
F-Logic#: Loosely Coupling F-Logic Rules and
Ontologies⋆

Stijn Heymans1, Roman Korf2, Michael Erdmann2, Jörg P̈uhrer1, and Thomas Eiter1

1 Knowledge-Based Systems Group, Institute of Information Systems
Vienna University of Technology

Favoritenstrasse 9-11, A-1040 Vienna, Austria
{heymans,puehrer,eiter}@kr.tuwien.ac.at

2 ontoprise GmbH
An der RaumFabrik 29, D-76227 Karlsruhe, Germany

{korf,erdmann}@ontoprise.de

Abstract. Although F-Logic rules received considerable attention in the devel-
opment of the W3C’s Rule Interchange Format (RIF), they have not been studied
in the context of integrating rules with Description Logic ontologies. This paper
makes steps in mending this by defining F-Logic# knowledge bases, a frame-
work that provides a loosely coupled approach to integrating F-Logic rules and
ontologies by allowing rules to query the ontology usingexternal atoms.
We investigate the semantical properties of this framework and define a strati-
fied fragment that allows for fast reasoning – a necessity on a Web with large
amounts of data. We define the corresponding RIF dialect for F-Logic#, thus set-
ting it firmly in a Web context. Finally, we show how to extend the F-Logic rule
engine OntoBroker towards reasoning with F-Logic#, enabling as such afirst
commercial implementation for loosely coupled ontologies and rules.

1 Introduction

How to combine ontologies and rules is by now well-investigated theoretically with
tightly-coupled approaches such asDescription Logic Programs[12, 18]3, DL-safe rules
[19], r-hybrid knowledge bases[26], DL+log [25], andDescription Logic Rules[16],
as well as loosely coupled approaches such asdl-programs[9]. Such approaches usually
consider the integration of some Description Logic (DL) [1](as the ontology language)
and some Logic Programming (LP) paradigm (as the rule language). The main techni-
cal difficulties with such an integration are the different premises on which those two
knowledge representation formalisms are built: an open domain assumption and a clas-
sical semantics for Description Logics, and a closed domainassumption and a minimal
model semantics for Logic Programming.

In the Semantic Web context, two standards are arising for ontology languages and
rule languages: the web ontology languageOWL 2[24] and theRule Interchange For-
matRIF [4]. From a Semantic Web practice vantage point, the integration of ontologies

⋆ This work is partially supported by the European Commission under the project OntoRule
(IST-2009-231875).

3 Note that even though the approaches of [12] and [18] carry the samename, they are different.

and rules is thus concerned with the integration of OWL 2 ontologies and rules in some
RIF dialect. For example, [7] investigates the compatibility of the RIF Basic Logic
Dialect [3]. This dialect, however, does not allow fornegation as failure, a construct
common in most LP paradigms and responsible for its expressive non-monotonic fea-
tures.

F-Logic Programming is an expressive rule-based formalismbased on F-Logic [15]
that allows for object-oriented constructs and higher-order features, as well negation as
failure. Although F-Logic Programming takes a prominent place in the development of
RIF – RIF supports frame terms for example – and non-commercial F-Logic engines
such as FLORA-2 [27] and commercial engines such as OntoBroker [20] are available,
little effort has been directed to an integration of F-Logicrules with DL ontologies.

In this paper, we take a first step in mending this by defining F-Logic# knowledge
bases, a loosely coupled approach for integrating ontologies with F-Logic rules. Sim-
ilarly to dl-programs, with which F-Logic# shares its basic mechanism of loose cou-
pling, we are not only able to query the ontology but to also tosend results from the
program up to the ontology for further deductions, effectively enabling a bidirectional
flow of information. In practice, such a loose coupling is often enough as witnessed by
several use cases in the OntoRule project4. Moreover, it allows for significant re-use
of existing implementations on the rule and on the ontology side, as well as for easier
management of ontologies and rules as they can be both maintained independently.
The main contributions of the paper can be summarized as follows.

– In Section 3 we introduce F-Logic# knowledge bases, discusssemantical proper-
ties, and provide computational results for the basic reasoning tasks. We define
what it means for an F-Logic# knowledge bases to be stratifiedin order to have an
efficient fragment with an intuitive reasoning procedure that can be integrated with
existing rule reasoner implementations. For the semantical definition of F-Logic#
knowledge bases we adhere to the principles of dl-programs,but we address several
F-Logic related issues, e.g., frame terms, treating them asfirst-order citizens of the
language.

– We define F-Logic# as a RIF dialect in Section 4, by a specification of the RIF
Framework for Logical Dialects [4], thus ensuring compatibility with upcoming
rule standards and paving the way for different implementation of F-Logic# based
on a common syntax.

– We describe the implementation of F-Logic# knowledge basesin Section 5 using
OntoBroker [20] – the first recent operationalization of a loosely coupled approach
for integration ontologies and rules in a commercial rule engine. The flexibility
of the framework is apparent, as this implementation extends the theory by using
SPARQL [22] queries instead of the atomic queries that we define in F-Logic#.

2 Preliminaries: F-Logic and F-Logic Programs

F-Logic F-Logic [15] has constructs to specify methods and generalization/specialization
and instantiation relationships. The syntax has some seemingly higher-order features,

4 http://ontorule-project.eu/

namely, the same identifier can be used for a class, an instance, and a method. However,
the semantics of F-Logic is strictly first-order. To simplify matters, we do not consider
parametrized methods, functional (single-valued) methods, inheritable methods, and
compound molecules.

We take the signature of an F-languageL to be of the formΣ = 〈F ,P〉 with F
constant symbols, disjoint fromP, the predicate symbols, each with an associated arity
n > 0. LetV be a set of variable symbols. Terms and atomic formulas are then as usual:
t ∈ V ∪ F is a term and⊤,⊥, p(t1, . . . , tn), t1 = t2 are atomic formulas, withp ∈ P
ann-ary predicate symbol, andt1, . . . , tn terms.

A molecule in F-Logic is one of the following: (i) anis-a assertion of the form
t1 : t2, which states that an individualt1 is of the typet2, or (ii) a data moleculeof the
form t1[t2 ։ t3], with t1, t2, t3 terms, which states that an individualt1 has an attribute
t2 with the valuet3. An F-Logic atom or molecule isground if it does not contain
variables. As in this paper we only need atoms and molecules,we refer the reader for
the usual definition of formulas in an F-language to [15].

The semantics is given byF-structureswhich are tuplesI = 〈U,∈U , IF , I։, IP 〉,
whereU is a non-empty set and∈U is a binary relation overU . A constant symbolc ∈
F is interpreted as an element in the domainU : IF (c) ∈ U . An n-ary predicate symbol
p ∈ P is interpreted as a relation over the domainU : IP (p) ⊆ Un. I։ associates a
binary relation overU with eachk ∈ U : I։(k) ⊆ U × U . Variable assignments are
defined in the usual way.

A Herbrand F-structure over a signatureΣ is an F-structureI = 〈U, ∈U , IF , I։,

IP 〉 such thatU = F for Σ = 〈F ,P〉 and such that for any constantc, IF (c) = c. As
an abuse of notation, for Herbrand structures we useI to denote both the structure and
the set of ground molecules and atomic formulas satisfied in the structure.

Given an F-structureI, a variable assignmentB, and a termt of L, tI,B is defined
as:XI,B = XB for a variable symbolX andcI,B = IF (c) for a constant symbolc. Sat-
isfaction of atomic formulas and moleculesφ in I, given the variable assignmentB, de-
noted(I, B) |=f φ, is defined such that(I, B) |=f ⊤,(I, B) 6|=f ⊥, (I, B) |=f p(t1, . . . , tn)

iff (tI,B1 , . . . , tI,Bn) ∈ IP (p), (I, B) |=f t1 = t2 iff t
I,B
1 = t

I,B
2 , (I, B) |=f t1 : t2 iff

t
I,B
1 ∈U t

I,B
2 , and (I, B) |=f t1[t2 ։ t3] iff (tI,B1 , t

I,B
3) ∈ I։(tI,B2). Note that for

ground atomic formulas (atoms) and moleculesφ, we will usually writeI |=f φ.

F-Logic ProgramsWe follow the definitions of [5].Rulesr are of the form

h ← b1 , . . . , bm ,not c1 , . . . ,not cn (1)

with equality-free atoms or moleculesh, b1, . . . , bm, c1, . . . , cn; H(r) = h is thehead
of r, B+(r) = {b1, . . . , bm} is thepositive bodyof r andB−(r) = {c1, . . . , cn} is the
negative bodyof r. If B−(r) = ∅ we call the rulepositive. A (F-Logic) Programis a
set of rules of the form (1). It is positive if all its rules arepositive. Rules and programs
are ground if they do not contain variables. A ground rule with an empty body is called
a fact. A Herbrand F-structureI modelsa ground ruler, denotedI |=f r, if whenever
B+(r) ⊆ I andB−(r) ∩ I = ∅ thenh ∈ I. It is a modelof a ground programP ,
denotedI |=f P , if it models all rulesr ∈ P .

The signature of a programP is an F-Logic signatureΣ = 〈F ,P〉 that contains the
constants and predicate symbols fromP . We denote withgrF (P), the grounding ofP

with constantsF , i.e., the ground rules originating from rules inP by replacing, per
rule, each variable by each possible combination of constants inF . If F is clear from
the context, we will usually writegr(P). For a non-ground programP with signature
Σ = 〈F ,P〉 and a Herbrand F-structureI over Σ, we say thatI is a model ofP ,
denotedI |=f P , if I is a model ofgrF (P). It is minimal if there is no Herbrand F-
structureJ ⊂ I overΣ that is a model ofP . Note that, as in usual Logic Programming
approaches, ifP is positive, then there is a unique minimal model ofP .5

We call a Herbrand F-structureI a stable modelof P iff I is the minimal model of
gr(P)I, wheregr(P)I is the GL-reduct [11]: remove all rules fromgr(P) that contain
a c ∈ B−(r) ∩ I and subsequently remove allnot c from the remaining rules.

Example 1.Consider the following programP = P1 ∪ P2 with P1 the facts

f1 :flight f1 [from ։paris] f1 [to ։vienna]
f2 :flight f2 [from ։vienna] f2 [to ։frankfurt]

andP2 the rules

directFlight(X ,Y) ← Z :flight ,Z [from ։X],Z [to ։Y]
route(X ,Y) ← directFlight(X ,Y)
route(X ,Y) ← directFlight(X ,Z), route(Z ,Y)

flightWithStops(X ,Y) ← route(X ,Y),not directFlight(X ,Y)

The programP1 indicates that there is a flightf1 from Paris to Vienna andf2 from
Vienna to Frankfurt. The first rule inP2 indicates that there is a direct flight fromX to
Y if there is a flightZ that goes fromX to Y . A route is defined as the transitive closure
of directFlight and there is a flight with stops if there is a route but no directflight.

The signatureΣ = 〈F ,P〉 of P is such thatF = {f1 ,flight , from, to,paris, vienna,

f2 , frankfurt} andP = {directFlight , route,flightWithStops}. A stable modelI of
this program contains the ground moleculesP1 since those are facts inP . It contains
the atomsdirectFlight(paris, vienna) anddirectFlight(vienna, frankfurt) by satis-
faction of the ground versions of the first rule. Theroute rules forceI to include
route(paris, vienna), route(vienna, frankfurt), androute(paris, frankfurt) and by
minimality of stable models, no moreroute atoms are included such that finally only
flightWithStops(paris, frankfurt) is further included using theflightWithStops rule.

Current F-Logic systems such as FLORA-2 [27] and OntoBroker[20] are dealing
for efficiency reasons with rules under a well-founded semantics [10] instead of a stable
model semantics. We focus for the expansion of the theory on the stable model seman-
tics as (1) we are initially mainly interested, for efficiency reasons, in the stratified case,
and in that case the well-founded and stable model semanticscoincide (2) the well-
founded semantics can be easily defined on top of the stable model semantics, such that

5 Note that w.l.o.g we can include so-calledsubclass moleculest1 ::t2 in rules by axiomatizing
them as in [5]:

X ::Z ← X ::Y ,Y ::Z
X :Z ← X :Y ,Y ::Z

X ::X ←

i.e., transitivity, inheritance of class membership, and reflexivity. Whenever we have subclass
molecules we assume these 3 rules are implicitly present as well.

we choose to treat external atoms from the perspective of themore expressive stable
model semantics. Indeed, once the concept of a GL-reduct is defined, one can, using
theγ operator [2], easily define the well-founded semantics: fora Herbrand structure
I and a programP , let γP (I) be the least model ofgr(P)I andγ2

P (I) = γP (γP (I)),
i.e., applying theγ operator twice. Then the set ofwell-foundedatoms ofP , denoted
WFSP , is exactly the least fixed point ofγ2

P . Note that the implementation described
in Section 5 works for stratified F-Logic# knowledge bases, and thus for both the well-
founded as well as the stable model semantics.

3 F-Logic# Programming: F-Logic Programs with External Atoms

In this section, we extend F-Logic programs with so-calledexternal atoms, in order to,
from the rules, query ontologies as well as feed conclusionsto the ontology.

In the following, we assume a very general concept of an ontology language6: an
ontology languageL is defined such that a theory (i.e., a set of formulas)Φ in L has a
signatureΣ = 〈F ,P〉. Furthermore,L should define an entailment relation|=L such
that for a theoryΦ and a formulaφ in the languageL, Φ |=L φ is well-defined, and is a
Boolean decidable function. Moreover, we assume atomsa and negated atoms¬a over
the signatureΣ are part of the language. For example, ifL is the language of first-order
logic, |=L is the usual first-order entailment|=. We impose that the signature contains
only 0-ary function symbols (constants) – the same restriction as for F-Logic programs.

SyntaxLet L be the ontology language andΣ = 〈F ,P〉 the signature under consider-
ation. Anexternal atomoverΣ is of the form

#[S1op1P1, . . . , SmopmPm; Q](t) (2)

where for1 6 i 6 m, opi ∈{⊎, −∩}, Q ∈ P is ann-ary predicate,t aren terms overΣ,
Si ∈ P, and either7

– Pi ∈ P, such that bothSi andPi arek-ary predicate symbols,
– Pi =։pi for pi ∈ F andSi is a binary predicate, or
– Pi = :pi for pi ∈ F andSi is a unary predicate.

Intuitively, opi = ⊎ increasesSi by the extension ofPi, while opi = −∩ constrains
Si to Pi. The symbols։p and:p indicate thatp should be interpreted as an attribute
name or a type name, as in F-Logic. We call thePi, 1 6 i 6 m, the input predicates
of the external atom. Note that the external atoms do not necessarily need to have input
predicates, i.e., we allow for external atoms of the form#[;Q](t).

A groundexternal atom is an external atom (2) such that none of the terms t are
variables. AnF-Logic#-ruler w.r.t. the signatureΣ is of the form (1) where the body
atoms can additionally be external atoms overΣ.

6 The set of F-Logic programs could be considered an ontology language as well.
7 Strictly speaking, we do not need a different notation։pi and:pi as the function symbols and

predicate symbols are disjoint, however, for clarity we thought it to be useful.

A set of such F-Logic#-rules is called anF-Logic#-program. An F-Logic#-rule is
ground if all its components (atoms, molecules, and external atoms) are ground and an
F-Logic#-program is ground if all its rules are ground.

We denote withgrF (P) the grounding of an F-Logic#-programP with the con-
stantsF of the signatureΣ, i.e., every rule is replaced by its ground instantiations with
F , defined as usual. We will writegr(P) if F is clear from the context.

An F-Logic# knowledge base (KB)w.r.t.Σ is a tupleKB = 〈Φ,P 〉 whereΦ is a
theory inL with signatureΣ andP is an F-Logic#-program w.r.t.Σ.8

Example 2.Take an F-Logic# KBKB = 〈Φ,P 〉 with a Description Logic (DL) KBΦ:

localFlight(bolzano, vienna) localFlight(vienna, bolzano)
linkedtoHub ≡ ∃localFlight .hub

that defines two local flights and a conceptlinkedtoHubthat is equivalent with all
objects that are connected vialocalFlight to a hub. Take the F-Logic#-programP =
P ′

1 ∪ P3 whereP ′
1 is P1 from Example 1 extended withfrankfurt :hubCity andP3 is

directFlight(X ,Y) ← Z :flight ,Z [from ։X],Z [to ։Y]
route(X ,Y) ← #[localFlight ⊎ directFlight ; localFlight](X ,Y)
route(X ,Y) ← #[localFlight ⊎ directFlight ; localFlight](X ,Z), route(Z ,Y)

flightWithStops(X ,Y) ← route(X ,Y),
not #[localF light ⊎ directF light; localF light](X, Y)

X :hubReachable ← #[localFlight ⊎ route, hub ⊎ :hubCity ; linkedtoHub](X)

Intuitively, the external atom#[localFlight ⊎ directFlight ; localFlight](X ,Y) ex-
tends local flights in the ontologyΦ with direct flights fromP , subsequently queries
what the entailed local flights under this extension are, andfurther uses this to calculate
the routes and the flights that have stops.

The last rule defines the cities that can reach a hub in one or more steps. We thus
query the ontology for all objects that are part oflinkedtoHubby extending the local
flights in the ontology with the routes and the concepthubwith the objects that are of
typehubCity. Note the ‘:’ in front ofhubCityto indicate that it is an F-Logic type. While
the route rules inP are using a mapping fromdirectFlights to localFlights (i.e., the
modeler assumes these are actually the same roles/predicates), in this last rule, one ex-
tends the meaning of local flights to also mean routes, enabling a flexible interpretation
of ontologies by rules, while still relying on the ontology definitions (oflinkedtoHub).

SemanticsLet KB = 〈Φ,P 〉 be an F-Logic# KB with signatureΣ. We assume in the
following that։p(a, b) and:p(a) is shorthand fora[p ։b] anda :p, respectively.

Let I be a Herbrand F-structure overΣ = 〈F ,P〉, then,I models a ground F-
Logic#-atoma = #[S1op1P1, . . . , SmopmPm; Q](u) underΦ, denotedI |=f,Φ a, iff
Φ ∪m

i=1 Ai(I) |=L Q(u) where

8 When the combined signature is clear from the context we will usually omit it. Further note
that we do not make a distinction between the ontology’s signature and the rule component’s
signature.

– Ai(I) = {Si(e) | I |=f Pi(e)}, for opi = ⊎, and
– Ai(I) = {¬Si(e) | I 6|=f Pi(e)}, for opi = −∩,

wheree is a vector of constants fromF with length conforming to the type of the
predicateSi, 1 6 i 6 m, at hand. For ground atomic formulas and moleculesa, we
define satisfaction underΦ, denotedI |=f,Φ a, as satisfactionI |=f a.

We say thatI is a modelunderΦ of a ground F-Logic#-ruler of the form (1),
denotedI |=f,Φ r, if I |=f,Φ h wheneverI |=f,Φ bj for all 1 6 j 6 m andI 6|=f,Φ ck

for all 1 6 k 6 n. Finally, I is a model of an F-Logic# KBKB = 〈Φ,P 〉, denoted
I |=f KB, if I |=f,Φ r for eachr ∈ gr(P). Theprojectionof an F-Logic# KBKB =
〈Φ,P 〉 whereP is ground, with respect to a Herbrand F-structureI, denotedΠ(KB, I),
is an F-Logic#-program obtained fromP as follows. For every ruler in P ,

– if there is an external atoma ∈ B+(r) such thatI 6|=f,Φ a, or an external atom
a ∈ B−(r) such thatI |=f,Φ a, then remover,

– otherwise, delete all external atoms fromr.

Intuitively, the projection “evaluates” the set of rules with respect toI by removing
(evaluating) rules and external atoms consistently withI andΦ.

Definition 1. Let KB = 〈Φ,P 〉 be an F-Logic# KB overΣ. Then, a Herbrand F-
structureI overΣ is anNM-modelof KB, denotedI |=s KB, if I is a stable model of
Π(〈Φ, gr(P)〉, I).

In other words, the semantics of an F-Logic# KB is given by first grounding the
program part, then projecting away the external atoms w.r.t. some guessed Herbrand
F-structure, in correspondence with the ontology part, andfinally, calculating the sta-
ble model of the resulting F-Logic program (i.e., containing no external atoms) and
verifying that it corresponds to the initial Herbrand F-structure (hence thestability).

Example 3.Consider the combined KBKB = 〈Φ,P 〉 from Example 2 with the sig-
nature consisting of exactly the constants and predicates appearing inKB. Any stable
modelI will containP ′

1 from Example 2 and using the first rule regarding direct flights,
I contains the atomsdirectFlight(paris, vienna) anddirectFlight(vienna, frankfurt).

Further,I |=f,Φ #[localFlight ⊎ directFlight ; localFlight](u1 , u2) for (u1, u2) that
are (paris, vienna), (vienna, frankfurt), (vienna, bolzano), and(bolzano, vienna),
asΦ ∪ A(I) |=L localFlight(u1 , u2) where

A(I) = {localFlight(paris, vienna), localFlight(vienna, frankfurt).}

With the firstrouterule, we have thatroute(paris, vienna), route(vienna, frankfurt),
route(vienna, bolzano) androute(bolzano, vienna) are inI. From the secondroute
rule, we haveroute(paris, frankfurt), route(paris, bolzano), route(vienna, vienna),
route(bolzano, bolzano), androute(bolzano, frankfurt) are inI. The flights with stops
are then all routes except theroute(u1 , u2)s as these are direct flights.

Finally, I |=f,Φ #[localFlight ⊎ route, hub ⊎ :hubCity ; linkedtoHub](v) for v that
is vienna, paris, or bolzano asΦ ∪ A1(I) ∪ A2(I) |=L linkedtoHub(v) whereA1(I)
is thelocalFlightsthat are already inΦ and thelocalFlightsthat were matched with the
routes fromI andA2(I) consists ofhub(frankfurt) sinceI |=f frankfurt :hubCity .
Thus,vienna :hubReachable, paris :hubReachable, andbolzano :hubReachable are
in I.

Note that NM-models are not necessarily minimal.

Example 4.Take an F-Logic# KBKB = 〈Φ,P 〉, with Φ = ∅ andP the rulep(X) ←
#[p ⊎ p; p](X). With a signatureΣ whereF = {a} andP = {p}, one has that both
{p(a)} and∅ are NM-models ofKB.

This example additionally shows that one can give a model-theoretical meaning to
predicates appearing in rules, i.e., you have the choice (possibly constrained by other
rules or the ontology) to includep(a) in the NM-model or not.

If checking |=L is in a complexity classC, one can calculate the NM-model in
nondeterministic exponential time w.r.t. the size of the KB, using an oracle inC.

Theorem 1. Let KB = 〈Φ,P 〉 be an F-Logic# KB where checkingΦ |=L φ is in C.
Then, the NM-model ofKB can be computed by a nondeterministic Turing machine in
exponential time in the size ofKB, using an oracle inC.

Proof. (Sketch) Intuitively, one can guess an interpretationI for KB = 〈Φ,P 〉 in
polynomial time in the size ofKB. The grounding ofP has exponential size w.r.t. the
size ofP . Calculating the projection ofgr(P) can then be done in exponential time
in the size ofP (by running throughgr(P)) and an oracle inC. Finally, calculating
the GL-reduct is again polynomial ingr(P) and calculating the minimal model of a
positive F-Logic program is polynomial in the size ofgr(P) as well.¤

Reasoning with Stratified F-Logic# Knowledge BasesWe are interested in more effi-
cient fragments of F-Logic# KBs, i.e., fragments for which one can calculate the NM-
model faster than in nondeterministic exponential time with an oracle inC. To this
purpose, we introducestratifiedF-Logic# KBs.

For an F-Logic# ruler, let#(r) be the external atoms inr; for an F-Logic#-program
P , let #(P) = ∪{#(r) | r ∈ P} be the external atoms inP .

Let KB = 〈Φ,P 〉 be an F-Logic# KB over a signatureΣ = 〈F ,P〉. We define
a stratifiedF-Logic# KB by means of astratification functionλ : P ∪ {:p,։p | p ∈
F}∪{:,։} → {0, . . . , k}, k > 0. We extend the definition of this stratification function
towards (external) atoms and molecules as follows:

– for atoms,λ(p(t)) = λ(p) for p ∈ P,
– for is-a assertions,

λ(t1 :t2) =

{

λ(:t2) if t2 ∈ F

λ(:) otherwise

– for data molecules,

λ(t1[t2 ։t3]) =

{

λ(։t2) if t2 ∈ F

λ(։) otherwise

– for external atoms,λ(#[S1op1P1, . . . , SmopmPm; Q](t)) = max16i6m{λ(Pi)}.

Intuitively, thelevelof an atom is the same as the level of its predicate. The level of
a molecule is the same as the level of its type name or attribute name in case it is ground
and has the level of:and։otherwise. External atoms have a level that is the maximum
level of thePi that are used to send input the ontology.

Definition 2. LetKB = 〈Φ,P 〉 be an F-Logic# KB over a signatureΣ = 〈F ,P〉. Then
KB is stratifiedif there exists a stratification functionλ such that, for each ruler ∈ P

of the form (1):

– λ(h) > bi, for each1 6 i 6 m such thatbi 6∈ #(r),
– λ(h) > bi, for each1 6 i 6 m such thatbi ∈ #(r),
– λ(h) > ci, for each1 6 i 6 n.

Thus the level of the head has to be greater or equal than the body atoms/molecules
that are not external, and strictly greater than the level ofthe external atoms, and, as
usual, strictly greater than the negative atoms/molecules.9

We can then write a stratified KBKB = 〈Φ,P 〉 as 〈Φ, (P0, . . . , Pk)〉 where, for
0 6 i 6 k, Pi = {r ∈ P | λ(H(r)) = i}. ThePi are called thestrataof KB.

Example 5.Take the F-Logic# KB from Example 2. This is a stratified KB, that has,
for example, the following strata:

Q2 :
X :hubReachable ← #[localFlight ⊎ route, hub ⊎ :hubCity ; linkedtoHub](X)

Q1 :
route(X ,Y) ← #[localFlight ⊎ directFlight ; localFlight](X ,Y)
route(X ,Y) ← #[localFlight ⊎ directFlight ; localFlight](X ,Z), route(Z ,Y)

flightWithStops(X ,Y) ← route(X ,Y),
not #[localFlight ⊎ directFlight ; localFlight](X ,Y)

Q0 :
P′

1

We define theiterative least modelof a ground stratifiedKB = 〈Φ, (P0, . . . , Pk)〉:

– Let I0 be the minimal model ofΠ(〈φ, P0〉, ∅). Note thatP0 is positive and does
not contain external atoms with input predicates sinceKB is stratified such that
Π(〈φ, P0〉, ∅) has a unique suchI0.

– For i > 0, definePi(Ii−1) as the projectionΠ(〈Φ,Pi〉, Ii−1) and letIi be the
minimal model of the GL-reductPi(Ii−1)

Ii−1 ∪ {a ←| a ∈ Ii−1} (which is again
positive and does not contain external atoms). Intuitively, in Pi we remove the
external atoms usingIi−1, followed by removing the negative atoms again w.r.t.
Ii−1 and subsequently takingIi−1 into account as facts.

The iterative least model ofKB = 〈Φ, (P0, . . . , Pk)〉 is then, by definition,Ik. By
construction, the iterative least model of a ground stratified KB exists and is unique. For
a stratified F-Logic# KBKB = 〈Φ, (P0, . . . , Pk)〉 that is not ground, we define the iter-
ative least model as the iterative least model of the grounding〈Φ, (gr(P0), . . . , gr(P1))〉.

9 In the presence of subclass moleculest1 ::t2 in the programP , we extendλ to be a function
P ∪ {:p, ։p, ::p | p ∈ F} ∪ {:, ։, ::} → {0, . . . , k} and its extension on subclass molecules
as follows:

λ(t1 ::t2) =

(

λ(::t2) if t2 ∈ F

λ(::) otherwise

Note that this is a similar definition as foris-aassertions. Due to the implicit presence of the 3
axiomatizing rules when subclass molecules are present, one can see that λ(:) > λ(::) for all
stratification functions, due to the inheritance of class membership (X :Z ← X :Y ,Y ::Z).

Theorem 2. Let KB be a stratified F-Logic# KB overΣ = 〈F ,P〉. Then,I is the
iterative least model ofKB iff I is the unique NM-model ofKB.

Corollary 1. LetKB = 〈Φ,P 〉 be a stratified F-Logic# KB overΣ = 〈F ,P〉. Then, it
has a unique NM-model which corresponds to the iterative least model ofKB.

One can thus use the procedure to construct the iterative least model of a strati-
fied KB to calculate the unique NM-model of that KB. Note that Example 4 is not
stratified as for any stratification functionλ, λ(p(X)) = λ(p) = max{λ(p)} =
λ(#[p ⊎ p; p](X)), hence the two different NM-models.

The iterative least model calculation procedure gives us a direct means to analyze
the complexity of calculating NM-models of stratified KBs. As in the non-stratified
case, letC be the complexity of the ontology language, i.e., checking|=L is in C, and
letKB = 〈Φ, (P0, . . . , Pk)〉 be ground. Then,

– we can calculateΠ(〈φ, P0〉, ∅) with a linear number of calls (in the size of theP0)
to an oracle inC in order to remove the external atoms. The minimal modelI0 of
a positive program can be then calculated as usual in polynomial time, using an
immediate consequence operator, see [6]. Thus, we can calculateI0 in polynomial
time in the size ofP0, using an oracle inC;

– for i > 0, we can calculatePi(Ii−1) again in polynomial time in the size ofPi,
using an oracle inC. The GL-reductPi(Ii−1)

Ii−1 can be calculated in polynomial
time in the size ofPi such that the minimal model ofPi(Ii−1)

Ii−1 ∪ {a ←| a ∈
Ii−1} can again be calculated in polynomial time. Thus, we can calculateIi, i > 0,
in polynomial time in the size ofPi, using an oracle inC.

Combining the above, we have that the unique NM-model ofKB = 〈Φ, (P0, . . . , Pk)〉
can be calculated in polynomial time in the size ofKB, using an oracle inC.

In the non-ground case, we have that, in general, grounding the stratified F-Logic#-
program, requires exponential time. Thus, the unique NM-model of an ungroundKB =
〈Φ, (P0, . . . , Pk)〉 can be calculated in exponential time using an oracle inC.

Theorem 3. LetKB = 〈Φ,P 〉 be a stratified F-Logic# KB where checkingΦ |=L φ is
in C. Then, the NM-model ofKB can be computed by a deterministic Turing machine
in exponential time in the size ofKB, using an oracle inC.

Comparing this result to the non-stratified case in Theorem 1, one can see that in
case of a stratified KB, computation is deterministic while for a non-stratified KB it is
nondeterministic in exponential time, using an oracle inC.

4 F-Logic# as a RIF Logical Dialect: RIF-F-Logic#

We relate F-Logic# KBs to theRIF Framework for Logic Dialects (FLD)and refer the
reader to [4] for the definition of the RIF FLD.

For an F-Logic# KBKB = 〈Φ,P 〉, we only define the language ofP , i.e., F-
Logic#-programs, as a RIF fragment, sinceΦ is a theory in some ontology language
(which could be compatible with a RIF dialect, but not a priori). For the exchange of
F-Logic# KBs, one would exchange 2 components: the component in the RIF fragment
and the component in the ontology language (e.g., an OWL document [8]).

Syntax of RIF-F-Logic# We specialize the different parameters of the RIF Frame-
work for Logic Dialects to obtain the RIF-F-Logic# dialect.We remove allextension
pointsand we keep the RIF FLDalphabetspecification, but leave out argument names
ArgNames, connective symbolsOr andNeg, the quantifierExists, the symbols for
representing listsList andOpenList, and the aggregate symbols.

The signature setof RIF-F-Logic# is defined as the signature set of the RIF Ba-
sic Logic Dialect (RIF BLD, [3, Section 6.1]) with removal ofthe signature of lists,
functions, and external functions, and arrow expressions for predicates with named ar-
guments from the predicate signature.

The RIF-F-Logic# dialect allows for the followingterms(as in [4, 2.4]).

– Simple termst ∈ Const or t ∈ Var.
– Positional termst(t1, . . . , tn) whereti, 1 6 i 6 n, are simple terms andt ∈
Const, a term of predicate signaturep (see [3, Section 6.1.3.c] for the definition of
a predicate signature in the RIF Framework for Logic Dialects).

– Classification terms (membership and subclass terms, corresponding to what we
called is-a assertions and subclass molecules resp.).

– Frame terms, corresponding to what we called data molecules.
– Externally defined termsExternal(Q[S1op1P1,...,SmopmPm](t) loc) corresponding

to the external atoms defined in Section 3 and whereQ[S1op1P1,...,SmopmPm] is a
predicate (and thus with the signature of predicates).loc indicates the location of
the external ontology to be queried; we will usually omit it if the location is not
relevant or if it is clear which ontology is being referred to. For each external term
External(Q[S1op1P1,...,SmopmPm](t) loc), we define the corresponding external
schema ([4, Section 2.5]),(?X1 . . .?Xn;Q[S1op1P1,...,SmopmPm](?X1 . . .?Xn); loc)
wheren is the number of terms int.

– As in RIF-BLD, no aggregate terms, module terms, or formula terms are allowed.

The embedding of external atoms in RIF is not fully satisfactory; one would like
to avoid encoding information from the F-Logic# program as non-interpretable syntax
such as a string of characters10. Indeed, the termt in the generalExternal(t loc) term
definition of RIF-FLD [4, Section 2.4.8] is required to be a constant, positional term,
a term with named arguments, an equality, a classification, or a frame term. However,
one defines signatures for these terms that are fixed. In F-Logic# we indeed need that
a frame termt1[t2 ։ t3] is such thatti, 1 6 i 6 3, is an individual (a constant or
a variable). However, if we would like to use frame terms in RIF-F-Logic# external
terms – to query an external source – we would need to be able touse (input) predicates
where the signature only allows for individuals. We see at the moment little alternatives
on how to treat external atoms more elegantly, given the current framework of RIF-FLD.

We include thesymbol spacesfrom RIF-BLD. Note that this extends the language
F-Logic# compared to how we originally defined it, however, the RIF FLD requires at
least the symbol spaces from RIF-BLD to be included in any dialect.

We support the following types offormulas(see RIF-BLD, [3, Section 6.1.4], for
the definitions):

10 We sticked to symbols, but one could define a machine-readable, albeit not semantical, variant.

– aRIF-F-Logic# conditionis an atomic formula, default negation, or a conjunction
of atomic formulas, default negations, and/or external atomic formulas,

– aRIF-F-Logic# ruleis a universally quantified RIF-FLD rule where the conclusion
is an atomic formula (that is not externally defined), the premise of the rule is a
RIF-F-Logic# condition, and all free (non-quantified) variables in the rule must be
quantified withForall outside the rule,

– aRIF-F-Logic# groupis a RIF-FLD group that contains only RIF-F-Logic# rules;
a group thus corresponds to an F-Logic# program,

– aRIF-F-Logic# documentis defined as a RIF-BLD document but referring to RIF-
F-Logic# group formulas instead of RIF-BLD group formulas.

Semantics of RIF-F-Logic#The semantics of RIF-F-Logic# is the semantics of F-
Logic#-programs as defined in Section 3. Note that the syntaxof RIF-F-Logic# in-
cludes the datatypes of RIF-FLD, but neither the semantics nor the syntax defines F-
Logic# datatypes. We leave this as future work, and will update the RIF embedding
of F-Logic# accordingly when datatypes have been formally investigated in F-Logic#.
Other constructs and definitions typical for RIF, such as theImport directive and the
set of truth values are semantically defined as in RIF-BLD. Logical entailment is defined
based on the intended semantics structures of F-Logic#, NM-models (see Definition 1).

5 Implementation of F-Logic# using OntoBroker

In this section, we demonstrate an implementation of F-Logic# for the ontology lan-
guage OWL-DL [13] based on the OntoBroker [20] inference engine from ontoprise.
OntoBroker consists of two reasoners: (i) OntoBroker F-logic, a very sophisticated and
fast (cf. [17]) rule engine, and (ii) OntoBroker-OWL, an OWL-DL reasoner (the suc-
cessor of KAON211, [14]) for a subset of OWL 2 [24].

Those two reasoners use the same API thus simplifying the implementation of the
interfacing mechanisms as defined in F-Logic# significantly. Another advantage of us-
ing OntoBroker is the availability ofqueryableandupdatableknowledge bases. Since
we decided to use SPARQL [22] as a query language and currently there is no standard-
ized update language available (SPARUL [23] is not yet widely accepted) we could
benefit from the availability of an update API within OntoBroker-OWL. Note that up-
dates to the ontology in F-Logic# are actuallytemporaryupdates, only valid within the
scope ofonequery. Once the query has finished the updates must berolled back, and
parallel queries to the same knowledge base must also be shielded from those temporary
facts: OntoBroker-OWL provides such asessionmechanism.

We have introduced the #-operator to make ontological (OWL-DL) reasoning avail-
able from within logic programs with rules:#[S1op1P1, . . . , SmopmPm; Q](t). In the
OntoBroker implementation, we realize this operator usingthe new built-in predicate
dlaccess/6:

dlaccess(
mappings, facts, ontology-iri, query, query-result, server)

11 http://kaon2.semanticweb.org/

and use some additional predicates from OntoBroker’s standard library of predi-
cates. The arguments of the predicate are shortly describedhere and afterward explained
in more detail in the context of a concrete application of thepredicate:

– <mappings>: A list of mappings from DL facts to F-logic facts. This argument
represents the implementation of the list of operations of the formSiopiPi from
the formal specification. Currently the implementation supports the⊎ operator for
F-logic methods, concepts and binary predicates. Other operators can be emulated
easily under a stratified semantics.

– <facts>: A list of lists that populate the<mappings>, i.e. for each defined
mapping in themappings argumentfacts contains one list with all values that
will be used to populate the “mapping target” before posing the query.

– <ontology-iri>: Since the OntoBroker reasoning server can store and query
many different ontologies at the same time we must uniquely identify the ontology
which we want to query.

– <query>: This is a SPARQL query which retrieves result tuples from the reasoner.
The query results will then be used in the LP rules. This is different to the definition
from the theoretical part, where the queryQ consists of exactly one predicate, and
it indicates the flexibility of the approach.

– <query-result>: The bindings for the SPARQL query results. Rules can ac-
cess the results ofdlaccess for further processing via unification.

– <server>: We must identify the exact location of the reasoning serverin order to
access it. We use a URL for locating the server.

In order to better explain how this predicate can be utilizedto connect rule-based
logic programs with DL reasoners we show a typical rule usingthe dlaccess/6
predicate – for readability, we leave out the ontology ID andthe server location:

FORALL FROM, TO, DIRECT_FLIGHTS
route(FROM, TO) AND FROM:#city AND TO:#city

<-
dlaccess(

[addProperty("http://example.org/Flights#localFlight",
#directFlights)],

[DIRECT_FLIGHTS],
"PREFIX <http://example.org/Flights#>
SELECT ?X ?Y
WHERE { ?X :localFlight ?Y }",

F(FROM,TO)) AND
allDirectFlights(DIRECT_FLIGHTS).

The body of the rule merely consists of thedlaccess/6 predicate and another
predicate calledallDirectFlights/1. The first two arguments ofdlaccess
specify that thedirectFlights instances (computed viaallDirectFlights)
are used to populate thelocalFlight object property in the DL ontology. After as-
serting this to the DL knowledge base, we execute the SPARQL-query, which retrieves
(X,Y)-tuples. These tuples are then bound to(FROM, TO)12.

12 Since F-logic has no functional terms without a functor we assume a standard function symbol
F .

In the head of the rule we then assert thatFROM andTO are members of the class
city and that they are connected viaroute/2. We can thus introduce new facts to
the F-logic KB which have been mainly derived from executinga SPARQL query on
the (extended) DL knowledge base.

The second predicate of the rule body is defined via a normal F-logic rule using
a special built-in predicate, which collects a number of values into a single list term.
In this case theallDirectFlights literal binds theDIRECT_FLIGHTS variable
to a list of the following form:[F (From1, T o1), F (From2, T o2), ...F (Fromn, T on)]
which corresponds to the instances of thedirectFlights method.

In order to collect multiple values (the results of a sub-query) into a single list we
exploit a special built-in predicatexlist/4 – a so-called aggregator.

The implementation in OntoBroker F-logic for each use of theF-Logic# operator
always uses two or more rules. The first rule calls out todlaccess feeding it some
new facts from the F-logic KB and (typically) using its results in the rule head. The
other rules aggregate the needed input fordlaccess, i.e. compute the instantiations of
certain properties, classes or predicates and stores them in an appropriate list format. If
there are multiple mappings in thedlaccess rule, there are also multipleaggregator
rules.

6 Outlook

Even though a loosely coupled integration is easier to maintain then a tightly coupled
integration, one still needs to keep track of changes in the ontology from the rule per-
spective. Currently, we are implementing a dependency management plug-in for the
ontology engineering platform OntoStudio [21] within the EU funded FP7 project On-
toRule. The component notifies the knowledge engineer aboutchanges in the OWL
ontology that are relevant for external atoms within the F-logic model. Certain changes
or refactorings on the OWL side may even automatically propagate to the rules side to
keep the models synchronized.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

2. C. Baral and V. S. Subrahmanian. Dualities between alternative semantics for logic program-
ming and nonmonotonic reasoning.J. Autom. Reasoning, 10(3):399–420, 1993.

3. Harold Boley and Michael Kifer.RIF Basic Logic Dialect. W3C, 2009. Candidate Recom-
mendation October 2009.

4. Harold Boley and Michael Kifer.RIF Framework for Logic Dialects. W3C, 2009. Working
draft July 2009.

5. Jos de Bruijn and Stijn Heymans. A semantic framework for language layering in WSML.
In Proceedings of the 1st International Conference on Web Reasoning and Rule Systems
(RR2007), pages 103–117, Innsbruck, Austria, June 7–8 2007. Springer.

6. Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and ex-
pressive power of logic programming.ACM Computing Surveys (CSUR), 33(3):374–425,
September 2001.

7. J. de Bruijn. RIF RDF and OWL Compatibility. W3C, 2009.
http://www.w3.org/2005/rules/wiki/SWC.

8. Mike Dean and Guus Schreiber.OWL Web Ontology Language Reference. W3C, 2004.
W3C Recommendation 10 February 2004.

9. T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set
programming with description logics for the semantic web.Artificial Intelligence, 172(12-
13):1495–1539, 2008.

10. Allen Van Gelder, Kenneth Ross, and John S. Schlipf. The well-founded semantics for
general logic programs.Journal of the ACM, 38(3):620–650, 1991.

11. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Robert A. Kowalski and Kenneth Bowen, editors,Proceedings of the Fifth International
Conference on Logic Programming, pages 1070–1080, Cambridge, Massachusetts, 1988.
The MIT Press.

12. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Descriptionlogic programs: combining
logic programs with description logic. InProc. of the World Wide Web Conference (WWW),
pages 48–57. ACM, 2003.

13. Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to description logic
satisfiability. InProc. of the 2003 International Semantic Web Conference (ISWC 2003),
Sanibel Island, Florida, 2003.

14. Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reducing shiq descrptionlogic to dis-
junctive datalog programs. InProc. of the 9th Int. Conf. on Knowledge Representation and
Reasoning (KR2004), pages 152–162, Whistler, Canada, Juni 2004. AAAI Press.

15. Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-oriented and
frame-based languages.J. ACM, 42(4):741–843, 1995.

16. M. Krötzsch, S. Rudolph, and P. Hitzler. Description logic rules. InProc. 18th European
Conf. on Artificial Intelligence(ECAI-08), pages 80–84. IOS Press, 2008.

17. Senlin Liang, Paul Fodor, Hui Wan, and Michael Kifer. OpenRuleBench: an analysis of the
performance of rule engines. InWWW ’09: Proceedings of the 18th international conference
on World wide web, pages 601–610, New York, NY, USA, 2009. ACM.

18. T. Lukasiewicz. A novel combination of answer set programming with description logics for
the semantic web. InProc. of ESWC 2007, pages 348–398, 2007.

19. B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL withrules. Journal of
Web Semantics, 3(1):41–60, July 2005.

20. ontoprise GmbH, An der RaumFabrik 29, 76137 Karlsruhe, Germany. OntoBroker Enter-
prise - Version 5.3, 2009. Available at http://www.ontoprise.de/help/index.jsp.

21. ontoprise GmbH, An der RaumFabrik 29, 76137 Karlsruhe, Germany. OntoStudio Manual -
Version 2.3.0, 2009. Available at http://www.ontoprise.de/help/index.jsp.

22. W3C OWL Working Group.SPARQL Query Language for RDF. W3C Recommendation,
15 January 2008. Available at http://www.w3.org/TR/rdf-sparql-query/.

23. W3C OWL Working Group.SPARQL Update. W3C Member Submission, 15 July 2008.
Available at http://www.w3.org/Submission/SPARQL-Update/.

24. W3C OWL Working Group.OWL 2 Web Ontology Language: Document Overview. W3C
Recommendation, 27 October 2009. Available at http://www.w3.org/TR/owl2-overview/.

25. R. Rosati. DL+log: Tight integration of description logics and disjunctive datalog. InProc. of
the Int. Conf. on Principles of Knowledge Representation and Reasoning(KR), pages 68–78,
2006.

26. Riccardo Rosati. On the decidability and complexity of integrating ontologies and rules.
Journal of Web Semantics, 3(1):61–73, 2005.

27. Guizhen Yang and Michael Kifer. Flora-2: User’s manual, 2001.http://flora.sourceforge.net/.

