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Abstract

Recently, there has been a lot of interest in the integration of Description Logics and rules on the
Semantic Web. We define guarded hybrid knowledge bases (or g-hybrid knowledge bases) as knowl-
edge bases that consist of a Description Logic knowledge base and a guarded logic program, similar
to the DL+log knowledge bases from (Rosati 2006). G-hybrid knowledge bases enable an integra-
tion of Description Logics and Logic Programming where, unlike in other approaches, variables in
the rules of a guarded program do not need to appear in positive non-DL atoms of the body, i.e. DL
atoms can act as guards as well. Decidability of satisfiability checking of g-hybrid knowledge bases
is shown for the particular DL DLRO−{≤}, which is close to OWL DL, by a reduction to guarded
programs under the open answer set semantics. Moreover, we show 2-EXPTIME-completeness for
satisfiability checking of such g-hybrid knowledge bases. Finally, we discuss advantages and disad-
vantages of our approach compared with DL+log knowledge bases.

KEYWORDS: g-hybrid knowledge bases, open answer set programming, guarded logic programs,
description logics

1 Introduction

The integration of Description Logics with rules has recently received a lot of attention in
the context of the Semantic Web (Rosati 2005a; Rosati 2006; Eiter et al. 2004; Motik et al.
2004; Horrocks and Patel-Schneider 2004b; Motik and Rosati 2007; de Bruijn et al. 2007).
R-hybrid knowledge bases (Rosati 2005a), and its extension DL+log (Rosati 2006), is an
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elegant formalism based on combined models for Description Logic knowledge bases and
nonmonotonic logic programs. We propose a variant of r-hybrid knowledge bases, called
g-hybrid knowledge bases, which do not require standard names or a special safeness re-
striction on rules, but instead require the program to be guarded. We show several com-
putational properties by a reduction to guarded open answer set programming (Heymans
et al. 2005a; Heymans et al. 2006b).

Open answer set programming (OASP) (Heymans et al. 2005a; Heymans et al. 2006b)
combines the logic programming and first-order logic paradigms. From the logic program-
ming paradigm it inherits a rule-based presentation and a nonmonotonic semantics by
means of negation as failure. In contrast with usual logic programming semantics, such
as the answer set semantics (Gelfond and Lifschitz 1988), OASP allows for domains con-
sisting of other objects than those present in the logic program at hand. Such open domains
are inspired by first-order logic based languages such as Description Logics (DLs) (Baader
et al. 2003) and make OASP a viable candidate for conceptual reasoning. Due to its rule-
based presentation and its support for nonmonotonic reasoning and open domains, OASP
can be used to reason with both rule-based and conceptual knowledge on the Semantic
Web, as illustrated in (Heymans et al. 2005b).

A major challenge for OASP is to control undecidability of satisfiability checking, a
challenge it shares with DL-based languages. In (Heymans et al. 2005a; Heymans et al.
2006b), we identify a decidable class of programs, the so-called guarded programs, for
which decidability of satisfiability checking is obtained by a translation to guarded fixed
point logic (Grädel and Walukiewicz 1999). In (Heymans et al. 2006), we show the expres-
siveness of such guarded programs by simulating a DL with n-ary roles and nominals. In
particular, we extend the DLDLR (Calvanese et al. 1997) with both concept nominals {o}
and role nominals {(o1, . . . , on)}, resulting in DLRO. We denote the DL DLRO with-
out number restrictions as DLRO−{≤}. Satisfiability checking of concept expressions
w.r.t. DLRO−{≤} knowledge bases can be reduced to checking satisfiability of guarded
programs (Heymans et al. 2006b).

A g-hybrid knowledge base consists of a Description Logic knowledge base and a
guarded program. The DL+log knowledge bases from (Rosati 2006) are weakly safe,
which means that the interaction between the program and the DL knowledge base is
restricted by requiring that variables which appear in non-DL atoms, appear in positive
non-DL atoms in the body, where DL atoms are atoms involving a concept or role symbol
from the DL knowledge base. G-hybrid knowledge bases do not require such a restriction;
instead, variables must appear in a guard of the rule, but this guard can be a DL atom as
well. In this paper, we show decidability of g-hybrid knowledge bases for DLRO−{≤}
knowledge bases by a reduction to guarded programs, and show that satisfiability check-
ing of g-hybrid knowledge bases is 2-EXPTIME-complete. The DL DLRO−{≤} is close
to SHOIN , the Description Logic underlying OWL DL (Horrocks and Patel-Schneider
2004a). Compared with SHOIN ,DLRO−{≤} does not include transitive roles and num-
ber restrictions, but does include n-ary roles and complex role expressions.

To see why a combination of rules and ontologies, as proposed in g-hybrid knowledge
bases, is useful, and why the safeness conditions considered so far in the literature are not
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appropriate in all scenarios, consider the Description Logic ontology

FraternityMember v Drinker u ∃hasDrinkingBuddy .FraternityMember

which says that fraternity members are drinkers who have drinking buddies, which are also
fraternity members. Now consider the logic program

problemDrinker(X ) ← Drinker(X ),not socialDrinker(X )
socialDrinker(X ) ← Drinker(X),not problemDrinker(Y ),

hasDrinkingBuddy(X ,Y )
FraternityMember(John) ←

which says that drinkers are by default problem drinkers, unless it is known that they are
social drinkers; drinkers with drinking buddies who are not problem drinkers are social
drinkers; and John is a fraternity member. From the combination of the ontology and the
logic program, one would expect to derive that John is a social drinker, and not a prob-
lem drinker. This logic program cannot be expressed using r-hybrid knowledge bases, or
DL+log , because the rules in the program are not weakly safe . However, the logic pro-
gram is guarded, and thus part of a valid g-hybrid knowledge base, which has the expected
consequences.

The remainder of the paper starts with an introduction to open answer set programming
and Description Logics in Section 2. Section 3 defines g-hybrid knowledge bases, translates
them to guarded programs when the DL DLRO−{≤} is considered, and provides a com-
plexity characterization for satisfiability checking of these particular g-hybrid knowledge
bases. In Section 5, we discuss the relation of g-hybrid knowledge bases withDL+log and
other related work. We conclude and give directions for further research in Section 6.

2 Preliminaries

In this section we introduce Open Answer Set Programming, guarded programs, and the
Description Logic DLRO−{≤}.

2.1 Decidable Open Answer Set Programming

We introduce the open answer set semantics from (Heymans et al. 2005a; Heymans et al.
2006b), modified as in (Heymans et al. 2006) such that it does not assume uniqueness of
names by default. Constants, variables, terms, and atoms are defined as usual. A literal
is an atom p(~t) or a naf-literal not p(~t), with ~t a tuple of terms.1 The positive part of a
set of literals α is α+ = {p(~t) | p(~t) ∈ α} and the negative part of α is α− = {p(~t) |
not p(~t) ∈ α}. We assume the existence of the (in)equality predicates = and 6=, usually
written in infix notation; t = s is an atom and t 6= s is short for not t = s. A regular atom
is an atom without equality. For a set A of atoms, not A = {not l | l ∈ A}.

A program is a countable set of rules α ← β, where α and β are finite sets of literals,
|α+| ≤ 1 (but α− may be of arbitrary size), and every atom in α+ is regular, i.e. α contains

1 We do not allow “classical” negation ¬, however, programs with ¬ can be reduced to programs without it, see
e.g. (Lifschitz et al. 2001).
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at most one positive atom, which may not contain the equality predicate.2 The set α is the
head of the rule and represents a disjunction of literals, while β is the body and represents
a conjunction of literals. If α = ∅, the rule is called a constraint. Free rules are rules of the
form q( ~X) ∨ not q( ~X) ←; they enable a choice for the inclusion of atoms in a model. We
call a predicate p free if there is a free rule p( ~X) ∨ not p( ~X) ←. Atoms, literals, rules, and
programs that do not contain variables are ground.

For a literal, rule, or program o, let cts(o), vars(o), preds(o) be the constants, variables,
and predicates, respectively, in o. A pre-interpretation U for a program P is a pair (D,σ)
where D is a non-empty domain and σ : cts(P ) → D is a function which maps all
constants in P to elements from D.3 PU is the ground program obtained from P by sub-
stituting every variable in P with every possible element from D and every constant c with
σ(c). E.g., for a rule r : p(X) ← f(X, c) and U = ({x, y}, σ) where σ(c) = x, we have
that the grounding w.r.t. U is:

p(x ) ← f (x , x )
p(y) ← f (y , x )

Let BP be the set of regular atoms obtained from the language of the ground program P .
An interpretation I of a ground program P is a subset of BP . For a ground regular atom
p(~t), we write I |= p(~t) if p(~t) ∈ I; for an equality atom t = s, we write I |= t = s if
s and t are equal terms. We write I |= not p(~t) if I 6|= p(~t), for p(~t) an atom. For a set
of ground literals A, I |= A holds if I |= l for every l ∈ A. A ground rule r : α ← β

is satisfied w.r.t. I , denoted I |= r, if I |= l for some l ∈ α whenever I |= β. A ground
constraint ← β is satisfied w.r.t. I if I 6|= β.

For a ground program P without not, an interpretation I of P is a model of P if I

satisfies every rule in P ; it is an answer set of P if it is a subset minimal model of P .
For ground programs P containing not, the reduct (Inoue and Sakama 1998) w.r.t. I is P I ,
where P I consists of α+ ← β+ for every α ← β in P such that I |= not β− and I |= α−.
I is an answer set of P if I is an answer set of P I . Note that allowing negation in the head
of rules leads to the loss of the anti-chain property (Inoue and Sakama 1998) which states
that no answer set can be a strict subset of another answer set. E.g, a rule a ∨ not a ← has
the answer sets ∅ and {a} . However, negation in the head is required to ensure first-order
behavior for certain predicates, e.g., when simulating Description Logic reasoning.

In the following, a program is assumed to be a finite set of rules; infinite programs only
appear as byproducts of grounding a finite program using an infinite pre-interpretation. An
open interpretation of a program P is a pair (U,M) where U is a pre-interpretation for
P and M is an interpretation of PU . An open answer set of P is an open interpretation
(U,M) of P with M an answer set of PU . An n-ary predicate p in P is satisfiable if there
is an open answer set ((D,σ), M) of P and a ~x ∈ Dn such that p(~x) ∈ M . A program P

is satisfiable iff it has an open answer set. Note that satisfiability checking of programs can
be easily reduced to satisfiability checking of predicates: P is satisfiable iff p is satisfiable

2 The condition |α+| ≤ 1 makes the GL-reduct non-disjunctive, ensuring that the immediate consequence
operator is well-defined, see (Heymans et al. 2006b).

3 In (Heymans et al. 2006b), we only use the domain D which is there defined as a non-empty superset of the
constants in P . This corresponds to a pre-interpretation (D, σ) where σ is the identity function on D.
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w.r.t. P ∪ {p( ~X) ∨ not p( ~X) ←}, where p is a predicate symbol not used in P and ~X is
a tuple of variables. In the following, when we speak of satisfiability checking, we refer to
satisfiability checking of predicates, unless specified otherwise.

Satisfiability checking w.r.t. the open answer set semantics is undecidable in general. In
(Heymans et al. 2006b), we identify a syntactically restricted fragment of programs, so-
called guarded programs, for which satisfiability checking is decidable, which is shown
through a reduction to guarded fixed point logic (Grädel and Walukiewicz 1999). The de-
cidability of guarded programs relies on the presence of a guard in each rule, where a
guard is an atom that contains all variables of the rule. Formally, a rule r : α ← β is
guarded if there is an atom γb ∈ β+ such that vars(r) ⊆ vars(γb); γb is the guard of r.
A program P is a guarded program (GP) if every non-free rule in P is guarded. E.g., a
rule a(X, Y ) ← not f(X, Y ) is not guarded, but a(X, Y ) ← g(X,Y ), not f(X,Y ) is
guarded with guard g(X, Y ). Satisfiability checking of predicates w.r.t. guarded programs
is 2-EXPTIME-complete (Heymans et al. 2006b) – a result that stems from the correspond-
ing complexity in guarded fixed point logic.

2.2 The Description Logic DLRO−{≤}

DLR (Calvanese et al. 1997; Baader et al. 2003) is a DL which supports roles of arbitrary
arity, whereas most DLs only support binary roles. We introduce an extension ofDLRwith
nominals, called DLRO (Heymans et al. 2006). The basic building blocks of DLRO are
concept names A and relation names P where P denotes an arbitrary n-ary relation for
2 ≤ n ≤ nmax and nmax is a given finite non-negative integer. Role expressions R and
concept expressions C are defined as:

R → >n | P | ($i/n : C) | ¬R | R1 uR2 | {(o1, . . . , on)}
C → >1 | A | ¬C | C1 u C2 | ∃[$i]R | ≤k[$i]R | {o}

where i is between 1 and n in ($i/n : C); similarly in ∃[$i]R and≤k[$i]R for R an n-ary
relation. Moreover, we assume that the above constructs are well-typed, e.g., R1 uR2 is
defined only for relations of the same arity. The semantics of DLRO is given by interpre-
tations I = (∆I , ·I) where ∆I is a non-empty set, the domain, and ·I is an interpretation
function such that CI ⊆ ∆I , RI ⊆ (∆I)n for an n-ary relation R, and the following
conditions are satisfied (P,R,R1, and R2 have arity n):

>In ⊆ (∆I)n

PI ⊆ >In
(¬R)I = >In\RI

(R1 uR2)I = RI
1 ∩RI

2

($i/n : C)I = {(d1, . . . , dn) ∈ >In | di ∈ CI}
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>I1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \CI
(C1 u C2)I = CI1 ∩ CI2
(∃[$i]R)I = {d ∈ ∆I | ∃(d1, . . . , dn) ∈ RI . di = d}

(≤k[$i]R)I = {d ∈ ∆I | |{(d1, . . . , dn) ∈ RI | di = d}| ≤ k}
{o}I = {oI} ⊆ ∆I

{(o1, . . . , on)}I = {(oI1 , . . . , oIn)}
Note that inDLRO the negation of role expressions is defined w.r.t.>In and not w.r.t. (∆I)n.
A DLRO knowledge base Σ is a set of terminological axioms and role axioms, which de-
note subset relations between concept and role expressions (of the same arity), respectively.
A terminological axiom C1 v C2 is satisfied by I iff CI1 ⊆ CI2 . A role axiom R1 v R2 is
satisfied by I iff RI

1 ⊆ RI
2 . An interpretation I is a model of a knowledge base Σ (i.e. Σ is

satisfied by I) if all axioms in Σ are satisfied by I; if Σ has a model, then Σ is satisfiable.
A concept expression C is satisfiable w.r.t. a knowledge base Σ if there is a model I of Σ
such that CI 6= ∅.

Note that for every interpretation I,

({(o1, . . . , on)})I = (($1/n : {o1}) u . . . u ($n/n : {on}))I .

Therefore, in the remainder of the paper, we will restrict ourselves to nominals of the form
{o}. We denote the fragment of DLRO without the number restriction ≤ k[$i]R with
DLRO−{≤}.

3 G-hybrid Knowledge Bases

G-hybrid knowledge bases are combinations of Description Logic (DL) knowledge bases
and guarded logic programs (GP). They are a variant of the r-hybrid knowledge bases
introduced in (Rosati 2005a).

Definition 1
Given a Description Logic DL, a g-hybrid knowledge base is a pair (Σ, P ) where Σ is a
DL knowledge base and P is a guarded program.

Note that in the above definition there are no restrictions on the use of predicate symbols.
We call the atoms and literals in P that have underlying predicate symbols which cor-
respond to concept or role names in the DL knowledge base DL atoms and DL literals,
respectively. Variables in rules are not required to appear in positive non-DL atoms, which
is the case in, e.g., the DL+log knowledge bases in (Rosati 2006), the r-hybrid knowledge
bases in (Rosati 2005a), and the DL-safe rules in (Motik et al. 2004). DL-atoms can appear
in the head of rules, thereby enabling a bi-directional flow of information between the DL
knowledge base and the logic program.

Example 1
Consider the DLRO−{≤} knowledge base Σ where socialDrinker is a concept, drinks is
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a ternary role such that, intuitively, (x, y, z) is in the interpretation of drinks if a person x

drinks some drink z with a person y. Σ consists of the single axiom

socialDrinker v ∃[$1 ](drinks u ($3/3 : {wine}))
which indicates that social drinkers drink wine with someone. Consider a GP P that

indicates that someone has an increased risk of alcoholism if the person is a social drinker
and knows someone from the association of Alcoholics Anonymous (AA). Furthermore,
we state that john is a social drinker and knows michael from AA:

problematic(X ) ← socialDrinker(X ), knowsFromAA(X ,Y )
knowsFromAA(john,michael) ←

socialDrinker(john) ←
Together, Σ and P form a g-hybrid knowledge base. The literals socialDrinker(X ) and
socialDrinker(john) are DL atoms where the latter appears in the head of a rule in P . The
literal knowsFromAA(X,Y) appears only in the program P (and is thus not a DL atom).

Given a DL interpretation I = (∆I , ·I) and a ground program P , we define Π(P, I) as
the projection of P with respect to I, which is obtained as follows: for every rule r in P ,

• if there exists a DL literal in the head of the form

— A(~t) with ~t ∈ AI , or
— not A(~t) with ~t 6∈ AI ,

then delete r,
• if there exists a DL literal in the body of the form

— A(~t) with ~t 6∈ AI , or
— not A(~t) with ~t ∈ AI ,

then delete r,
• otherwise, delete all DL literals from r.

Intuitively, the projection “evaluates” the program with respect to I by removing (evalu-
ating) rules and DL literals consistently with I; conceptually this is similar to the reduct,
which removes rules and negative literals consistently with an interpretation of the pro-
gram.

Definition 2
Let (Σ, P ) be a g-hybrid knowledge base. An interpretation of (Σ, P ) is a tuple (U, I,M)
such that

• U = (D, σ) is a pre-interpretation for P ,
• I = (D, ·I) is an interpretation of Σ,
• M is an interpretation of Π(PU , I), and
• bI = σ(b) for every constant symbol b appearing both in Σ and in P .

Then, (U = (D,σ), I,M) is a model of a g-hybrid knowledge base (Σ, P ) if I is a
model of Σ and M is an answer set of Π(PU , I).

For p a concept expression from Σ or a predicate from P , we say that p is satisfiable
w.r.t. (Σ, P ) if there is a model (U, I,M) such that pI 6= ∅ or p(~x) ∈ M for some ~x from
D, respectively.
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Example 2
Consider the g-hybrid knowledge base in Example 1. Take U = (D,σ) with D = {john,

michael, wine, x} and σ the identity function on the constant symbols in (Σ, P ). Further-
more, define ·I as follows:

• socialDrinkerI = {john},
• drinksI = {(john, x ,wine)},
• wineI = wine.

If M = {knowsfromAA(john,michael), problematic(john)}, then (U, I,M) is a model
of this g-hybrid knowledge base. Note that the projection Π(P, I) does not contain the rule
socialDrinker(john) ← .

4 Translation to Guarded Logic Programs

In this section we introduce a translation of g-hybrid knowledge bases to guarded logic
programs (GP) under the open answer set semantics, show that this translation preserves
satisfiability, and use this translation to obtain complexity results for reasoning in g-hybrid
knowledge bases. Before introducing the translation to guarded programs formally, we
introduce the translation through an example.

Consider the knowledge base in Example 1. The axiom

socialDrinker v ∃[$1 ](drinks u ($3/3 : {wine}))
translates to the constraint

← socialDrinker(X ),not (∃[$1 ](drinks u ($3/3 : {wine})))(X )

Thus, the concept expressions on either side of the v symbol are associated with a new
unary predicate name. For convenience, we name the new predicates according to the orig-
inal concept expressions. The constraint simulates the behavior of theDLRO−{≤} axiom.
If the left-hand side of the axiom holds and the right-hand side does not hold, there is a
contradiction.

It remains to ensure that those newly introduced predicates behave according to the DL
semantics. First, all the concept and role names occurring in the axiom above need to be
defined as free predicates, in order to simulate the first-order semantics of concept and role
names in DLs. In DLs, a tuple is either true or false in a given interpretation (cf. the law of
the excluded middle); this behavior can be captured exactly by the free predicates:

socialDrinker(X ) ∨ not socialDrinker(X ) ←
drinks(X ,Y ,Z ) ∨ not drinks(X ,Y ,Z ) ←

Note that concept names are translated to unary free predicates, while n-ary role names
are translated to n-ary free predicates.

The definition of the truth symbols >1 and >3 which are implicit in our DLRO−{≤}
axiom (since the axiom contains a concept name and a ternary role) are translated to free
predicates as well. Note that we do not need a predicate for >2 since the axiom does not
contain binary predicates.

>1 (X ) ∨ not >1 (X ) ←
>3 (X ,Y ,Z ) ∨ not >3 (X ,Y ,Z ) ←
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We ensure that, for the ternary DLRO−{≤} role drinks , drinksI ⊆ >I3 holds by adding
the constraint:

← drinks(X ,Y ,Z ),not >3 (X ,Y ,Z )

To ensure that >I1 = ∆I , we add the constraint:

← not >1 (X )

For rules containing only one variable, we can always assume that X = X is in the body
and acts as the guard of the rule, so that the latter rule is guarded; cf. the equivalent rule
← not >1 (X ),X = X .

We translate the nominal {wine} to the rule

{wine}(wine) ←
Intuitively, since this rule will be the only rule with the predicate {wine} in the head, every
open answer set of the translated program will contain {wine}(x) with σ(wine) = x if
and only if the corresponding interpretation {wine}I = {x} for wineI = x.

TheDLRO−{≤} role expression ($3/3 : {wine}) indicates the ternary tuples for which
the third argument belongs to the extension of {wine}, which is translated to the following
rule:

($3/3 : {wine})(X ,Y ,Z ) ← >3 (X ,Y ,Z ), {wine}(Z )

Note that the above rule is guarded by the >3 literal.
Finally, the concept expression (drinks u ($3/3 : {wine})) can be represented by the

following rule:

(drinks u ($3/3 : {wine}))(X ,Y ,Z ) ← drinks(X ,Y ,Z ),
($3/3 : {wine})(X,Y, Z)

As we can see, the DL construct u is translated to conjunction in the body of a rule.
The DLRO−{≤} role ∃[$1](drinks u ($3/3 : {wine})) can be represented using the

following rule:

(∃[$1](drinks u ($3/3 : {wine})))(X) ← (drinks u ($3/3 : {wine}))(X, Y, Z)

Indeed, the elements which belong to the extension of ∃[$1](drinks u ($3/3 : {wine}))
are exactly those that are connected to the role ($3/3 : {wine}), as specified in the rule.

This concludes the translation of the DL knowledge base in the g-hybrid knowledge
base of Example 1. The program can be considered as is, since, by definition of g-hybrid
knowledge bases, it is already a guarded program.

We now proceed with the formal translation. The closure clos(Σ) of aDLRO−{≤} knowl-
edge base Σ is defined as the smallest set satisfying the following conditions:

• >1 ∈ clos(Σ),
• for each C v D an axiom in Σ (role or terminological), {C, D} ⊆ clos(Σ),
• for every D in clos(Σ), clos(Σ) contains every subformula which is a concept ex-

pression or a role expression,
• if clos(Σ) contains an n-ary relation name, it contains >n.

We define Φ(Σ) as the smallest logic program satisfying the following conditions:
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• For each terminological axiom C v D ∈ Σ, Φ(Σ) contains the constraint:

← C(X), not D(X) (1)

• For each role axiom R v S ∈ Σ where R and S are n-ary, Φ(Σ) contains:

← R(X1, . . . , Xn), not S(X1, . . . , Xn) (2)

• For each >n ∈ clos(Σ), Φ(Σ) contains the free rule:

>n(X1, . . . , Xn) ∨ not >n(X1, . . . , Xn) ← (3)

Furthermore, for each n-ary relation name P ∈ clos(Σ), Φ(Σ) contains:

← P(X1, . . . , Xn), not >n(X1, . . . , Xn) (4)

Intuitively, the latter rule ensures that PI ⊆ >In. Additionally, Φ(Σ) has to contain
the constraint:

← not >1(X) (5)

which ensures that, for every element x in the pre-interpretation, >1(x) is true in
the open answer set. The latter rule ensures that >I1 = D for the corresponding
interpretation. The rule is implicitly guarded with X = X .

• Next, we distinguish between the types of concept and role expressions that appear
in clos(Σ). For each D ∈ clos(Σ):

— if D is a concept nominal {o}, Φ(Σ) contains the fact:

D(o) ← (6)

This fact ensures that {o}(x) holds in any open answer set iff x = σ(o) = oI

for an interpretation of (Σ, P ).
— if D is a concept name, Φ(Σ) contains:

D(X) ∨ not D(X) ← (7)

— if D is an n-ary relation name, Φ(Σ) contains:

D(X1, . . . , Xn) ∨ not D(X1, . . . , Xn) ← (8)

— if D = ¬E for a concept expression E, Φ(Σ) contains the rule:

D(X) ← not E(X) (9)

Note that we can again assume that such a rule is guarded by X = X .
— if D = ¬R for an n-ary role expression R, Φ(Σ) contains:

D(X1, . . . , Xn) ← >n(X1, . . . , Xn), not R(X1, . . . , Xn) (10)

Note that if negation would have been defined w.r.t. Dn instead of >In, we
would not be able to write the above as a guarded rule.

— if D = E u F for concept expressions E and F , Φ(Σ) contains:

D(X) ← E(X), F (X) (11)
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— if D = E u F for n-ary role expressions E and F, Φ(Σ) contains:

D(X1, . . . , Xn) ← E(X1, . . . , Xn),F(X1, . . . , Xn) (12)

— if D = ($i/n : C), Φ(Σ) contains:

D(X1, . . . , Xi, . . . , Xn) ← >n(X1, . . . , Xi, . . . , Xn), C(Xi) (13)

— if D = ∃[$i]R, Φ(Σ) contains:

D(X) ← R(X1, . . . , Xi−1, X, Xi+1, . . . , Xn) (14)

The following theorem shows that this translation preserves satisfiability.

Theorem 1
Let (Σ, P ) be a g-hybrid knowledge base with Σ a DLRO−{≤} knowledge base. Then, a
predicate or concept expression p is satisfiable w.r.t. (Σ, P ) iff p is satisfiable w.r.t. Φ(Σ)∪
P .

Proof
(⇒) Assume p is satisfiable w.r.t. (Σ, P ), i.e., there exists a model (U, I,M) of (Σ, P ),
with U = (D,σ), in which p has a non-empty extension. Now, we construct the open
interpretation (V,N) of Φ(Σ, P ) as follows. V = (D, σ′) with σ′ : cts(Φ(Σ) ∪ P ) → D,
and σ′(x) = σ(x) for every constant symbol x from P and σ′(x) = xI for every constant
symbol x from Σ. Note that σ′ is well-defined, since, for a constant symbol x which occurs
in both Σ and P , we have that σ(x) = xI . We define the set N as follows:

N = M ∪ {C(x) | x ∈ CI , C ∈ clos(Σ)}
∪ {R(x1, . . . , xn) | (x1, . . . , xn) ∈ RI , R ∈ clos(Σ)}

with C and R concept expressions and role expressions respectively.
It is easy to verify that (V,N) is an open answer set of Φ(Σ)∪P and (V,N) satisfies p.
(⇐) Assume (V, N) is an open answer set of Φ(Σ)∪P with V = (D, σ′) such that p is

satisfied. We define the interpretation (U, I, N) of (Σ, P ) as follows.

• U = (D,σ) where σ : cts(P ) → D with σ(x) = σ′(x) (note that this is possible since
cts(P ) ⊆ cts(Φ(Σ) ∪ P )). U is then a pre-interpretation for P .

• I = (D, ·I) is defined such that AI = {x | A(x) ∈ N} for concept names A, PI =
{(x1, . . . , xn) | P(x1, . . . , xn) ∈ N} for n-ary role names P and oI = σ′(o), for o a
constant symbol in Σ (note that σ′ is indeed defined on o). I is then an interpretation of Σ.

• M = N \{p(~x) | p ∈ clos(Σ)}, such that M is an interpretation of Π(PU , I).

Moreover, for every constant symbol b which appears in both Σ and P , bI = σ(b). As a
consequence, (U, I,M) is an interpretation of (Σ, P ).

It is easy to verify that (U, I,M) is a model of (Σ, P ) which satisfies p.

Theorem 2
Let (Σ, P ) be a g-hybrid knowledge base where Σ is a DLRO−{≤} knowledge base.
Then, Φ(Σ) ∪ P is a guarded program with a size polynomial in the size of (Σ, P ).



12 S. Heymans et al.

Proof
The rules in Φ(Σ) are obviously guarded. Since P is a guarded program, Φ(Σ) ∪ P is a
guarded program as well.

The size of clos(Σ) is of the order n log n where n is the size of Σ. Intuitively, given
that the size of an expression is n, we have that the size of the set of its subexpressions is
at most the size of a tree with depth log n where the size of the subexpressions at a certain
level of the tree is at most n.

The size of Φ(Σ) is clearly polynomial in the size of clos(Σ), assuming that the arity n of
an added role expression is polynomial in the size of the maximal arity of role expressions
in Σ. If we were to add a relation name R with arity 2n, where n is the maximal arity of
relation names in C and Σ, the size of Σ would increase linearly, but the size of Φ(Σ)∪ P

would increase exponentially: one needs to add, e.g., rules

>2n(X1, . . . , X2n) ∨ not >2n(X1, . . . , X2n) ←
which introduce an exponential number of arguments while the size of the role R does not
depend on its arity.

Note that in g-hybrid knowledge bases, we consider DLRO−{≤}, which is DLRO
without expressions of the form ≤ k[$i]R, since such expressions cannot be simulated
with guarded programs. E.g., consider the concept expression ≤ 1[$1]R where R is a
binary role. One can simulate the ≤ by negation as failure:

≤ 1[$1]R(X) ← not q(X)

for some new q, with q defined such that there are at least 2 different R-successors:

q(X) ← R(X, Y1), R(X, Y2), Y1 6= Y2

However, the latter rule is not guarded – there is no atom that contains X , Y1, and Y2. So,
in general, expressing number restrictions such as ≤k[$i]R is out of reach for GPs. From
Theorems 1 and 2 we obtain the following corollary.

Corollary 1
Satisfiability checking w.r.t. g-hybrid knowledge bases (Σ, P ), with Σ a DLRO−{≤}
knowledge base, can be polynomially reduced to satisfiability checking w.r.t. GPs.

Since satisfiability checking w.r.t. GPs is 2-EXPTIME-complete (Heymans et al. 2006b),
we obtain the same 2-EXPTIME characterization for g-hybrid knowledge bases. We first
make explicit a corollary of Theorem 1.

Corollary 2
Let P be a guarded program. Then, a concept or role expression p is satisfiable w.r.t. P iff
p is satisfiable w.r.t. (∅, P ).

Theorem 3
Satisfiability checking w.r.t. g-hybrid knowledge bases where the DL part is aDLRO−{≤}
knowledge base is 2-EXPTIME-complete.
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Proof
Membership in 2-EXPTIME follows from Corollary 1. Hardness follows from 2-EXPTIME-
hardness of satisfiability checking w.r.t. GPs and the reduction to satisfiability checking in
Corollary 2.

5 Relation with DL+log and other Related Work

In (Rosati 2006), so-calledDL+log knowledge bases combine a Description Logic knowl-
edge base with a weakly-safe disjunctive logic program. Formally, for a particular Descrip-
tion Logic DL, a DL+log knowledge base is a pair (Σ, P ) where Σ is a DL knowledge
base consisting of a TBox (a set of terminological axioms) and an ABox (a set of assertional
axioms), and P contains rules α ← β such that for every rule r : α ← β ∈ P :

• α− = ∅,
• β− does not contain DL atoms (DL-positiveness),
• each variable in r occurs in β+ (Datalog safeness), and
• each variable in r which occurs in a non-DL atom, occurs in a non-DL atom in β+

(weak safeness).

The semantics for DL+log is the same as that of g-hybrid knowledge bases4, with the
following exceptions:

• We do not require the standard name assumption, which basically says that the do-
main of every interpretation is essentially the same infinitely countable set of con-
stants. Neither do we have the implied unique name assumption, making the seman-
tics for g-hybrid knowledge bases more in line with current Semantic Web standards
such as OWL (Dean and Schreiber 2004) where neither the standard names assump-
tion nor the unique names assumption applies. Note that Rosati also presented a
version of hybrid knowledge bases which does not adhere to the unique name as-
sumption in an earlier work (Rosati 2005b). However, the grounding of the program
part is with the constant symbols explicitly appearing in the program or DL part only,
which yields a less tight integration of the program and the DL part than in (Rosati
2006) or in g-hybrid knowledge bases.

• We define an interpretation as a triple (U, I, M) instead of a pair (U, I ′) where
I ′ = I ∪M ; this is, however, equivalent to DL+log .

The key differences of the two approaches are:

• The programs considered inDL+log may have multiple positive literals in the head,
whereas we allow at most one. However, we allow negative literals in the head,
whereas this is not allowed inDL+log . Additionally, since DL-atoms are interpreted
classically, we may simulate positive DL-atoms in the head through negative DL-
atoms in the body.

4 Strictly speaking, we did not define answer sets of disjunctive programs, however, the definitions of Subsection
2.1 can serve for disjunctive programs without modification. Also, we did not consider ABoxes in our definition
of DLs in Subsection 2.2. However, the extension of the semantics to DL knowledge bases with ABoxes is
straightforward.



14 S. Heymans et al.

• Instead of Datalog safeness we require guardedness. Whereas with Datalog safeness
every variable in the rule should appear in some positive atom of the body of the rule,
guardedness requires that there is a positive atom that contains every variable in the
rule, with the exception of free rules. E.g., a(X ) ← b(X ), c(Y ) is Datalog safe
since X appears in b(X) and Y appears in c(Y ), but this rule is not guarded since
there is no atom that contains both X and Y . Note that we could easily extend the
approach taken in this paper to loosely guarded programs which require that every
two variables in the rule should appear together in a positive atom, However, this
would still be less expressive than Datalog safeness.

• We do not have the requirement for weak safeness, i.e., head variables do not need
to appear positively in a non-DL atom. The guardedness may be provided by a DL
atom.

Example 3
Example 1 contains the rule

problematic(X ) ← socialDrinker(X ), knowsFromAA(X ,Y )

This allows to deduce that X might be a problem case even if X knows someone
from the AA but is not drinking with that person. Indeed, as illustrated by the model
in Example 1, john is drinking wine with some anonymous x and knows michael
from the AA. More correct would be the rule

problematic(X ,Z ) ← drinks(X ,Y ,Z ), knowsFromAA(X ,Y )

where we explicitly say that X and Y in the drinks and knowsFromAA relations
should be the same, and we extend the problematic predicate with the kind of drink
that X has a problem with. Then, the head variable Z is guarded by the DL atom
drinks and the rule is thus not weakly-safe, but is guarded nonetheless. Thus, the
resulting knowledge base is not aDL+log knowledge base, but is a g-hybrid knowl-
edge base.

• We do not have the requirement for DL-positiveness, i.e., DL atoms may appear
negated in the body of rules (and also in the heads of rules). However, one could
allow this in DL+log knowledge bases as well, since not A( ~X) in the body of the
rule has the same effect as A( ~X) in the head, where the latter is allowed in (Rosati
2006). Vice versa, we can also loosen our restriction on the occurrence of positive
atoms in the head (which allows at most one positive atom in the head), to allow
for an arbitrary number of positive DL atoms in the head (but still keep the number
of positive non-DL atoms limited to one). E.g., a rule p(X ) ∨A(X ) ← β, where
A(X) is a DL atom, is not a valid rule in the programs we considered since the head
contains more than one positive atom. However, we can always rewrite such a rule
to p(X ) ← β,not A(X ), which contains at most one positive atom in the head.
Arguably, DL atoms should not be allowed to occur negatively, because DL pred-
icates are interpreted classically and thus the negation in front of the DL atom is
not nonmonotonic. However, Datalog predicates which depend on DL predicates
are also (partially) interpreted classically, and DL atoms occurring negatively in the
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body are equivalent to DL atoms occurring positively in the head which allows us to
partly overcome our limitation of rule heads to one positive atom.

• We do not take into account ABoxes in the DL knowledge base. However, the DL
we consider includes nominals such that one can simulate the ABox using termino-
logical axioms. Moreover, even if the DL does not include nominals, the ABox can
be written as ground facts in a program and ground facts are always guarded.

• Decidability for satisfiability checking5 of DL+log knowledge bases is guaranteed
if decidability of the conjunctive query containment problem is guaranteed for the
DL at hand. In contrast, we relied on a translation of DLs to guarded programs
for establishing decidability, and, as explained in the previous section, not all DLs
(e.g. those with number restrictions) can be translated to such a GP.

We briefly mention AL-log (Donini et al. 1998), which is a predecessor of DL+log .
AL-log considersALC knowledge bases for the DL part and a set of positive Horn clauses
for the program part. Every variable must appear in a positive atom in the body, and concept
names are the only DL predicates which may be used in the rules, and they may only be
used in rule bodies.

(Hustadt et al. 2004) and (Swift 2004) simulate reasoning in DLs with an LP formal-
ism by using an intermediate translation to first-order clauses. In (Hustadt et al. 2004),
SHIQ knowledge bases are reduced to first-order formulas, to which the basic superposi-
tion calculus is applied. (Swift 2004) translates ALCQI concept expressions to first-order
formulas, grounds them with a finite number of constants, and transforms the result to a
logic program. One can use a finite number of constants by the finite model property of
ALCQI. In the presence of terminological axioms this is no longer possible since the finite
model property is not guaranteed to hold.

In (Levy and Rousset 1996), the DL ALCNR (R stands for role intersection) is ex-
tended with Horn clauses q(~Y ) ← p1( ~X1), . . . , pn( ~Xn) where the variables in ~Y must
appear in ~X1 ∪ . . . ∪ ~Xn; p1, . . . , pn are either concept or role names, or ordinary pred-
icates not appearing in the DL part, and q is an ordinary predicate. There is no safeness
in the sense that every variable must appear in a non-DL atom. The semantics is defined
through extended interpretations that satisfy both the DL and clauses part (as FOL formu-
las). Query answering is undecidable if recursive Horn clauses are allowed, but decidability
can be regained by restricting the DL part or by enforcing that the clauses are role safe (each
variable in a role atom R(X, Y ) for a role R must appear in a non-DL atom). Note that the
latter restriction is less strict than the DL-safeness6 of (Motik et al. 2004), where also vari-
ables in concept atoms A(X) need to appear in non-DL atoms. On the other hand, (Motik
et al. 2004) allows for the more expressive DL SHOIN (D), and the head predicates may
be DL atoms as well. Finally, SWRL (Horrocks and Patel-Schneider 2004b) can be seen
as an extension of (Motik et al. 2004) without any safeness restriction, which results in the
loss of decidability of the formalism. Compared to our work, we consider a slightly less ex-
pressive Description Logic, but we consider logic programs with nonmonotonic negation,
and require guardedness, rather than role- or DL-safeness, to guarantee decidability.

5 (Rosati 2006) considers checking satisfiability of knowledge bases rather than satisfiability of predicates. How-
ever, the former can easily be reduced to the latter.

6 DL-safeness is a restriction of the earlier mentioned weak safeness.
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In (Eiter et al. 2004) Description Logic programs are introduced; atoms in the program
component may be dl-atoms with which one can query the knowledge in the DL com-
ponent. Such dl-atoms may specify information from the logic program which needs to
be taken into account when evaluating the query, yielding a bi-directional flow of infor-
mation. This leads to a minimal interface between the DL knowledge base and the logic
program, enabling a very loose integration, based on an entailment relation. In contrast,
we propose a much tighter integration between the rules and the ontology, with interaction
based on single models rather than entailment. For a detailed discussion of these two kinds
of interaction, we refer to (de Bruijn et al. 2006).

Two recent approaches (Motik and Rosati 2007; de Bruijn et al. 2007) use an embedding
in a nonmonotonic modal logic for integrating nonmonotonic logic programs and ontolo-
gies based on classical logic (e.g. DL). (Motik and Rosati 2007) use the nonmonotonic
logic of Minimal Knowledge and Negation as Failure (MKNF) for the combination, and
show decidability of reasoning in case reasoning in the considered description logic is de-
cidable, and the DL safeness condition (Motik et al. 2004) holds for the rules in the logic
program. In our approach, we do not require such a safeness condition, but require the
rules to be guarded, and make a semantic distinction between DL predicates and rule pred-
icates. (de Bruijn et al. 2007) introduce several embeddings of non-ground logic programs
in first-order autoepistemic logic (FO-AEL), and compare them under combination with
classical theories (ontologies). However, (de Bruijn et al. 2007) do not address the issue of
decidability or reasoning of such combinations.

Finally, (de Bruijn et al. 2006) use Quantified Equilibrium Logic as a single unify-
ing language to capture different approaches to hybrid knowledge bases, including the
approach presented in this paper. Although we have presented a translation of g-hybrid
knowledge bases to guarded logic programs, our direct semantics is still based on two
modules, relying on separate interpretations for the DL knowledge base and the logic pro-
gram, whereas (de Bruijn et al. 2006) define equilibrium models, which serve to give a
unifying semantics to the hybrid knowledge base. The approach of (de Bruijn et al. 2006)
may be used to define a notion of equivalence between, and may lead to new algorithms
for reasoning with, g-hybrid knowledge bases.

6 Conclusions and Directions for Further Research

We defined g-hybrid knowledge bases which combine Description Logic (DL) knowledge
bases with guarded logic programs. In particular, we combined knowledge bases of the
DL DLRO−{≤}, which is close to OWL DL, with guarded programs, and showed decid-
ability of this framework by a reduction to guarded programs under the open answer set
semantics (Heymans et al. 2005a; Heymans et al. 2006b). We discussed the relation with
DL+log knowledge bases: g-hybrid knowledge bases overcome some of the limitations of
DL+log , such as the unique names assumption, Datalog safeness, and weak DL-safeness,
but introduce the requirement of guardedness. At present, a significant disadvantage of our
approach is the lack of support for DLs with number restrictions which is inherent to the
use of guarded programs as our decidability vehicle. A solution for this would be to con-
sider other types of programs, such as conceptual logic programs (Heymans et al. 2006a).
This would allow for the definition of a hybrid knowledge base (Σ, P ) where Σ is a SHIQ
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knowledge base and P is a conceptual logic program since SHIQ knowledge bases can
be translated to conceptual logic programs.

Although there are known complexity bounds for several fragments of open answer set
programming (OASP), including the guarded fragment considered in this paper, there are
no known effective algorithms for OASP. Additionally, at presence, there are no imple-
mented systems for open answer set programming. These are part of future work.
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