F-Logic#: Loosely Coupling F-Logic Rules and
Ontologies

Stijn Heymans, Roman Korf, Michael Erdmant, Jorg Fuhrert, and Thomas Eitér

! Knowledge-Based Systems Group, Institute of Information Systems
Vienna University of Technology
Favoritenstrasse 9-11, A-1040 Vienna, Austria
{heymans, puehrer, eiter }@r.tuw en. ac. at
2 ontoprise GmbH
An der RaumFabrik 29, D-76227 Karlsruhe, Germany
{korf, erdmann}@nt opri se. de

Abstract. Although F-Logic rules received considerable attention in the devel-
opment of the W3C'’s Rule Interchange Format (RIF), they have @en lstudied

in the context of integrating rules with Description Logic ontologies. This pape
makes steps in mending this by defining F-Logic# knowledge basesmefra
work that provides a loosely coupled approach to integrating F-Logis el
ontologies by allowing rules to query the ontology usaxgernal atoms

We investigate the semantical properties of this framework and definata str
fied fragment that allows for fast reasoning — a necessity on a Web wgh la
amounts of data. We define the corresponding RIF dialect for F-Lotfio# set-
ting it firmly in a Web context. Finally, we show how to extend the F-Logic rule
engine OntoBroker towards reasoning with F-Logic#, enabling as sudukta
commercial implementation for loosely coupled ontologies and rules.

1 Introduction

How to combine ontologies and rules is by now well-invegtdatheoretically with
tightly-coupled approaches suchescription Logic Programfl2, 18F, DL-safe rules
[19], r-hybrid knowledge basdg6], DL+log [25], andDescription Logic Rule§l6],
as well as loosely coupled approaches suati-psogramg9]. Such approaches usually
consider the integration of some Description Logic (DL) (@$ the ontology language)
and some Logic Programming (LP) paradigm (as the rule lagg)ud he main techni-
cal difficulties with such an integration are the differenémises on which those two
knowledge representation formalisms are built: an openaioassumption and a clas-
sical semantics for Description Logics, and a closed dorassumption and a minimal
model semantics for Logic Programming.

In the Semantic Web context, two standards are arising ftmlagy languages and
rule languages: the web ontology langu&&/L 2[24] and theRule Interchange For-
matRIF [4]. From a Semantic Web practice vantage point, theynatigon of ontologies

* This work is partially supported by the European Commission under thHegbrontoRule
(IST-2009-231875).
% Note that even though the approaches of [12] and [18] carry the sBame, they are different.

and rules is thus concerned with the integration of OWL 2 afigls and rules in some
RIF dialect. For example, [7] investigates the compatipibf the RIF Basic Logic

Dialect [3]. This dialect, however, does not allow foegation as failurea construct

common in most LP paradigms and responsible for its expesgin-monotonic fea-
tures.

F-Logic Programming is an expressive rule-based formatiased on F-Logic [15]
that allows for object-oriented constructs and higheeofdatures, as well negation as
failure. Although F-Logic Programming takes a prominetatg! in the development of
RIF — RIF supports frame terms for example — and non-commiefFeLogic engines
such as FLORA-2 [27] and commercial engines such as Ont@B[aK)] are available,
little effort has been directed to an integration of F-Logites with DL ontologies.

In this paper, we take a first step in mending this by definiriggic# knowledge
bases, a loosely coupled approach for integrating ontetogith F-Logic rules. Sim-
ilarly to dl-programs with which F-Logic# shares its basic mechanism of loose cou
pling, we are not only able to query the ontology but to alssdnd results from the
program up to the ontology for further deductions, effesiivenabling a bidirectional
flow of information. In practice, such a loose coupling issofenough as witnessed by
several use cases in the OntoRule prdjektoreover, it allows for significant re-use
of existing implementations on the rule and on the ontolddg,sas well as for easier
management of ontologies and rules as they can be both nm@diadependently.

The main contributions of the paper can be summarized asirfsll

— In Section 3 we introduce F-Logic# knowledge bases, dissasgantical proper-
ties, and provide computational results for the basic neagotasks. We define
what it means for an F-Logic# knowledge bases to be straiifiedder to have an
efficient fragment with an intuitive reasoning procedura ttan be integrated with
existing rule reasoner implementations. For the semdrdafinition of F-Logic#
knowledge bases we adhere to the principles of dI-prograutsye address several
F-Logic related issues, e.g., frame terms, treating thefinstsorder citizens of the

language.
— We define F-Logic# as a RIF dialect in Section 4, by a specifinadf the RIF

Framework for Logical Dialects [4], thus ensuring compidityo with upcoming
rule standards and paving the way for different implemémadf F-Logic# based

on a common syntax.
— We describe the implementation of F-Logic# knowledge basé&ection 5 using

OntoBroker [20] — the first recent operationalization of edely coupled approach
for integration ontologies and rules in a commercial rulgiee. The flexibility
of the framework is apparent, as this implementation exdehd theory by using
SPARQL [22] queries instead of the atomic queries that wendefi F-Logic#.

2 Preliminaries: F-Logic and F-Logic Programs

F-Logic F-Logic [15] has constructs to specify methods and gereaiddin/specialization
and instantiation relationships. The syntax has some segyriiigher-order features,

4 http://ontorule-project.eu/

namely, the same identifier can be used for a class, an irstand a method. However,
the semantics of F-Logic is strictly first-order. To simplihatters, we do not consider
parametrized methods, functional (single-valued) methatheritable methods, and
compound molecules.

We take the signature of an F-languageo be of the form¥ = (F,P) with F
constant symbols, disjoint frof, the predicate symbols, each with an associated arity
n > 0. LetV be a set of variable symbols. Terms and atomic formulas aredh usual:
teVUFisatermandr, L, p(ty,...,t,), t1 = to are atomic formulas, with € P
ann-ary predicate symbol, and, ..., t,, terms.

A molecule in F-Logic is one of the following: (i) ais-a assertion of the form
ty : to, which states that an individug| is of the typet,, or (ii) a data moleculef the
formt, [ts — t3], with ¢4, ¢2, t3 terms, which states that an individualhas an attribute
to with the valuets. An F-Logic atom or molecule igroundif it does not contain
variables. As in this paper we only need atoms and molecwiesefer the reader for
the usual definition of formulas in an F-language to [15].

The semantics is given Hy-structureswhich are tupled = (U, €y, 1p,1.,.,1p),
whereU is a hon-empty set and; is a binary relation ovel/. A constant symbat €
F is interpreted as an element in the domidinlx(c) € U. An n-ary predicate symbol
p € P is interpreted as a relation over the dom&inIp(p) C U™. I, associates a
binary relation ove/ with eachk € U: 1., (k) C U x U. Variable assignments are
defined in the usual way.

A Herbrand F-structure over a signatureis an F-structurd = (U, €y, Ip, 1.,
Ip) such thaly = F for ¥ = (F,P) and such that for any constantl(c) = c. As
an abuse of notation, for Herbrand structures welusedenote both the structure and
the set of ground molecules and atomic formulas satisfielderstructure.

Given an F-structur, a variable assignmet, and a ternt of £, t"7 is defined
as:X1B = X B for a variable symbak andc!-? = Ir(c) for a constant symbel Sat-
isfaction of atomic formulas and moleculg¢$n I, given the variable assignmeARt de-
noted(I, B) |=f ¢, is defined suchthal, B) =¢ T,(I, B) 4 L, (I, B) E¢ p(t1, ..., tn)
iff (18, tEBY € Ip(p), (L B) =ty = ty iff 27 = 25, (I, B) |=¢ ty 1ty iff
P ey 9P, and (I, B) ¢ t1[t, — ts] iff (117,157) e 1..(t5"). Note that for
ground atomic formulas (atoms) and molecujesve will usually writeI ¢ ¢.

F-Logic ProgramsWe follow the definitions of [5]Rulesr are of the form
h«—by,...,bpm,not cy,...,n0t c, (1)

with equality-free atoms or moleculésby, ..., b, c1,...,¢c,; H(r) = his thehead
of r, BT (r) = {b1,..., by} is thepositive bodyf r and B~ (r) = {¢1,...,c,} isthe
negative bodyf r. If B~ (r) = () we call the rulepositive A (F-Logic) Programis a
set of rules of the form (1). It is positive if all its rules gvesitive. Rules and programs
are ground if they do not contain variables. A ground ruldwait empty body is called
afact A Herbrand F-structur& modelsa ground ruler, denotedl ¢ r, if whenever
Bf(r) CTandB (r)NI = 0 thenh € I. It is amodelof a ground progran®,
denoted | P, if it models all rules- € P.

The signature of a prograi is an F-Logic signaturé&’ = (F, P) that contains the
constants and predicate symbols frémWe denote withyr #(P), the grounding of?

with constantsF, i.e., the ground rules originating from rules ihby replacing, per
rule, each variable by each possible combination of cotsiarf. If F is clear from
the context, we will usually writgr(P). For a non-ground prograif? with signature
Y = (F,P) and a Herbrand F-structuieover X', we say thafl is a model ofP,
denotedI = P, if I is a model ofgrz(P). It is minimal if there is no Herbrand F-
structureJ C I overX' that is a model of°. Note that, as in usual Logic Programming
approaches, i is positive, then there is a unique minimal modeFof

We call a Herbrand F-structullea stable modebf P iff I is the minimal model of
gr(P)Y, wheregr(P)! is the GL-reduct [11]: remove all rules fropr(P) that contain
ac € B~ (r) NI and subsequently remove alb¢ ¢ from the remaining rules.

Example 1.Consider the following program® = P, U P, with P; the facts

f1 :flight f1[from —paris] f1[to —wviennal)
12 :flight f2[from —viennal f2[to —frankfurt]

andP; the rules

directFlight(X,Y) «— Z :flight, Z[from —X|, Z[to -»Y|
route(X,Y) « directFlight(X,Y)

route(X,Y) « directFlight(X, Z), route(Z,Y')
flight WithStops(X, Y) < route(X,Y), not directFlight(X,Y)

The programP; indicates that there is a flighftl from Paris to Vienna ang2 from
Vienna to Frankfurt. The first rule if?, indicates that there is a direct flight from to
Y ifthere is a flightZ that goes fromX to Y. A route is defined as the transitive closure
of directFlight and there is a flight with stops if there is a route but no difiggit.

The signature? = (F, P) of Pis suchthatF = {f1, flight, from, to,paris, vienna,
12, frankfurt} andP = {directFlight, route, flight WithStops}. A stable model of
this program contains the ground moleculgssince those are facts iR. It contains
the atomsdirectFlight(paris, vienna) and directFlight(vienna, frankfurt) by satis-
faction of the ground versions of the first rule. Thaute rules forcel to include
route(paris, vienna), route(vienna, frankfurt), and route(paris, frankfurt) and by
minimality of stable models, no mom@ute atoms are included such that finally only
flight WithStops(paris, frankfurt) is further included using thgight WithStops rule.

Current F-Logic systems such as FLORA-2 [27] and OntoBr¢Re} are dealing
for efficiency reasons with rules under a well-founded seingfil0] instead of a stable
model semantics. We focus for the expansion of the theorjh@stable model seman-
tics as (1) we are initially mainly interested, for efficigireasons, in the stratified case,
and in that case the well-founded and stable model semartioside (2) the well-
founded semantics can be easily defined on top of the stalilelrsemantics, such that

5 Note that w.l.0.g we can include so-calledbclass moleculds ::t- in rules by axiomatizing
them as in [5]:
XuZ— XY, Y Z
X:Z —X:Y, Y Z
X X «
i.e., transitivity, inheritance of class membership, and reflexivity. Méker we have subclass
molecules we assume these 3 rules are implicitly present as well.

we choose to treat external atoms from the perspective ofthre expressive stable
model semantics. Indeed, once the concept of a GL-reducfisedl, one can, using
the ~ operator [2], easily define the well-founded semanticsafbterbrand structure
I and a progran®, let yp(I) be the least model afr(P)! and+%(I) = vp(yp (1)),
i.e., applying they operator twice. Then the set wfell-foundedatoms of P, denoted
WES p, is exactly the least fixed point of}.. Note that the implementation described
in Section 5 works for stratified F-Logic# knowledge bases #hus for both the well-
founded as well as the stable model semantics.

3 F-Logic# Programming: F-Logic Programs with External Atoms

In this section, we extend F-Logic programs with so-ca#égtérnal atomgsin order to,
from the rules, query ontologies as well as feed concludiotise ontology.

In the following, we assume a very general concept of an ogtolanguag®& an
ontology languag€ is defined such that a theory (i.e., a set of formuiaé) £ has a
signatureX = (F,P). Furthermore£ should define an entailment relati¢a, such
that for a theory? and a formulap in the language, ¢ =, ¢ is well-defined, and is a
Boolean decidable function. Moreover, we assume atoarsd negated atomsa over
the signature? are part of the language. For exampleZiis the language of first-order
logic, = is the usual first-order entailmept. We impose that the signature contains
only 0-ary function symbols (constants) — the same regiri@s for F-Logic programs.

Syntax Let £ be the ontology language atd = (F, P) the signature under consider-
ation. Anexternal atonover X is of the form

#[S10p1P1, ..., S;nopm P Q)(t) (2

where forl < i < m,op; € {d,A}, Q € P is ann-ary predicatet aren terms overX,
S, € P, and eithet

— P, € P, such that botlb; and P; arek-ary predicate symbols,
— P, =—p, for p; € F ands; is a binary predicate, or
— P, =:p,; for p; € F andS; is a unary predicate.

Intuitively, op, = W increasesS; by the extension of?;, while op, = A constrains
S; to P;. The symbols—+p and:p indicate thatp should be interpreted as an attribute
name or a type name, as in F-Logic. We call fhe1 < ¢ < m, theinput predicates
of the external atom. Note that the external atoms do notssacidy need to have input
predicates, i.e., we allow for external atoms of the fgtmQ)](t).

A groundexternal atom is an external atom (2) such that none of tmestérare
variables. AnF-Logic#-ruler w.r.t. the signaturer is of the form () where the body
atoms can additionally be external atoms a¥er

8 The set of F-Logic programs could be considered an ontology laegamgell.
7 Strictly speaking, we do not need a different notatiep; and:p; as the function symbols and
predicate symbols are disjoint, however, for clarity we thought it to b&uuse

A set of such F-Logic#-rules is called &aLogic#-program An F-Logic#-rule is
ground if all its components (atoms, molecules, and extextaens) are ground and an
F-Logic#-program is ground if all its rules are ground.

We denote withyr#(P) the grounding of an F-Logic#-prograi with the con-
stantsF of the signature?, i.e., every rule is replaced by its ground instantiatioiits w
F, defined as usual. We will writgr(P) if F is clear from the context.

An F-Logic# knowledge base (KBy.r.t. X is a tupleXB = (@, P) where® is a
theory in£ with signatureX and P is an F-Logic#-program w.r.t..8

Example 2.Take an F-Logic# KBCB = (¥, P) with a Description Logic (DL) KB?:

localFlight (bolzano, vienna) localFlight(vienna, bolzano)
linkedtoHub = FlocalFlight.hub

that defines two local flights and a concéipkedtoHubthat is equivalent with all
objects that are connected \l@alFlight to a hub. Take the F-Logic#-progran? =
P{ U P; whereP;j is P, from Example 1 extended witfrankfurt :hubCity and Ps is

directFlight(X,Y) «— Z :flight, Z|from —X], Z[to —»Y|
route(X,Y) « #[localFlight & directFlight; localFlight](X, Y)
route(X,Y) « ##[localFlight W directFlight; localFlight|(X, Z), route(Z, Y")
flight WithStops(X, Y) < route(X, Y),

not #[local Flight © direct Flight; local Flight](X,Y)
X :hubReachable «— #[localFlight W route, hub & :hubCity; linkedto Hub] (X))

Intuitively, the external atong#[localFlight & directFlight; localFlight](X,Y) ex-
tends local flights in the ontologg with direct flights fromP, subsequently queries
what the entailed local flights under this extension are farter uses this to calculate
the routes and the flights that have stops.

The last rule defines the cities that can reach a hub in one o& steps. We thus
query the ontology for all objects that are partliokedtoHubby extending the local
flights in the ontology with the routes and the condeplb with the objects that are of
typehubCity Note the *:" in front ofhubCityto indicate that it is an F-Logic type. While
the route rules in P are using a mapping frordirectFlights to localFlights (i.e., the
modeler assumes these are actually the same roles/pesjidatthis last rule, one ex-
tends the meaning of local flights to also mean routes, emghblflexible interpretation
of ontologies by rules, while still relying on the ontologgfahitions (oflinkedtoHul).

SemanticsLet KB = (@, P) be an F-Logic# KB with signatur&'. We assume in the
following that—p(a, b) and:p(a) is shorthand for[p —b] anda :p, respectively.

Let I be a Herbrand F-structure ovér = (F,P), then,I models a ground F-
Logic#-atoma = #[S10p1 P, ..., SmopmPr; Q)(u) underd, denotedl |=¢ ¢ a, iff
o U, A(I) =2 Q(u) where

8 When the combined signature is clear from the context we will usually omitithEr note
that we do not make a distinction between the ontology’s signature andléheomponent’s
signature.

— A(I) =S, , R
Bt AR TR e e S

wheree is a vector of constants fronk with length conforming to the type of the

predicateS;, 1 < i < m, at hand. For ground atomic formulas and moleculewe

define satisfaction undér, denoted = 4 a, as satisfactiod =¢ a.

We say thafl is a modelunder® of a ground F-Logic#-rule: of the form (1),
denotedI =¢ ¢ 7, If I |=¢4 h wheneverI |=¢ 4 b; forall 1 < j < m andI W ¢ ¢,
forall 1 < k < n. Finally, I is a model of an F-Logic# KBCB = (&, P), denoted
I=¢ KB, if I |=¢ ¢ r for eachr € gr(P). Theprojectionof an F-Logic# KBKXB =
(@, P) whereP is ground, with respect to a Herbrand F-strucfjrdenoted’’ (K5, I),
is an F-Logic#-program obtained from as follows. For every rule in P,

— if there is an external atoma € B (r) such thatl }4¢ 4 a, or an external atom
a € B~ (r) such thafl |=¢ 4 a, then remover,
— otherwise, delete all external atoms frem
Intuitively, the projection “evaluates” the set of rulesthvrespect td by removing
(evaluating) rules and external atoms consistently Wanda.

Definition 1. Let KB = (&, P) be an F-Logic# KB ovetr. Then, a Herbrand F-
structurel over X' is anNM-modelof KB, denoted =, KB, if I is a stable model of
({2, gr(P)),1).

In other words, the semantics of an F-Logic# KB is given byt firounding the
program part, then projecting away the external atoms.worne guessed Herbrand
F-structure, in correspondence with the ontology part, farally, calculating the sta-
ble model of the resulting F-Logic program (i.e., containimo external atoms) and
verifying that it corresponds to the initial Herbrand Fustiure (hence thstability).

Example 3.Consider the combined KEB = (&, P) from Example 2 with the sig-
nature consisting of exactly the constants and predicqigsaaing infC5. Any stable
modelI will contain P{ from Example 2 and using the first rule regarding direct fight
I contains the atoméirectFlight(paris, vienna) anddirectFlight (vienna, frankfurt).

FurtherI |=¢ ¢ #[localFlight & directFlight; localFlight](uy, ug) for (us, us) that
are (paris, vienna), (vienna, frankfurt), (vienna, bolzano), and (bolzano, vienna),
as® U A(I) = localFlight(uy, ug) where

A(X) = {localFlight(paris, vienna), local Flight(vienna, frankfurt).}

With the firstrouterule, we have thatoute(paris, vienna), route(vienna, frankfurt),
route(vienna, bolzano) and route(bolzano, vienna) are in1. From the secondute
rule, we haveroute(paris, frankfurt), route(paris, bolzano), route(vienna, vienna),
route(bolzano, bolzano), androute(bolzano, frankfurt) are inI. The flights with stops
are then all routes except theute(u; , uz)s as these are direct flights.

Finally, I [=¢.¢ #[localFlight © route, hub & :hubClity; linkedto Hub](v) for v that
is vienna, paris, ofr bolzano as® U Ay (I) U Ax(I) =, linkedtoHub(v) where A, (I)
is thelocalFlightsthat are already i@ and thelocalFlightsthat were matched with the
routes fromI and A, (I) consists ofhub(frank furt) sincel =¢ frankfurt :hubCity.
Thus, vienna :hubReachable, paris :hubReachable, and bolzano :hubReachable are
inI.

Note that NM-models are not necessarily minimal.

Example 4.Take an F-Logic# KBCB = (@, P), with & = () and P the rulep(X) «
#[p W p; p](X). With a signatureX’ whereF = {a} andP = {p}, one has that both
{p(a)} and() are NM-models ofC13.

This example additionally shows that one can give a modabtttical meaning to
predicates appearing in rules, i.e., you have the choicss{ply constrained by other
rules or the ontology) to include(a) in the NM-model or not.

If checking = is in a complexity clas€, one can calculate the NM-model in
nondeterministic exponential time w.r.t. the size of the, KiBing an oracle ig.

Theorem 1. Let KB = (&, P) be an F-Logic# KB where checkir®y =, ¢ is in C.
Then, the NM-model d€ 3 can be computed by a nondeterministic Turing machine in
exponential time in the size &5, using an oracle irC.

Proof. (Sketch) Intuitively, one can guess an interpretaficior X8 = (&, P) in
polynomial time in the size ok5. The grounding ofP has exponential size w.r.t. the
size of P. Calculating the projection ojr(P) can then be done in exponential time
in the size of P (by running throughyr(P)) and an oracle ir€. Finally, calculating
the GL-reduct is again polynomial igr-(P) and calculating the minimal model of a
positive F-Logic program is polynomial in the size@f(P) as well.CJ

Reasoning with Stratified F-Logic# Knowledge Bas&s are interested in more effi-
cient fragments of F-Logic# KBs, i.e., fragments for whigteacan calculate the NM-
model faster than in nondeterministic exponential timehvéh oracle inC. To this
purpose, we introducgtratified F-Logic# KBs.

For an F-Logic# rule, let#(r) be the external atoms in for an F-Logic#-program
P, let#(P) = U{#(r) | r € P} be the external atoms iR.

Let B = (@, P) be an F-Logic# KB over a signatute = (F,P). We define
a stratified F-Logic# KB by means of atratification function\ : P U {:p,—»p | p €
Fru{, -} — {0,...,k}, k > 0. We extend the definition of this stratification function
towards (external) atoms and molecules as follows:

— for atoms \(p(t)) = A(p) forp € P,

— foris-a assertions,
A(:t if to € F
)\(tl Ztg) = { (2) 2

A(2) otherwise
— for data molecules,

AN—ta) iftyeF
A(=) otherwise

)\(tl[tg —>->t3D = {

— for external atoms\(#[S10p1 P1, - - ., Sm0pm P Q](t)) = maxi<icm{A(F)}-

Intuitively, thelevelof an atom is the same as the level of its predicate. The Idvel o
a molecule is the same as the level of its type name or attritrine in case it is ground
and has the level ofand— otherwise. External atoms have a level that is the maximum
level of theP; that are used to send input the ontology.

Definition 2. LetXCB = (@, P) be an F-Logic# KB over a signatug = (F,P). Then
KB is stratifiedif there exists a stratification functiok such that, for each rule ¢ P
of the form (1):

— Mh) = b;, for eachl < i < m such that; & #(r),
— A(h) > b;, for eachl < i < m such thath; € #(r
— Mh) > ¢;, foreachl < < n.

Thus the level of the head has to be greater or equal than theatoms/molecules
that are not external, and strictly greater than the levehefexternal atoms, and, as
usual, strictly greater than the negative atoms/molecules

We can then write a stratified KEB = (@, P) as(®, (P, ..., Py)) where, for
0<i<k P={reP|\H(r)) =1i}. TheP,; are called thetrataof 5.

Example 5.Take the F-Logic# KB from Example 2. This is a stratified KBattlnas,
for example, the following strata:

Q2 :
X :hubReachable «— #[localFlight ® route, hub W :hubCity; linkedto Hub] (X)

Qi :
route(X,Y) « #[localFlight & directFlight; localFlight](X, Y)
route(X,Y) « #[localFlight § directFlight; localFlight|(X, Z), route(Z, Y')
flight WithStops(X, Y) «— route(X, Y),
not #[localFlight W directFlight; localFlight](X, Y)

’

Qo :
P

We define theéterative least modedf a ground stratified’B = (P, (Fo, ..., Px)):

— Let I be the minimal model of7({¢, Fy),). Note thatP, is positive and does
not contain external atoms with input predicates sifi¢g is stratified such that

II({¢, Py),0) has a unique such.
— For: > 0, define P;(I;_;) as the projection’((®, P;),1;,_1) and letI; be the

minimal model of the GL-reduc®;(I;,_;)\—* U {a «| a € I;_1} (which is again
positive and does not contain external atoms). Intuitively”; we remove the
external atoms usingj;_, followed by removing the negative atoms again w.r.t.
I,_1 and subsequently takirlg_, into account as facts.

The iterative least model d€B8 = (P, (P, ..., Px)) is then, by definition];. By
construction, the iterative least model of a ground steatiKB exists and is unique. For
a stratified F-Logic# KBCB = (&, (P, . .., P)) thatis not ground, we define the iter-
ative least model as the iterative least model of the growg¥eh, (g7 (Pp), . . ., gr(P1))).

9 In the presence of subclass molecules:t, in the programP, we extend\ to be a function
PU{p,—p,:p|pe Fru{;,—:} — {0,...,k} and its extension on subclass molecules

as follows:
A(:it if to € F
)\(tl Ztt2) = (2) 2 € .
A5) otherwise
Note that this is a similar definition as fis-aassertions. Due to the implicit presence of the 3

axiomatizing rules when subclass molecules are present, one cantsig)tha A(::) for all
stratification functions, due to the inheritance of class membershif@(— X :Y, Y ::2).

Theorem 2. Let KB be a stratified F-Logic# KB oveE’ = (F,P). Then,I is the
iterative least model of’ 5 iff I is the unique NM-model &f 5.

Corollary 1. LetKB = (&, P) be a stratified F-Logic# KB ovel' = (F,P). Then, it
has a unique NM-model which corresponds to the iterativetleeodel ofC5.

One can thus use the procedure to construct the iteratig® headel of a strati-
fied KB to calculate the uniqgue NM-model of that KB. Note thatakple 4 is not
stratified as for any stratification functioh, A(p(X)) = A(p) = max{\(p)} =
A#[p W p; p](X)), hence the two different NM-models.

The iterative least model calculation procedure gives usextdmeans to analyze
the complexity of calculating NM-models of stratified KBss An the non-stratified
case, leC be the complexity of the ontology language, i.e., checkingis in C, and
let KB = (P, (P, ..., P)) be ground. Then,

— we can calculatél ((¢, Py),?) with a linear number of calls (in the size of tlig)
to an oracle irC in order to remove the external atoms. The minimal mdgedf
a positive program can be then calculated as usual in poliaidime, using an
immediate consequence operator, see [6]. Thus, we canat@lEgin polynomial
time in the size of”,, using an oracle i@;

— for i > 0, we can calculaté’;(I,_,) again in polynomial time in the size df;,
using an oracle i€. The GL-reductP;(I;_;)%- can be calculated in polynomial
time in the size ofP; such that the minimal model @?;(I;_;)t-* U {a «| a €
I,_,} can again be calculated in polynomial time. Thus, we carutaiel;, i > 0,
in polynomial time in the size oP;, using an oracle .

Combining the above, we have that the unique NM-mod&lf= (®, (P, ..., Px))
can be calculated in polynomial time in the sizektlf, using an oracle i@.

In the non-ground case, we have that, in general, grountimgttatified F-Logic#-
program, requires exponential time. Thus, the uniqgue NMiehof an unground’5 =
(P, (Py,...,P)) can be calculated in exponential time using an oract& in

Theorem 3. Let KB = (&, P) be a stratified F-Logic# KB where checkidg=, ¢ is
in C. Then, the NM-model d€B can be computed by a deterministic Turing machine
in exponential time in the size &f3, using an oracle irC.

Comparing this result to the non-stratified case in Theoremn& can see that in
case of a stratified KB, computation is deterministic whded non-stratified KB it is
nondeterministic in exponential time, using an oraclé.in

4 F-Logic# as a RIF Logical Dialect: RIF-F-Logic#

We relate F-Logic# KBs to thRIF Framework for Logic Dialects (FLDand refer the
reader to [4] for the definition of the RIF FLD.

For an F-Logic# KBKB = (&, P), we only define the language @, i.e., F-
Logic#-programs, as a RIF fragment, singds a theory in some ontology language
(which could be compatible with a RIF dialect, but not a gjidfor the exchange of
F-Logic# KBs, one would exchange 2 components: the compdngine RIF fragment
and the component in the ontology language (e.g., an OWL deouf8]).

Syntax of RIF-F-Logic# We specialize the different parameters of the RIF Frame-
work for Logic Dialects to obtain the RIF-F-Logic# dialegte remove alkextension
pointsand we keep the RIF FLRIphabetspecification, but leave out argument names
Ar gNanes, connective symbol&r andNeg, the quantifieExi st s, the symbols for
representing listei st andOpenlLi st , and the aggregate symbols.

The signature sebf RIF-F-Logic# is defined as the signature set of the RIF Ba-
sic Logic Dialect (RIF BLD, [3, Section 6.1]) with removal tfie signature of lists,
functions, and external functions, and arrow expressionpriedicates with named ar-
guments from the predicate signature.

The RIF-F-Logic# dialect allows for the followingrms(as in [4, 2.4]).

— Simple termg € Const ort € Var.

— Positional termg(ty,...,t,) wheret;, 1 < i < n, are simple terms ant €
Const, a term of predicate signatupe(see [3, Section 6.1.3.c] for the definition of
a predicate signature in the RIF Framework for Logic Diadect

— Classification terms (membership and subclass terms,spameling to what we
called is-a assertions and subclass molecules resp.).

— Frame terms, corresponding to what we called data molecules

— Externally defined termBxternal(Q[s, op, P,.....S,nopm P (t) loc) COrresponding
to the external atoms defined in Section 3 and W& ,,, p,....s,,0p,. P,n] IS @
predicate (and thus with the signature of predicatks)indicates the location of
the external ontology to be queried; we will usually omitfithe location is not
relevant or if it is clear which ontology is being referred Eor each external term
External(Qs,op, P,,...,Smopm P,n] (t) loc), we define the corresponding external
schema ([4, Section 2.51)7 X .. .7 X5 Q[s,0p, Py.....Smopm Pr] (X1 - - . 7X3); loc)
wheren is the number of terms it

— As in RIF-BLD, no aggregate terms, module terms, or formetais are allowed.

The embedding of external atoms in RIF is not fully satisiagt one would like
to avoid encoding information from the F-Logic# program as-interpretable syntax
such as a string of charactétsindeed, the term in the generaEsternal(t loc) term
definition of RIF-FLD [4, Section 2.4.8] is required to be anstant, positional term,
a term with named arguments, an equality, a classificatioa,foame term. However,
one defines signatures for these terms that are fixed. In F#woge indeed need that
a frame termi;[to — t3] is such that,, 1 < ¢ < 3, is an individual (a constant or
a variable). However, if we would like to use frame terms if-#-Logic# external
terms — to query an external source —we would need to be abketlinput) predicates
where the signature only allows for individuals. We see atttoment little alternatives
on how to treat external atoms more elegantly, given theeatiframework of RIF-FLD.

We include thesymbol spaceBom RIF-BLD. Note that this extends the language
F-Logic# compared to how we originally defined it, howevkhg RIF FLD requires at
least the symbol spaces from RIF-BLD to be included in anjedta

We support the following types dbrmulas(see RIF-BLD, [3, Section 6.1.4], for
the definitions):

10 We sticked to symbols, but one could define a machine-readable, albs#mantical, variant.

— aRIF-F-Logic# conditioris an atomic formula, default negation, or a conjunction
of atomic formulas, default negations, and/or externahatdormulas,

— aRIF-F-Logic# ruleis a universally quantified RIF-FLD rule where the concluasio
is an atomic formula (that is not externally defined), thenpise of the rule is a
RIF-F-Logic# condition, and all free (non-quantified) \edaies in the rule must be
guantified withFor al | outside the rule,

— aRIF-F-Logic# grougs a RIF-FLD group that contains only RIF-F-Logic# rules;
a group thus corresponds to an F-Logic# program,

— aRIF-F-Logic# documeris defined as a RIF-BLD document but referring to RIF-
F-Logic# group formulas instead of RIF-BLD group formulas.

Semantics of RIF-F-Logic#The semantics of RIF-F-Logic# is the semantics of F-
Logic#-programs as defined in Section 3. Note that the syotdaXIF-F-Logic# in-
cludes the datatypes of RIF-FLD, but neither the semanticghre syntax defines F-
Logic# datatypes. We leave this as future work, and will agpdhe RIF embedding
of F-Logic# accordingly when datatypes have been formalgstigated in F-Logic#.
Other constructs and definitions typical for RIF, such ad tmgor t directive and the
set of truth values are semantically defined as in RIF-BLital entailment is defined
based on the intended semantics structures of F-Logic#niidels (see Definition 1).

5 Implementation of F-Logic# using OntoBroker

In this section, we demonstrate an implementation of F-t#édor the ontology lan-
guage OWL-DL [13] based on the OntoBroker [20] inference radiom ontoprise.
OntoBroker consists of two reasoners: (i) OntoBroker Fdpg very sophisticated and
fast (cf. [17]) rule engine, and (ii) OntoBroker-OWL, an OWL-Deasoner (the suc-
cessor of KAON2?, [14]) for a subset of OWL 2 [24].

Those two reasoners use the same API thus simplifying th&emmgntation of the
interfacing mechanisms as defined in F-Logic# significadthother advantage of us-
ing OntoBroker is the availability ajueryableandupdatableknowledge bases. Since
we decided to use SPARQL [22] as a query language and cwribetie is no standard-
ized update language available (SPARUL [23] is not yet widaicepted) we could
benefit from the availability of an update API within OntoRes-OWL. Note that up-
dates to the ontology in F-Logic# are actualynporaryupdates, only valid within the
scope ofonequery. Once the query has finished the updates musilleel back and
parallel queries to the same knowledge base must also desthfeom those temporary
facts: OntoBroker-OWL provides suclsassiormechanism.

We have introduced the #-operator to make ontological (OW..+Basoning avail-
able from within logic programs with rulegt[S10p1 Py, . . ., Spm0pm Pm; Q](t). In the
OntoBroker implementation, we realize this operator usirgnew built-in predicate
dl access/ 6:

dl access(
mappi ngs, facts, ontology-iri, query, query-result, server)

1 http://kaon2.semanticweb.org/

and use some additional predicates from OntoBroker’s stahlibrary of predi-
cates. The arguments of the predicate are shortly desdréredand afterward explained
in more detail in the context of a concrete application ofgiredicate:

— <mappi ngs>: A list of mappings from DL facts to F-logic facts. This argent
represents the implementation of the list of operationshefform S;op; P; from
the formal specification. Currently the implementationgsuns thew operator for
F-logic methods, concepts and binary predicates. Othaatps can be emulated
easily under a stratified semantics.

— <fact s>: A list of lists that populate the&nmappi ngs>, i.e. for each defined
mapping in therappi ngs argument act s contains one list with all values that
will be used to populate the “mapping target” before poshegduery.

— <ont ol ogy-i ri >: Since the OntoBroker reasoning server can store and query
many different ontologies at the same time we must uniquiEntify the ontology
which we want to query.

— <quer y>: Thisis a SPARQL query which retrieves result tuples fromrtsasoner.
The query results will then be used in the LP rules. This iediht to the definition
from the theoretical part, where the quépyconsists of exactly one predicate, and
it indicates the flexibility of the approach.

— <query-resul t >: The bindings for the SPARQL query results. Rules can ac-
cess the results afl access for further processing via unification.

— <ser ver >: We must identify the exact location of the reasoning seirverder to
access it. We use a URL for locating the server.

In order to better explain how this predicate can be utiliedonnect rule-based
logic programs with DL reasoners we show a typical rule ughmydl access/ 6
predicate — for readability, we leave out the ontology ID #melserver location:

FORALL FROM TGO, DI RECT_FLI GHTS
route(FROM TO AND FROM #city AND TO #city
<-
dl access(
[addProperty("http://exanple.org/Flights#l ocal Flight",
#directFlights)],
[DIl RECT_FLI GHTS] ,
"PREFI X <http://exanpl e.org/Flights#>
SELECT ?X ?Y
WHERE { ?X :local Flight ?Y }",
F(FROM TO) AND
al I DirectFlights(D RECT_FLI GHTS).

The body of the rule merely consists of theaccess/ 6 predicate and another
predicate calledal | Di rect Fl i ght s/ 1. The first two arguments all access
specify that thedi r ect Fl i ght s instances (computed v | Di r ect Fl i ght s)
are used to populate thecal Fl i ght object property in the DL ontology. After as-
serting this to the DL knowledge base, we execute the SPARG#Ly, which retrieves
(X,Y)-tuples. These tuples are then bound EROM TO) 2.

12 Since F-logic has no functional terms without a functor we assume aasthfchction symbol
F.

In the head of the rule we then assert tRROMand TO are members of the class
ci ty and that they are connected viaut e/ 2. We can thus introduce new facts to
the F-logic KB which have been mainly derived from executn§PARQL query on
the (extended) DL knowledge base.

The second predicate of the rule body is defined via a normagie-rule using
a special built-in predicate, which collects a number ofigalinto a single list term.
In this case thal | Di r ect Fl i ght s literal binds theDl RECT_FLI GHTS variable
to a list of the following form{F (From,,To1), F(Fromsy,Tos),...F(From,,To,)]
which corresponds to the instances of the ect Fl i ght s method.

In order to collect multiple values (the results of a subfgueto a single list we
exploit a special built-in predicatd i st / 4 — a so-called aggregator.

The implementation in OntoBroker F-logic for each use of fhkeogic# operator
always uses two or more rules. The first rule calls outltaccess feeding it some
new facts from the F-logic KB and (typically) using its resuin the rule head. The
other rules aggregate the needed inputiioaccess, i.e. compute the instantiations of
certain properties, classes or predicates and stores thamappropriate list format. If
there are multiple mappings in tlik access rule, there are also multipleggregator
rules

6 Outlook

Even though a loosely coupled integration is easier to ragirthen a tightly coupled

integration, one still needs to keep track of changes in tlielogy from the rule per-

spective. Currently, we are implementing a dependency geanant plug-in for the

ontology engineering platform OntoStudio [21] within th& Eunded FP7 project On-

toRule. The component notifies the knowledge engineer ativanges in the OWL

ontology that are relevant for external atoms within th@fid model. Certain changes
or refactorings on the OWL side may even automatically prapatp the rules side to
keep the models synchronized.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and Patél-8chneider, editors.
The Description Logic Handbook: Theory, Implementation, and ApplicatiGambridge
University Press, 2003.

2. C.Baraland V. S. Subrahmanian. Dualities between alternativexsiesifor logic program-
ming and nonmonotonic reasoning.Autom. Reasonind 0(3):399-420, 1993.

3. Harold Boley and Michael KifeRIF Basic Logic Dialect W3C, 2009. Candidate Recom-
mendation October 2009.

4. Harold Boley and Michael KifefRIF Framework for Logic DialectsW3C, 2009. Working
draft July 2009.

5. Jos de Bruijn and Stijn Heymans. A semantic framework for languageitey in WSML.
In Proceedings of the 1st International Conference on Web Reasonbhdrale Systems
(RR2007)pages 103-117, Innsbruck, Austria, June 7—8 2007. Springer.

6. Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkivmplexity and ex-
pressive power of logic programmincgACM Computing Surveys (CSUR3(3):374-425,
September 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27

J. de Bruijn. RIF RDF and OWL Compatibility W3C, 2009.
http://www.w3.0rg/2005/rules/wiki/SWC.

. Mike Dean and Guus SchreibeODWL Web Ontology Language Referend&'3C, 2004.

W3C Recommendation 10 February 2004.

. T. Eiter, G. lanni, T. Lukasiewicz, R. Schindlauer, and H. Tompitem@ining answer set

programming with description logics for the semantic wéltificial Intelligence 172(12-
13):1495-1539, 2008.

Allen Van Gelder, Kenneth Ross, and John S. Schlipf. The welldedrsemantics for
general logic programslournal of the ACM38(3):620—650, 1991.

Michael Gelfond and Vladimir Lifschitz. The stable model semantic®fpc programming.

In Robert A. Kowalski and Kenneth Bowen, editoBspceedings of the Fifth International
Conference on Logic Programmingages 1070-1080, Cambridge, Massachusetts, 1988.
The MIT Press.

B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Descriptmgic programs: combining
logic programs with description logic. Iroc. of the World Wide Web Conference (WWW)
pages 48-57. ACM, 2003.

lan Horrocks and Peter F. Patel-Schneider. Reducing OWL entditméescription logic
satisfiability. InProc. of the 2003 International Semantic Web Conference (ISWC 2003)
Sanibel Island, Florida, 2003.

Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reducing shiq descrpligic to dis-
junctive datalog programs. IRroc. of the 9th Int. Conf. on Knowledge Representation and
Reasoning (KR2004pages 152—-162, Whistler, Canada, Juni 2004. AAAI Press.

Michael Kifer, Georg Lausen, and James Wu. Logical foundatarobject-oriented and
frame-based languages.ACM 42(4):741-843, 1995.

M. Krotzsch, S. Rudolph, and P. Hitzler. Description logic rulesPioc. 18th European
Conf. on Atrtificial Intelligence(ECAI-08pages 80-84. |I0S Press, 2008.

Senlin Liang, Paul Fodor, Hui Wan, and Michael Kifer. OpenRalath: an analysis of the
performance of rule engines. WWW '09: Proceedings of the 18th international conference
on World wide weppages 601-610, New York, NY, USA, 2009. ACM.

T. Lukasiewicz. A novel combination of answer set programmiitly ekescription logics for
the semantic web. IRroc. of ESWC 20Qpages 348—398, 2007.

B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL witles. Journal of
Web Semanti¢c$(1):41-60, July 2005.

ontoprise GmbH, An der RaumFabrik 29, 76137 Karlsruhe, Gegym@ntoBroker Enter-
prise - Version 5.32009. Available at http://www.ontoprise.de/help/index.jsp.

ontoprise GmbH, An der RaumFabrik 29, 76137 Karlsruhe, Geyn@antoStudio Manual -
Version 2.3.02009. Available at http://www.ontoprise.de/help/index.jsp.

W3C OWL Working Group.SPARQL Query Language for RDRWV3C Recommendation,
15 January 2008. Available at http://www.w3.0rg/TR/rdf-sparql-query

W3C OWL Working Group.SPARQL Update W3C Member Submission, 15 July 2008.
Available at http://www.w3.org/Submission/SPARQL-Update/.

W3C OWL Working Group OWL 2 Web Ontology Language: Document Overvi$MBC
Recommendation, 27 October 2009. Available at http://www.w3.0rg/TRowdview!/.

R. Rosati. DL+log: Tight integration of description logics and disjurdtigtalog. IProc. of
the Int. Conf. on Principles of Knowledge Representation and ReasfiRigpages 6878,
2006.

Riccardo Rosati. On the decidability and complexity of integrating ontcdoayiel rules.
Journal of Web Semantic3(1):61-73, 2005.

Guizhen Yang and Michael Kifer. Flora-2: User's manual, 20@tp.//flora.sourceforge.net/.

