AG(B) · S<(n+1) ∈ AG(A).
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4 Complexity

We briefly recall some relevant notions of complexity theory (see [23] for an introduc-
tion). The class P (NP) represents the problems that are deterministically (nondeter-
ministically) decidable in polynomial time, while coNP contains the problems whose
complements are inNP .

The polynomial hierarchy, denotedPH, is made up of three classes of problems, i.e.
∆P

k , ΣP
k and ΠP

k , k ≥ 0, which are defined as ∆P
0 = ΣP

0 = ΠP
0 = P ; ∆P

k+1 = PΣP
k ;

ΣP
k+1 = NPΣP

k and ΠP
k+1 = coΣP

k+1.

The class PΣP
k (NPΣP

k ) represents the problems decidable in deterministic (non-
deterministic) polynomial time using an oracle for problems in Σ P

k , where an oracle is
a subroutine capable of solving ΣP

k problems in unit time. Note that ∆P
1 = P , ΣP

1 =
NP and ΠP

1 = coNP . Further, it is obvious that ΣP
k ⊆ ΣP

k ∪ΠP
k ⊆ ∆P

k+1 ⊆ ΣP
k+1,

but for k ≥ 1 any equality is considered unlikely. Further, the class PH is defined by
PH =

⋃∞
k=0 ΣP

k .
A decision problem D is called complete for a complexity class C if both D is in

C and D is hard for C. Showing that D is hard is normally done by reducing a known
complete decision problem into the decision problem D. For the classes Σ P

k and ΠP
k

with k > 0 a known complete, under polynomial time transformations, the problem is
checking whether a quantified boolean formula (QBF) φ is valid. Note that this does
not hold for the class PH for which no complete problem is known unless P = NP .

Quantified boolean formulas are expressions of the form Q 1X1Q2X2 . . . QkXk ·G,
where k ≥ 1, G is a Boolean expression over the atoms of the pairwise nonempty
disjoint sets of variables X1, . . . , Xk and the Qi’s, for i = 1, . . . , k are alternating
quantifiers from {∃, ∀}. When Q1 = ∃, the QBF is k-existential, when Q1 = ∀ we say
it is k-universal. We use QBF k,∃ (QBF k,∀) to denote the set of all valid k-existential
(k-universal) QBFs. Deciding, for a given k-existential (k-universal) QBF φ, whether
φ ∈ QBF k,∃ (φ ∈ QBF k,∀) is a ΣP

k -complete (ΠP
k -complete) problem.

The following results shed some light on the complexity of the hierarchical answer
set semantics for hierarchical agent systems. Due to space restrictions we do not pro-
vide the actual proofs, but they can be found in the technical report [30]. However, we
do provide the intuition behind the construction of the hardness part by means of an
example.

Theorem 3. The problem of deciding, given a HAS (A i)i=1,...,n, with n fixed, and a
literal l ∈ LAL, whether there exists a hierarchical answer set I containing l is ΣP

n -
complete. On the other hand, deciding whether every hierarchical answer set contains
l is ΠP

n -complete.

Proof. To prove hardness, we provide a reduction of deciding validity of QBFs by
means of a HAS .

Let φ = ∃X1∀X2 . . .QXn · G ∈ QBFn,∃, where Q = ∀ if n is even and Q = ∃
otherwise. We assume, without loss of generality [29], that G is in disjunctive normal
form, i.e. G = ∨c∈CC where C is a set of sets of literals over X1 ∪ . . . ∪Xn and each
c ∈ C has to be read as a conjunction.

In what follows, we will use P i
∀ to denote the program containing the rules
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– pass({x,¬x | x ∈ Xj ∧ 1 ≤ j < i}),
– {x ′ ← ; ¬x ′ ← | x ∈ Xj ∧ i ≤ j ≤ n},
– {sat ′ ← c′ | c ∈ C},
– { ← sat ′ ; ¬sat ← ; ← ¬sat}.

Similarly, we use P i
∃ to denote the program

– pass({x,¬x | x ∈ Xj ∧ 1 ≤ j < i}),
– {x ′ ← ; ¬x ′ ← | x ∈ Xj ∧ i ≤ j ≤ n},
– {sat ′ ← c′ | c ∈ C},
– {¬sat ′ ← ; ← ¬sat ′ ; ← sat}.

The HAS Aφ = (A1, . . . , An) corresponding to φ is defined by the following hier-
archical agents:

– A1 contains the rules {x ′ ← ; ¬x ′ ← | x ∈ Xj ∧ 1 ≤ j ≤ n} and {sat ′ ← c′ |
c ∈ C};

– if n is even, then Ai = Pn+2−i
∀ when i even and Ai = Pn+2−i

∃ when i > 1 odd;
– if n is odd, then Ai = Pn+2−i

∃ when i even and Ai = Pn+2−i
∀ when i > 1 odd.

Obviously, the above construction can be done in polynomial time. Intuitively, the
hierarchical agent A1 has agent answer sets for every possible combination of the X i’s
and if such a combination makes G valid, then the corresponding agent answer set also
contains the atom sat. The intuition behind the hierarchical agent P i

∀ is that it tries to
disprove, for the received input, the validity of the corresponding∀, i.e. for a given input
combination over the Xj’s making G satisfied, the hierarchical agent P i

∀ will try to find
a combination, keeping the Xj’s with j < i fixed, making G false. On the other hand,
the hierarchical agent P i

∃ will try to prove the validity of the corresponding ∃, i.e. for
a given combination making G false it will try to compute a combination, keeping the
Xj’s with j < i fixed, making G satisfied.

Instead of giving the formal proof for the above construction, we illustrate, for clar-
ity, the construction and the working of the HAS Aφ on an example and refer the reader
to [30] for the actual proof.

Consider
φ = ∃x · ∀y · ∃z · (x ∧ ¬y ∧ z) ∨ (y ∧ ¬z) .

The hierarchical agent A1 contains the following rules.

x ′ ← ¬x ′ ← y ′ ← ¬y ′ ←
z ′ ← ¬z ′ ← sat ′ ← x ′,¬y ′, z ′ sat ′ ← y ′,¬z ′

We have 8 possible agent answer sets for A1(∅), i.e. I1 = {x, y, z}, I2 = {x, y,¬z, sat},
I3 = {x,¬y, z, sat}, I4 = {x,¬y,¬z}, I5 = {¬x, y, z}, I6 = {¬x, y,¬z, sat},
I7 = {¬x,¬y, z} and I8 = {¬x,¬y,¬z}.

Clearly, for 1 ≤ i ≤ 8, (Ii) is a hierarchical answer set of (A1).
The second hierarchical agent A2 is defined by P 3

∃ and thus contains the following
rules.

pass({x ,¬x , y,¬y})← z ′ ← ¬z ′ ← sat ′ ← x ′,¬y ′, z ′

¬sat ′ ← ← ¬sat ′ ← sat sat ′ ← y ′,¬z ′

Now, feeding I1 to A2 yields I2 as the single agent answer set, which is clearly
inconsistent with I1, yielding that (I1, I2) cannot be a hierarchical answer set of the
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HAS (A1, A2). Further, for I2 we have that I2 ∈ AG(A1), yielding that (I2, I2) is
clearly consistent, which implies that (I1, I1) is neither a hierarchical answer set of
(A1, A2).

On the other hand, A2(I2) yields I2 as the single agent answer set which is clearly
consistent with itself, yielding that (I2, I2) is a hierarchical answer set of (A1, A2).

In case of the input I7, the agent program A2(I7) has no extended answer sets and
I7 is returned as the single agent answer set. As I7 is consistent with itself, (I7, I7) is a
hierarchical answer set of (A1, A2).

One can check in similar ways that AG((A1, A2)) contains 5 interpretations, i.e.
AG((A1, A2)) = {(I2, I2), (I3, I3), (I6, I6), (I7, I7), (I8, I8)}. It is not difficult to see
that for each of these hierarchical answer sets it holds that ∃z · (x∧¬y ∧ z)∨ (y ∧¬z)
when x and y are taken as in the interpretation iff the literal sat is contained in the
hierarchical answer set.

The third and final hierarchical agent A3 is given by P 2
∀ and thus contains the fol-

lowing rules.

pass({x ,¬x})← ← sat ′

y ′ ← ¬y ′ ← ¬sat ← sat ′ ← x ′,¬y ′, z ′

z ′ ← ¬z ′ ← ← ¬sat sat ′ ← y ′,¬z ′

When providing A3 with the input I2, we have AS(A3, I2) = {I1, I4}, none of
them consistent with I2. On the other hand, neither for I1 nor I4 there is a T ∈
AG((A1, A2)) such that I1 or I4 is consistent with T , yielding that (I2, I2, I2) is a
hierarchical answer set of (A1, A2, A3) in this case, i.e. A3 passes the input I2 as a
result as it cannot disprove ∀y · ∃z · (x ∧ ¬y ∧ z) ∨ (y ∧ ¬z) for the chosen truth value
of x in I2. In a similar way one can check that also (I3, I3, I3) ∈ AG((A1, A2, A3)).

On the other hand, when feeding A3 with I6, we get AS(A3, I6) = {I5, I7, I8},
again none of them consistent with the input I6. However, this time, such as for I7,
there exists an interpretation T ∈ AG((A1, A2)) such that T is consistent with I7, i.e.
T = (I7, I7), and as a result (I6, I6, I6) is rejected as a hierarchical answer set for
(A1, A2, A3).

When the agent A3 is given either I7 or I8, it cannot produce any extended answer
sets and thus returns I7 or I8 respectively as the single agent answer set, yielding that
(I7, I7, I7) and (I8, I8, I8) are both hierarchical answer sets for (A1, A2, A3).

This time, one can check that for each hierarchical answer set inAG((A1, A2, A3))
it holds that ∀y · ∃z · (x ∧ ¬y ∧ z) ∨ (y ∧ ¬z) for x taken as in the interpretation iff the
literal sat is contained in the hierarchical answer set. From this it follows that φ is valid
iff there exists a hierarchical answer set I ∈ AG((A1, A2, A3)) such that the literal sat
is contained in the interpretation. In our example, I2 is such a hierarchical answer set
and one can check that φ holds when assuming x is true. ��

5 Relationships to Other Approaches

In [3], answer set optimization (ASO) programs are presented. Such ASO programs
consist of a generator program and a sequence of optimizing programs. To perform
the optimization, the latter programs use rules of the form c1 < · · · < cn ← β which
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intuitively read: when β is true, making c1 true is the most preferred option and only
when c1 cannot be made true, the next best option is to make c2 true, ... Solutions of
the generator program that are optimal w.r.t. the first optimizing program and, among
those, are optimal w.r.t. the second optimizing program, and so on, are called preferred
solutions for the ASO program.

The framework of ASO programming can be simply adapted to the setting of agents,
i.e. just consider the generator program as agent A1 and the optimizing programs as
agents A2, . . . , An. The resulting semantics is very similar to our approach. However,
ASO programs are far more limited w.r.t. their expressiveness. It turns out that the
expressiveness of an ASO program does not depend on the length of the sequence of
optimizing programs, but it is always ΣP

2 -complete. This yields that ASO programs can
easily be captured by the presented agent systems in this paper using two single agents.
How these two agents simulating ASO programs can be constructed is subject to further
research.

Weak constraints were introduced in [5] as a relaxation of the concept of a con-
straint. Intuitively, a weak constraint is allowed to be violated, but only as a last resort,
meaning that one tries to minimize the number of violated constraints. Additionally,
weak constraints are allowed to be hierarchically layered by means of a sequence of
sets of weak constraints. Intuitively, one first chooses the answer sets that minimize the
number of violated constraints in the first set of weak constraints in the sequence, and
then, among those, one chooses the answer sets that minimize the number of violated
constraints in the second set, etc.

Again, this approach can be “agentized” in a straightforward manner and will look
similar to our approach. This time the complexity of such a system, independent of the
number of sets of weak constraints, is at most ∆P

3 -complete. Thus, using the presented
agent system from Section 3 with three single agents will suffice to capture the most
expressive form of that formalism.

In [19, 31], hierarchies of preferences on a single program are presented. The pref-
erences are expressible on both the literals and the rules in that program. It is shown
that for a sequence of n agents the complexity of the system is Σ P

n+1-complete. The
semantics proposed in Section 3 is a generalization of that approach: instead of using
one global program with agents only using preferences on that program, we equip each
agent with her own, in general different, program and let her implement whatever op-
timizing strategy she wants. To capture a hierarchy of n preference relations, we need
n+1 optimizing agents: the first one will correspond with the global program, while the
rest will correspond to the n preference relations. The system described in Example 7
can be seen as a translation of such a preference hierarchy. Intuitively, agent A 2 de-
scribes the preference relation6 experienced < inexperienced, while A3 implements
the relation young < old ; inexperienced < experienced. Finally, A4 corresponds
to the single preference female < male.

In [25] a theory for coordinating agents is presented. When two agents A and B,
which are represented by extended disjunctive programs, coordinate their answer sets,
they can either opt for generating the union of their answer sets or the intersection. Our

6 The expression a < b means a is preferred upon b.
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work shows some resemblance to the latter, yet our agents are in a hierarchy giving
more power to agents higher up. Furthermore, our method is universal.

[8, 10] also present a multi-agent framework, LAIMA, were the agents are rep-
resented as a logic program. LAIMA allows agents to be connected in any sort of
way, including loops. The HAS system presented in this paper places the most influ-
encial agents at the start of the sequence of agents, providing a top-down approach. The
LAIMA system does exactly the opposite, it provides a bottom-up approach by starting
the reasoning at the bottom of the hierachy and moving up. The major differences with
our approach is that LAIMA does not deal with agents failing to generate an answer set
and that they allow agents to contradict each other.

In the Minerva architecture [21], the authors build their agents out of subagents
that work on a common knowledge base written as a MDLP (Multi-Dimensional Logic
Program) which is an extension of Dynamic Logic Programming. It can be shown that
MDLP can be translated to extended logic programs such that their stable models match
our answer sets.

6 Conclusions and Directions for Further Research

We presented a framework suitable for solving hierarchical decision problems using
simple logic programming agents that cooperate via a sequential communication chan-
nels. The resulting semantics turns out to be very expressive, as it essentially covers
the polynomial hierarchy, thus enabling further complex applications. The framework
could be used to develop implementations for diagnostic systems at the third level of
the polynomial hierarchy [11, 13, 34].

Future work comprises the development of a dedicated implementation of the ap-
proach, using existing answer set solvers, e.g. DLV [16] or SMODELS [26], possibly
in a distributed environment. Such an implementation will use a control structure that
communicates candidate solutions between consecutive agents. For the implementation
of this control loop and the communication between the agents, we foresee the use of
JADE [20] and Protégé [24] in much the same way as it is been done for the LAIMA
system [8].

In the context of an implementation, it is also interesting to investigate which con-
ditions an agent has to fulfil in order for it not to lift the complexity up one level in the
polynomial hierarchy, yielding possible optimizations of the computation and commu-
nication process.

Once the system is implemented we will have the opportunity to work on larger
applications. One of our goals, is to try to incorporate the ALIAS [6] system, an agent
architecture for legal reasoning based on abductive logic, into ours. The Carell multi-
agent [36] for allocation organs and tissue would be an interesting test case.

In terms of integration it would be nice to see how HAS could possibly work to-
gether with agents written for the Dali [7] or Socs [15, 27] platforms, two agent plat-
forms using logic programming languages to model the agents.

Present, we only work with a linear sequence of communication channels. We plan
to look into a broader class of communication structures, like for example trees or more
generally, a (strict) partial ordering of agents.
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Finally, we would like to experiment with the language(s) used for our agents. The
definition of hierarchical agent system and the corresponding hierarchical answer set
does not necessary have to rely on the representation language of the agents, as long as
they can produce agent answer sets.
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