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Abstract

In this paper we explore embeddings of the various kinds
of RDF entailment in F-Logic. We show that the embed-
dings of simple, RDF, and RDFS entailment, as well as a
large fragment of extensional RDFS entailment, fall in the
Datalog fragment of F-Logic, allowing the use of optimiza-
tion techniques from the area of deductive databases for
reasoning with RDF. Using earlier results on the relation-
ship between F-Logic and Description Logics (DLs), we de-
fine an embedding of a large fragment of extensional RDFS
in a tractable description logic, namely DL-Lite, allowing
efficient reasoning over the ontology vocabulary. We show
how, using these embeddings, RDFS can be extended with
rules and/or general axioms.

1. Introduction

The Resource Description Framework RDF [8], together
with RDFS, constitutes the basic language for the seman-
tic Web. The RDF semantics specification [8] defines four
increasingly expressive types of entailment, namely simple,
RDF, RDFS, and extensional RDFS (eRDFS) entailment'.
We refer to these kinds of entailment as entailment regimes.

The standard knowledge representation and reasoning
paradigms of Description Logics (DL) [1] and Logic Pro-
gramming (LP) [12], which are both based on classical first-
order logic, are used on the the semantic Web (e.g. [9, 6]).
However, so far, little research has been done into the for-
mal relationships? between RDF and the logical languages
which are being considered for the semantic Web. In this
paper we try to bridge the gap between these formalisms
by demonstrating several embeddings of the RDF(S) entail-
ment regimes in logic, and showing how RDF(S) can be
extended with (LP) rules and (DL) logical axioms.

Note that the definition of extensional RDFS entailment is not norma-
tive.
2 A notable exception is [4].
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We use F-Logic [11], a syntactical extension of standard
first-order logic, for our embeddings. It turns out that the
attribute value construct in F-Logic is exactly equivalent to
the triple construct in RDF, and the typing and subclass-
ing constructs in F-Logic are very close to those in RDF.
Additionally, F-Logic, like RDFS, has the possibility of us-
ing the same identifier as a class, an instance, or a property
identifier.

The contributions of this paper can be summarized as
follows.

— In Section 3 we define embeddings of the simple, RDF,
RDFS, and eRDFS entailment regimes in F-Logic, and
show that these embeddings preserve entailment. It turns
out that deductive database technology can be immedi-
ately applied for reasoning with the simple, RDF, RDFS,
and a subset of the eRDFS entailment regimes. Using
earlier results about the relationship between F-Logic and
DL/FOL [5] we demonstrate the embedding of a very ex-
pressive subset of eRDFS in DL-Liter [2], enabling the
use of DL reasoning techniques for eRDFS.

— In Section 4 we use these embeddings in logic, together
with existing results about the complexity of reasoning in
subsets of logic, to establish several novel complexity re-
sults for RDF(S). Table 2 on page 4 summarizes the existing
and novel complexity results for RDF.

— Finally, in Section 5 we show how RDF graphs can be
extended with F-Logic rules or FOL axioms using the no-
tions of F-Logic and FOL extended RDF graphs, and ex-
hibit several complexity results for reasoning with such ex-
tended graphs.

Note that we do not consider RDF literals and datatypes in
this paper. We consider this future work.

2. Frame Logic

We follow the treatment of F—Logic3 in [5]. For the
full definition of the F-Logic semantics, we refer the reader

3Note that F-Logic is also often used as an extension of nonmonotonic
logic programming; however, we follow the original definition which is
strictly first-order.



to [11, 5].

The signature of an F-language £ is of the form ¥ =
(F,P) with F and P disjoint sets of function and predicate
symbols, each with an associated arity n > 0. Terms and
atomic formulas are defined in the usual way. A molecule
in F-Logic is one of the following statements: (i) an is-a
assertion of the form C': D, (ii) a subclass-of assertion of
the form C':: D, or (iii) a data molecule of the form C[D —»
E], with C, D, E terms. An F-Logic molecule is ground if
it does not contain variables.

Formulas of an F-language L are either atomic formulas,
molecules, or compound formulas, which are constructed
in the usual way from atomic formulas, molecules, and the
logical connectives —, A, V, D, the quantifiers 3,V and the
auxiliary symbols ), (. The Horn and Datalog subset of F-
Logic are defined in the usual way (see e.g. [5]).

An F-structure is a tuple I = (U, <y, €y, Ip,Ip,1,).
Here, < is an irreflexive partial order on the domain U
and €y is a binary relation over U. We write ¢ <y b when
a <y bora = b, fora,b € U. For each F-structure must
hold that if a €y band b Xy cthen a €y c. An n-ary
function symbol f € F is interpreted as a function over
the domain U: Ip(f) : U™ — U. An n-ary predicate
symbol p € P is interpreted as a relation over the domain
U: Ip(p) C U™ 1., associates a binary relation over U
with each k € U: I, (k) C U x U. Variable assignments
are defined as usual.

Given an F-structure I, a variable assignment B, and a
term ¢ of £, t¥F is defined as: zVZ = 2B for variable
symbol z and 98 = T (f) (147, ... tLB) for t of the form
']c(tl7 e 7t77,)‘

Satisfaction of atomic formulas and molecules ¢ in I,
given the variable assignment B, denoted (I, B) ¢ ¢, is
defined as: (I, B) |=¢ p(ty, ..., t,) iff (£17,... tLB) €
Ip(p), (I B) |=¢ ty oty iff 177 ey 155, (I, B) |=¢ ty 12 £
iff 78 <p 28, (1, B) ¢ ta[ta—-ts] iff (£15,655) €
I_.(t5%), and (I, B) |=¢ t = to iff t37 = t2P. This ex-
tends to arbitrary formulas in the usual way.

The notions of a model and of validity are defined as
usual. A theory ® C L F-entails a formula ¢ € L, denoted
D |=¢ ¢, iff for all F-structures I such that I |=¢ @, I ¢ ¢.

Classical first-order logic (classical FOL) is F-Logic
without molecules. Contextual first-order logic (contextual
FOL) is classical FOL where F and P are not required to
be disjoint, function and predicate symbols do not have an
associated arity, and for every structure I = (U, <y, €p
JIp,1p, 1), I assigns a function Ix(f) : U™ — U to
every f € F for every nonnegative integer n and I p assigns
a relation Ip(p) C U™ to every p € P for every nonneg-
ative integer n. We denote satisfaction and entailment in
classical and contextual FOL using the symbols |= and =,
respectively.

3. RDF Embedding and Extension

In this section we first consider an embedding of the RDF
entailment regimes in F-Logic, after which we are consider
embeddings of the eRDFS entailment regime in FOL and
DL. For the definition of the different entailment regimes
we refer the reader to [8].

Let S, FE be RDF graphs, z € {s,rdf,rdfs,erdfs} be
the simple (resp., RDF, RDFS, eRDFS) entailment regime,
we denote entailment, i.e. S z-entails F, with S' |=, E.

3.1. Embedding RDF in F-Logic

We first define the embedding of RDF graphs in F-Logic,
without taking into account the specific entailment regime,
using an embedding function ¢r. The RDF graph is trans-
lated to a conjunction of data molecules, where URIs are
constants, and blank nodes are existentially quantified vari-
ables. In the remainder, we assume that every RDF graph is
finite. Given a triple (s, p, o) (resp., graph S), bl({s, p,0))
(resp., bl(S)) denotes the set of blank nodes occurring in the
triple (resp., graph).

Definition 1. Let (s, p,0) be a triple and S a graph.

slp — o]
FU(S) (A{tr((s,p,0)) | (s,p,0) € 5})

Depending on the entailment regime z, we add a set of
formulas U* to the embedding of the graph. W, defined in
Table 1, axiomatizes the semantics of the entailment regime

x4

tr((s,p,0)) =
tr(S) =

If ¢ is an F-Logic formula in prenex normal form with
only existential quantifiers, then ¢** denotes the Skolem-
ization of ¢, i.e. every existentially quantified variable is
replaced by a new constant not occurring in the formula or
its context (the theory in which it occurs, or any of the sur-
rounding theories, e.g. those participating in an entailment
relation). If ® is an F-Logic theory, then ®* denotes a
skolemization of ®.

The following Proposition follows immediately from the
definition of the translations.

Proposition 1. Let S be an RDF graph. Then, tr(S)®* U
U with x € {s,rdf,rdfs}, can be equivalently rewritten
to a set of F-Logic Datalog formulas.

Note that U"% cannot be equivalently rewritten to a set
of Datalog formulas, due to the universal quantification in
the antecedents of the implications in Wer s

We now show the correspondence between entailment in
the original RDF semantics and entailment in the F-Logic
embedding.

“4For brevity, we leave out the namespace of the RDF vocabulary; for
example, type is short for rdf : type.



Us =0

wrdf = s U {tr((s,p,0)) | (s,p,0) is an RDF axiomatic triple }U
{V2(@y, #(g[s — ) > [type — Property])}

Yrdfs = grdf U {tr((s,p,0)) | {s,p, o) is an RDFS axiomatic triple }U
{Vx,y, z(z[y — 2] D x[type —» Resource] A z[type —» Resource]),
Yu, v, z, y(z[domain — y] A ulx — v] D u[type — y]),

Vou, v, 7, y(clrange — 4] Aulz - v] S vlsype — 1),

Vz(z[type — Property| O x[subProperty0f — ),

Vz,y, z(z[subProperty0f —» y] A y[subProperty0f —» z] D
z[subProperty0f —» z]),

Vz, y(z[subProperty0f — y] D z[type — Property|A
y[type — Property] A Vz1, z2(z1[x — 22] D z1[y — 22])),

Vz(z[type — Class| D z[subClass0f — Resource]),

Vz, y(z[subClass0f — y| D z[type — Class|A
y[type — Class] A Vz(z[type — z] D z[type — y])),

Vz(z[type — Class] D z[subClass0f — z]),

Vz,y, z(z[subClass0f — y] A y[subClass0f —» z] D
z[subClass0f — z]),

Vz(z[type — ContainerMembershipProperty| D
z[subProperty0f —» member])}

werdfs — yrdfs (v, y(Yu, v(ulz — v] D u[type = y]) D

z[domain —» y]),
W, y(Vus, w(ufe — 0] > vftype —» y]) D alrange — y]),
Vz,y(z[type — Property] A y[type —» Property|A

Vu, v(u[z — v] D uly — v]) D x[subProperty0f — y]),
Vz,y(z[type — Class] A y[type —» Class|A

Vu(u[type — z] D u[type — y]) D z[subClass0f — y])}

Table 1. Axiomatization of the RDF semantics

Theorem 1. Let S, E be RDF graphs and x € {s, rdf,
rdf s, erdf s} an entailment regime. Then,
S . F ifand only if tr(S)UU” ¢ tr(E).

The following corollary follows immediately from The-
orem 1 and the classical results about Skolemization.

Corollary 1. Let S, E be RDF graphs and x € {s, rdf,
rdf s, erdf s} be an entailment regime. Then,
S =, E ifand only if tr(S)** UU® = tr(E).

Since, by Proposition 1, tr(S)**, tr(S)** U ¥"¥ and
tr(S)*k U U¥* are equivalent to sets of Horn formulas,
this result implies that simple, RDF, and RDFS entailment
can be computed using existing F-Logic rule reasoners such
as FLORA-2, and Ontobroker, as well as other rule reason-

s3. Notice that, in the corollary, ¢r(E) can be seen as a
boolean conjunctive query (i.e. a yes/no query) and the ex-
istentially quantified variables (blank nodes) in ¢r(E) are
the non-distinguished variables.

The final embedding in F-Logic we consider is a direct em-
bedding of the extensional RDFS semantics which elimi-
nates part of the RDFS vocabulary, yielding a set of Horn

SNote that the attribute value construct a[b — c] is the only construct
specific to F-Logic which is used in the embeddings. Since it does not
carry any specific semantics, it may be straightforwardly embedded using
a ternary predicate attval(a, b, c). Notice also that all rules are safe, and
thus Datalog engines may be used.

formulas. We first define the notion of nonstandard use
of the RDFS vocabulary. Nonstandard use of the RDFS
vocabulary intuitively corresponds to using the vocabulary
in locations where it has not been intended, for example
(type, subProperty0f, a).

We say that a term ¢ occurs in a property position if it oc-
curs as the predicate of a triple, as the subject or object of a
subPropertyO0f triple, as the subject of a domain or range
triple, or as the subject in a triple (¢, type, Property) or
(t, type, ContainerMembershipProperty). A term ¢ oc-
curs in a class position if it occurs as the subject or object
of a subClassOf triple, as the object of a domain, range,
or type triple, or as the subject of a triple (¢, type, Class).

Definition 2. Let S be an RDF graph. Then
S has nonstandard use of the RDFS vocabu-
lary if type, subClass0f, domain, range, or

subProperty0f occurs in a non-property position in
S, or ContainerMembershipProperty,
Class, or Property occurs in S.

Resource,

Definition 3. Let (s, p,0) be an RDF triple, then
trem¥s ((s, type, o)

tre™4* ((s, subClass0f, o) vz (x sDx:o),
trev¥ (s, subProperty0f, o))=Vz, y(z [s = y] D z[o > y]),
V ( [sa»y]:)x:o),

tre™¥s ((s, range, o)
174 (5., o)
Let S be an RDF graph. Then,
trer2(8) = IbLS) (A {tr* " ((s,p, 0)) | (s,p, 0) € S}V
{trev¥=((s,p,0)) | (s,p,0) is an RDFS axiomatic triple
with no nonstandard use of the RDFS vocabulary})

vV, y(z[s - y] D y:o), and

)=s

)

)=
trer¥#((s, domain, o)%

)=s[p — o], otherwise.

Theorem 2. Let S, E be RDF graphs with no nonstandard
use of the RDFS vocabulary. Then,

kS lzerdfs E lﬁct,rerdfs(sf) ':f tT‘erfs (E)
Furthermore, (tr¢"%*(S))** is a conjunction of F-Logic
Datalog formulas.
If, additionally, F does not contain subClass0f, domain,
range, or subProperty0f, then tr*"¥*(E) is a conjunc-
tion of atomic molecules with an existential prefix, and

S Ferars B if (tre7 9 (8))™ s tr°70%(),

Since (tr¢"¥*(S))** is a set of Datalog formulas, we
have that, if the RDF graphs fulfills certain (natural) condi-
tions, query answering techniques from the area of deduc-
tive databases can be used for checking eRDFS entailment.

3.2. Embedding Extensional RDF'S in First-
Order Logic

An F-Logic theory @ is translatable to contextual FOL
if it has no :: molecules and for molecules of the forms
t1[ta — t3] and ¢ : t5 holds that ¢5 is a constant symbol.



Let ® be an F-Logic theory which is translatable to con-
textual FOL, then (®)¥'? is the contextual FOL theory ob-
tained from & by:

—replacing every ¢ [ty — t3] with t5(¢1,t3), and
—replacing every ¢1 :to with t5(t1).

The following is a straightforward generalization of a re-

sult in [5].

Proposition 2. Let ® (resp., ¢) be an equality-free F-Logic
theory (resp., formula) which is translatable to contextual
FOL. Then, ® k= ¢ iff (®)F9 =, (¢)F°.

An RDF graph S is a non-higher-order RDF graph if S
does not contain blank nodes in class or property positions
and does not contain nonstandard use of the RDFS vocab-
ulary. A non-higher order RDF graph S is a classical RDF
graph if the sets of URIs occurring in class and property po-
sitions in S (and its context, e.g. entailing or entailed graph)
are mutually disjoint, and disjoint with the sets of all URIs
not occurring in class or property positions in S (and its
context).

Theorem 3. Let S, E be non-higher-order (resp., classi-
cal) RDF graphs. Then, (tr¢"¥s(8))F'O, (trerdfs(E))Fo
are theories of contextual (resp., classical) FOL and
S ':erdfs E l]f (t?"erdfs(S))Fo ':C (trerdfs(E))FO
(resp., (tr”dfs(S’))Fo = (tr”dfs(E))Fo).

4. Complexity of RDF

The complexity of simple and RDFS entailment is well
known, and the complexity of RDF and extensional RDFS
entailment follow immediately. Note that, although the set
of axiomatic triples is infinite, only a finite subset needs to
be taken into account when checking the entailment.

Proposition 3 ([7, 10, 4]). Let S, E be RDF graphs, then
the problems S =5 E, S \=rqs E, and S {=rqrs E are
NP-complete in the combined size of S and E, and poly-
nomial in the size of S. If E is ground, then the respective
problems are in P. Additionally, the problem S =crqrs E
is NP-hard.

From the embedding in F-Logic, together with the com-
plexity of nonrecursive Datalog, we obtained the following
novel characterization of the complexity of simple and RDF
entailment.

Proposition 4. Let S, E be RDF graphs. Then, the prob-
lems S |=5 E and S |=rqr E are in LogSpace with respect
to the size of S, and with respect to the combined size of the
graphs if E is ground.

By the correspondence between FOL and Description
Logics and earlier complexity results for the Description
Logic DL-Liter [2] we obtain the following results.

Theorem 4. Let S, E be RDF graphs with no nonstandard
use of the RDFS vocabulary. Then, the problem of deciding
S Eerars E is NP-complete in the size of the graphs, and
polynomial if E is ground.

Regime Restrictions | Restrictions Complexity
on S on E

x € {s,rdf,rdf s} | none none NP-complete

z € {s,rdf} none ground LogSpace

x € {rdfs} none ground P

x € {erdfs} none none NP-hard

z € {erdfs} no nonst. | no nonst. | NP-complete
RDFS RDFS

x € {erdfs} no nonst. | ground, no | P
RDFS nonst. RDFS

Table 2. Complexity of Entailment S |, E,
measured in the combined size of S and F

Table 2 summarizes the complexity of the different en-
tailment regimes; “No nonst. RDFS” stands for “no non-
standard use of the RDFS vocabulary”. The results in the
first and third line of the Table were obtained in [7, 4, 10].
To the best of our knowledge, the other results in the table
are novel.

5. RDF Extensions

In this section we consider extensions of RDF graphs
with logical rules and general theories.

Definition 4. An F-Logic extended RDF graph is a tuple
eS = (S, ®, ), with S an RDF graph, ® an F-Logic theory,
and x € {s,rdf,rdf s, erdf s} an entailment regime.

eS is satisfiable (resp., valid) if tr(S) U ¥* U ® is sat-
isfiable (resp., valid), and eS entails an F-Logic formula ¢
(resp., RDF graph E), denoted ¢S |= ¢ (resp., eS |= E), if
tr(S) UP® Ud = ¢ (resp., tr(S) UP* U = tr(E)).

The following proposition follows immediately from
Theorem 1.

Proposition 5. Let S, E be RDF graphs, and x € {s, rdf,
rdf s, erdf s} an entailment regime. Then,

(8,0,z) = E iff Sk, E.

Considering such F-Logic extended RDF graphs,
there is a discrepancy between the RDF and F-
Logic constructs used for asserting class membership
(altype — C] vs. a: C) and asserting the subclass relation
(A[subClass0f — B] vs. A:: B). Therefore, the interac-
tion between the RDF graph and the F-Logic theory might
not be as expected.

Consider, for example, the RDF graph S =
{(A, subClass0f, B)} and the F-Logic theory ® =



{a:A}. Consider now the F-Logic extended RDF graph
T = (S, ®,rdf s). One might intuitively expect T |= a: B.
This is, however, not the case, because of the lack of inter-
action between the RDFS vocabulary and the F-Logic lan-
guage constructs.

We overcome this limitation by using the so-called RDF
interaction axioms:

WA = { Va,y(z[type — y] D x1y),
Va,y(x[subClass0f — y] D x::y)}.

Definition 5. An F-Logic extended RDF graph eS is RIA-
satisfiable (resp., valid) if tr(S) U ¥* U ® U WEIA js sar-
isfiable (resp., valid), and eS RIA-entails an F-Logic for-
mula ¢ (resp., RDF graph E), denoted eS =gria ¢ (resp.,
eS Erra E), if tr(S) U ¥® U & U WEIA = ¢ (resp.,
tr(S)Uw® UdUTRA = tr(E)).

The following proposition follows from Proposition 5
and the structure of the RIA axioms.

Proposition 6. Let S, E be RDF graphs, and x € {s, rdf,
rdf s, erdf s} an entailment regime. Then,

<S,@,ZE> ':RIA E lff S }:x E.

Theorem 3 sanctions the extension of a subset of eRDFS
with DL or FOL axioms:

Definition 6. A contextual (resp., classical) FOL-extended
RDF graph is a tuple (S, ®) where S is a non-higher-order
(resp., classical) RDF graph, and ® is a contextual (resp.,
classical) FOL theory.

(S, ®) is satisfiable (resp., valid) if (tre"¥*(S))FO U @
is satisfiable (resp., valid).

A contextual FOL extended RDF graph (S,®) en-
tails a contextual FOL formula ¢ (resp., non-higher-order
RDF graph E) if (tr"¥s(S)FO0 U @ |=. ¢ (resp.,
(trerdfs (S))FO UK ‘:c (trerdfs (E))FO)

A classical FOL extended RDF graph (S, ®) entails a
classical FOL formula ¢ (resp., classical RDF graph E) if
(trerdfs(SHFO U@ |= ¢ (resp., (trer¥s(S)HFO U |=
(trerdfs (E))FO)

Proposition 7. Let S, E be non-higher-order (resp., clas-
sical) RDF graphs. Then, (S,0) |=. E (resp., (S,0) =
E) lﬁrs }:erdfs E.

The following results about the complexity of reason-
ing with extended RDF graphs follow immediately from the
complexity results obtained in the previous section, and the
complexity of the considered extensions.

We first consider RDF graphs extended with F-Logic
Datalog rules.

Theorem 5. Given an F-Logic extended RDF graph eS =
(S, ®,x), with & a set of F-Logic Datalog rules, and a
ground atom or molecule o, then

e if x € {s, rdf, rdfs}, the problem of deciding
eS |ERrra a is polynomial, and

e if x = erdfs and S has no nonstandard use of the
RDFS vocabulary, the problem of deciding eS |= « is
polynomial.

We now consider RDF graphs, under the eRDFS
entailment regime, extended with DL-Liter axioms.
DL-Liter [2] is a Description Logic which largely sub-
sumes the expressiveness of extensional RDFS, and for
which most of the reasoning tasks are tractable (i.e. polyno-
mial). We consider DL-Litey as defined in [2], and refer
to this as classical DL-Liter,. We also consider a variant
of DL-Liter in which the sets of class, rule, and individual
identifiers are not disjoint, and refer to this has contextual
DL-Liter (cf. contextual FOL).

Theorem 6. Let eS = (S, @) be a contextual (resp., classi-
cal) FOL extended RDF graph, such that S is ground, and
® is the FOL equivalent of a contextual D L-Liter knowl-
edge base K, and let ' be the FOL equivalent of a contex-
tual (resp., classical) D L-Liter knowledge base K'. Then,
the problem eS =, @ (resp., eS |= ®') is polynomial.
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