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Abstract

Open Answer Set Programming (OASP) is an undecidable framefor integrating ontologies and
rules. Although several decidable fragments of OASP hagae nentified, few reasoning procedures
exist. In this article, we provide a sound, complete, anahiieating algorithm for satisfiability check-
ing w.r.t. Forest Logic Programs (FoLPs), a fragment of OA8fere rules have a tree shape and
allow for inequality atoms and constants. The algorithnalgithes a decidability result for FoLPs.
Although believed to be decidable, so far only the decidtgifibr two small subsets of FoLPs, local
FoLPs and acyclic FoLPs, has been shown. We further inteottbgbrid knowledge bases, a hybrid
framework whereSHOQ knowledge bases and forest logic programs co-exist, anchaw that
reasoning with such knowledge bases can be reduced to negseith forest logic programs only.
We note that f-hybrid knowledge bases do not require thel (agkly) DL-safety of the rule com-
ponent, providing thus a genuine alternative approachn@otintegration approaches of ontologies
and rules.
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1 Introduction

Integrating Description Logics (DLs) with rules for the Samtic Web has received consid-
erable attention. Such approaches for combining rules atadamies ar®escription Logic
Programs(Grosof et al. 2003)DL-safe rules(Matik et al. 2005),DL+log (Rosati 2005),
dl-programg(Eiter et al. 2008)Description Logic RulefKrdtzsch et al. 2008a), and Open
Answer Set Programming (OASPR) (Heymans et al. 2008). OASkbates attractive fea-
tures from the DL and the Logic Programming (LP) world: an mpgemain semantics
from the DL side allows for stating generic knowledge, withthe need to mention actual

* A preliminary version of this paper appeared in the proaegsliof theEuropean Semantic Web Conference
20009 (ESWC2009). We extended that paper with detailedp&ayma more detailed description of the algo-
rithm and of the fragment of f-hybrid knowledge bases, aildetezharacterisation of simple FOLPs, as well as
with proofs for all theoremgFeier and Heymans 2009).

T This work is partially supported by the Austrian Science dF@#EWF) under the projects P20305 and P20840,
and by the European Commission under the project OntoR81EZD09-231875).
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constants, and a rule-based syntax from the LP side suppmrtaonotonic reasoning via
negation as failureConcretely, Open Answer Set Programming is an extensi@umastafe)
function-free Answer Set Programming (Gelfond and LifschB88) with open domains,
i.e., the syntax remains the same, the semantics is stillestaodel based, but programs
are interpreted w.r.t. open domains, i.e., non-empty r@tyitdomains which extend the
Herbrand universe.

Example 1
Consider the following program:

faill(X) <« not pass(X)
pass(john)

Although the predicatgail is not satisfiable under the ordinary answer set semanties — t
only answer set beinfpass(john)} —itis satisfiable under the open answer set semantics.
If one considers, for example, the univefgehn, =}, with z some individual which does
not belong to the Herbrand universe, there is an open ant€p&ss(john), fail(z)}
which satisfiesf ail.

Open Answer Set Programming is undecidable. One way torot&iidable fragments
is to impose syntactical restrictions while carefully sgfearding enough expressiveness
for integrating rule- and ontology-based knowledge. Swadshrictions typically ensure the
tree-model propertypredicates are either unary or binary, and if a unary pegdig is
satisfiable then there is a model which can be seen as a labsteslich that: each node of
the tree is labeled with a set of unary predicates, the latthleoroot include®, and each
arc is labeled with a set of binary predicates.

Such a restriction led t€onceptual Logic Programs (CoLP¢leymans et al. 2006)
which are able to simulate reasoning in the BH Q. CoLPs make use only of unary and
binary predicates and disallow the presence of constanisograms. They also impose
some constraints on the shape of rules: unary and binary anéetree-shaped rules which
have as head a single unary atom and binary atom, respgciived tree-like structure of
rules refers to the chaining pattern of rule variables: ceméable can be seen as the root
of a tree and the others as successors of the root such thatdor arc in the tree there
is a positive binary literal in the body which connects the tworresponding variables.
Inequalities between ‘successor’ variables can also appehe body of such a rule; we
will refer to the set of literals in the body of a rule formedywith the help of the ‘root’
variable as the ‘local part’ of the rule and to the remainirgt pf the rule body as the
‘successor part’ of the rule. Constraints, i.e., rules \eithpty head, are also allowed, but
their body also has to be tree-shaped, so that they can b&asiawia unary rules. Another
type of rules which can appear in CoLPs are so-cdiled ruleswhich have one of the
following shapesu(X) V not a(X) < or f(X,Y)Vnot f(X,Y) < , wherea is a
unary predicate and is a binary predicate. Conceptual Logic Programs were pitvée
decidable by a reduction of satisfiability checking to chiegkhon-emptiness of two-way
alternating tree automata (Heymans et al. 2006).

Example 2
The following programP is a CoLP which describes the fact that somebody is happgif sh
meets a friend who is happy or an enemy who is unhappy, andsmigés unhappy if she
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meets an enemy who is happy or a friend who is not happy. Tleisgeessed by means of
four unary tree-shaped rules,r4, each of these rules havinyj as the root variable and
Y as the successor &f . Furthermore, somebody is happy if she has at least twardifte
friends: rulers; captures this knowledge in a tree-style fashi&nbeing the root of a tree,
andY andZ its distinct successors (expressed by the inequality irotddy of the rule).
The binary predicatesces, friend, andenemy are free predicates, i.e., they are defined
only via free rules. The last two rules are constraints whilidallow that somebody is
friend and enemy with the same person, or that somebody lie &ame time both happy
and unhappy.

r1: happy(X) —sees(X,Y), friend(X,Y), happy(Y)

ro: happy(X) —sees(X,Y), enemy(X,Y), unhappy(Y)
r9: unhappy(X) —sees(X,Y), friend(X,Y), not happy(Y)
ry: unhappy(X) —sees(X,Y), enemy(X,Y), happy(Y)

r5: happy(X) —friend(X, Y), friend(X,Z),Y # Z

re: sees(X, Y) V not sees(X,Y) “—

ry: friend(X, Y) V not friend(X,Y) «

rg: enemy(X, Y) V not enemy(X, YY)+

ro: <happy(X), unhappy(X)
T10: «—friend(X,Y), enemy(X,Y)

Next figure describes a tree-shaped open answer set witersejz, y, z,t} and inter-
pretatior{unhappy(x), sees(x,y), enemy(z, y), happy(y), friend(y, z), friend(y,t)}
—one can see from this thathappy is tree-satisfiabler is unhappy as she sees an enemy
y which in turn is happy, as she has at least two different fisen and¢. Note that there
are no empty labels on the arcs of the tree amtbes not see either of her friendsnd
t; otherwise, as it is not known either abaubr abouts that they are happy, seeing them
would rendery unhappy (according to rule;), and that would lead to an inconsistency
(according to rule).

x {unhappy}

{sees, enemy}

y {happy}
{frienc% Kf?“iend}
{}= t{}

Another fragment of OASP, callebrest Logic Programs (FoLPshas, as its name
suggests, théorest-model propertfHeymans et al. 2007). THerest-model propertis a
generalization of the tree-model property: if a unary pratép is satisfiable then it is
satisfied by a model that can be seen as a special type of dafoeest, where the forest
contains for each constant in the program a tree having asivecorresponding constant,
and possibly an additional tree with an anonymous root. ©hest is special in the sense
that it can contain additional arcs from any node in the foi@ene of the roots, standing
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for constants. FoLPs implement the forest-model propsriilowing also for constants in
the programs. Rules have practically the same tree-shapelds, with the exception of
constants not being treated as successors in tI@e Keasuch, FoLPs are generalizations of
CoLPs and are expressive enough to deal with theSBLOQ (the presence of constants
allows the simulation of DL nominals).

Example 3
Consider a slightly modified version of the ColIR P’:

r1

10 -
r11 + unhappy(j) < hungry(j)
ri2+ hungry(j)

Two new rulesyy; andris, both referencing a constajithave been added to the CoLP.
The figure below describes a forest-shaped open answer $etmiverse{;j, z,y} and
interpretation{unhappy(j), hungry(j), happy(z), sees(x,y), friend(z,y), happy(y),
enemy(y,j), sees(y,j)} — one can see from this thauppy is forest-satisfiablez is
happy as it sees a friendwhich at its turn is happy, as it sees an enejnwho is unhappy
because it is hungry. The forest is composed of two treeswitheoot j, the constant ap-
pearing in the program, and the other one with tgatherex is an anonymous individual,
whose content contains the predicate checked to be salsfialppy.

j{unhappy, hungry} x{happy}

{sees, enemy {sees, friend}

y{happy}

A serious shortcoming of both CoLPs and FoLPs is their lackftéctive reasoning
procedures. Furthermore, it has not been known so far whegiisfiability checking w.r.t.
Forest Logic Programs (FoLPs) is decidable. The decidghfitwo closely-related frag-
ments of FoLPs, local FOLPs, and acyclic FOLPs, togethen witeasoning procedure
(for both fragments) based on a reduction to ordinary ASBaeiag has been provided
in (Heymans et al. 2007). Both fragments are quite inexpresompared to the whole
FoLP fragment. For example, local FoLPs allow only the pnesef negated atoms in the
successor part of the tree structure of the unary or binAeEu

The reduction of reasoning to the ordinary ASP case has bade possible by the fact
that local and acyclic FoLPs have theunded finite model propertye., if there is an open

1 This means that the ‘root’ term does not necessarily have tmked with a successor term which is a constant
via a binary atom.
2 This restriction does not apply to literals who have a cartsta argument.
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answer set, then there is an open answer set with a univexsis thounded by a number
of elements that can be specified in function of the progranaatl.

Example 4
The FoLPP’ can be ‘adapted’ into a local FoLP as follows:

rr: happy(X) — sees(X,Y), friend(X,Y),
not unhappy(Y)

re :  happy(X) — sees(X,Y), enemy(X,Y),
not happy(Y)

rs . unhappy(X) — sees(X,Y), friend(X,Y),

not happy(Y)

ry: unhappy(X) — sees(X,Y), enemy(X,Y),
not unhappy(Y)

rs5 . happy(X) —  friend(X,Y), friend(X, Z),
Y 42

re:  sees(X,Y)V not sees(X,Y) —

ry: friend(X,Y) V not friend(X,Y) <«

rs . enemy(X,Y)V not enemy(X,Y) <«

ro : < happy(X), unhappy(X)

T10 : — friend(X,Y), enemy(X,Y)

112 unhappy(j) < hungry(j)

r12 ¢ hungry(j) —

Note that the two programs, the original FOLP and the locaF-are not equivalent: for
example, the infinite universer;, z2, 23, . . .} and the infinite interpretatiofhappy(x1),
friend(z1,x2), sees(x1,x2), happy(xsz), friend(zs,x3), sees(xs,x3), ...} form an
open answer set of the local FOLP, but they do not form an opewer set of the gen-
eral FOLP.

Finally, another fragment with reasoning support considtsimple CoLPs. Simple
CoLPs are CoLPs that disallow the use of inequality and ir@orestriction as concerns
predicate recursion, but that are still expressive enoogsimulate the DLALCH. In
(Feier and Heymans 2008), a sound and complete tableaoxitalg for simple CoLPs
has been devised. The algorithm constructs so-called aiimplstructures, which are fi-
nite representations of (partial) models. The particudstriction on predicate recursion
is a sufficient condition to establish the bounded finite nh@deperty and to enable the
usage of a simple subset blocking condition to ensure theitation of the algorithm. As
is usual in Description Logics (Baader et al. 2003), subsmtiing consists in checking
whether the label of a node of the forest is a subset of the tdlmne of its ancestors; if
this is the case, the initial node is said to be ‘blocked’ Isyaihcestor, and it is no longer
expanded as the content of its label can be justified in a&imidly as the content of the
label of its ancestor.

In this article, we provide a tableaux-based algorithm &asoning with the full frag-
ment of FOLPs, and thus implicitly also with full CoLPs: irder to check whether a unary
predicate is satisfiable, the algorithm tries to construitirast model which satisfies the
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predicate. This is done by evolving a so-called complettamcsure which essentially is a
forest shaped structure which describes a forest modelnstaaction. When certain con-
ditions are met, such a structure is said tcbmpleteandclash-freeand can be unraveled
to an actual forest model. The algorithm can be seen as ansiaiteof the algorithm for
reasoning with simple CoLPs (Feier and Heymans 2008); heweéwue to the lack of any
restriction concerning predicate/literal recursionnts get significantly more complex.
Unlike in the case of simple CoLPs, termination can no lormeensured by a classical
subset blocking condition; using only such a condition flmpping the expansion of a
branch can lead to unsound results: the interpretatiorireatdy unraveling a clash-free
complete completion structure may contain infinite chaihatoms, where the presence
of each atom in the interpretation is justified by the presasfmext atom. This violates a
result regarding OASP which says that every atom in an opswerset has to be finitely
justified (Heymans et al. 2006, Theorem 2). A more complexkiitgy condition has been
devised, which when applied guarantees soundness, butwhilbnger ensures termina-
tion, as it may never be fulfilled in the expansion processvéler, it turns out that FOLPs,
like local and acyclic FOLPs, also have the bounded finite ehpdoperty: termination is
then ensured by exploring forest branches only up to a cedgpth.

The algorithm runs in the worst case in double exponentia tione exponential level
higher than the algorithm for reasoning with simple CoLPse Thcrease in complexity
(compared to the algorithm for simple CoLPs, but also comgan tableaux procedures
for reasoning withSHQOQ) is due to the interaction between the requirement conegrni
the minimality of open answer sets and the unrestrictedrsemuin rules which leads to a
double exponential bound on the number of individuals whithht be needed to satisfy
a certain predicate.

We also define simple FoLPs as a particular kind of FoLPs waietin a similar rela-
tionship with FoLPs as simple CoLPs with CoLPs: there is alaimestriction on predicate
recursion, but unlike the case of simple CoLPs we allow disgptresence of constants and
inequalities in rule bodies. The algorithm can be simplifieduch a case and the worst
case complexity drops one exponential level. Simple FolaRde seen as a generalization
of local FoLPs and acyclic FoLPs.

As already mentioned, FOLPs serve well as an underlyingyiaten vehicle for on-
tologies and rules. In order to illustrate this, we defitig/brid knowledge bases (fKBs)
consisting of aSHOQ knowledge base and a rule component that is a FoLP, with a non-
monotonic semantics similar to the semantic£di+log (Rosati 2006)r-hybrid knowl-
edge basefRosati 2008), and-hybrid knowledge basdbleymans et al. 2008). Our ap-
proach differs in two points with current other proposals:

e In contrast with Description Logic Programs, DL-safe rukesd Description Logic
Rules, f-hybrid knowledge bases have, in line with tradisiblogic programming
paradigms, a minimal model semantics for the rule compgrikeas allowing for
nonmonotonic reasoning.

e To ensure effective reasoning, our approach does not redy(aeakly) DL-safeness
condition such as (Motik et al. 2005; Rosati 2006; Rosati@)0@hich restricts the
interaction of the rule component with the DL componenttdad, we rely on a
translation of the hybrid knowledge to FoLPs.
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The major contributions of the paper can be summarized &ssi

e We define in Section]4 an algorithm for deciding satisfiapilitr.t. FOLPs, inspired
by tableaux-based methods from DLs. We show that this dhlgaris terminating,
sound, and complete, and runs in double exponential time.&lfporithm is non-
trivial from two perspectives: both the minimal model setizof OASP, compared
to the model semantics of DLs, as well as the open domain gggrmmcompared to
the closed domain assumption of ASP (Gelfond and LifscH&8), pose specific
challenges.

e We show in Sectiohl5 that FoLPs are expressive enough toaienthle DLSHOQ
with fKBsas an alternative characterization for hybrid represemtaind (hnonmono-
tonic) reasoning of knowledge, that supports a tight irgégn of ontologies and
rules.

The article is organized as follows. A short overview of Ogerswer Set syntax and
semantics together with some notations are presented inB8EBL Next, Sectiohl3 for-
mally introduces FoLPs and tHerest model propertyThe actual tableaux algorithm for
reasoning with FOLPs is described in Secfidn 4. A new hyhithilism,f-hybrid KBs
which combinesSHOQ KBs with FoLPs, is introduced in Sectibh 5. Reasoning with th
new formalism is enabled by a concept satisfiability presgriranslation fromSHOQ
KBs to FoLPs, the translation being described in the sam@sed less expressive frag-
ment of FOLPs, simple Forest Logic Programs, is describe&kictior{ 6. Finally, Section
[7 discusses some related work, while Sedtibn 8 draws son@usions. Detailed proofs
can be found in the Appendix.

2 Preliminaries

We recall the open answer set semantics from (Heymans €d@f)2A term is either
a constantor avariabl@, and is denoted by a string of letters where a constant starts
with a lower-case letter and a a variable with an upper cdtar.lén atom is of the form
p(t1,...,tn), Wherep is a predicate name, ang, . .., t,, are terms. We further allow for
equality atoms = t, wheres andt are terms. Aliteral is an atomL or a negated atom
not L. Aninequality literalnot (s = t) will often be denoted witls # ¢. An atom (literal)
that is not an equality atom (inequality literal) will be kel aregular atom (literal) For a
regular literalL, pred(L), andargs(L) denote the predicate, and the (tuple of) arguments
of L@ respectively. For a set of literals or (possibly negated) predicates, = {I |
| € a,lanatom or a predicateanda™ = {l | not | € «,l an atom or a predicateFor
example{a, not b,c # d}* = {a} and{a, not b,c # d}~ = {b,c = d}. For a setS of
atoms,not S = {not L | L € S}. For a set of (possibly negated) predicaigsve will
often writea(z) for {a(x) | a € a} anda(z,y) for {a(z,y) | a € a}.

A programis a countable set of rules < /3, where« is a finite set of regular literals
andg is a finite set of literals. The satis theheadof the rule and represents a disjunction,

3 No function symbols are allowed.
4 If the literal L has just one argumentrgs(L) will return the argument itself.
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while 3 is called thebodyand represents a conjunctionalf= (, the rule is called @on-
straint Free rulesare rulesy(t1,...,t,) V not q(t1, . .., t,) < for termsty, ..., t,; they
enable a choice for the inclusion of atoms. We call a predigéeein a program if there
is a free ruleg(Xy, ..., X,) V not ¢(X1,...,X,) + in the program, wher&,, ..., X,
are variables. Atoms, literals, rules, and programs thatacd@ontain variables aground
For a rule or a progran®, let cts(P) be the constants i, vars(P) its variables, and
preds(P) its predicates, withupreds(P) andbpreds(P), the unary and binary predicates,
respectively. For every predicageand programp, let P, be the set of definite (i.e., dis-
junction free) rules o’ that havey as a head predicate.uxniversel/ for a programP is a
non-empty countable superset of the constani3:ints(P) C U. We call P;; the ground
program obtained fron® by substituting every variable iR by every possible element in
U. Letatoms(P) (lits(P)) be the set of regular atoms (literals) that can be formem fao
ground progran®.

An interpretation] of a groundP is a subset ofitoms(P). We writel | p(t1,...,tn)
if p(t1,...,t,) € Tandl E not p(t1,...,t,) if I = p(t1,...,t,). Furthermore, for
ground termss andt we write] = s =tif s=tandl E nots=torl s # tif
s # t. For a set of ground literalX’, I = X if I = [ for everyl € X. A ground rule
r:a « [ is satisfiedw.r.t. I, denotedl = r, if I |= [ for somel € a wheneved | 5. A
ground constraink— £ is satisfied w.r.tI if T = 3.

For a ground progran® without not, an interpretation’ of P is a modelof P if I
satisfies every rule i®; it is ananswer sebf P if it is a subset minimal model oP. For
ground program# containingnot, theGL-reduct(Gelfond and Lifschitz 1988) w.r.f. is
defined asP!, whereP! containsa™ « F fora « gin P, I |= not 37, andl = a~.
I'is ananswer sebf a groundP if I is an answer set a®’.

In the following, a program is assumed to be a finite set ofs;uldinite programs only
appear as byproducts of grounding a finite program with amitefiuniverse. Anopen
interpretationof a programP is a pair(U, M) whereU is a universe fol® and M is an
interpretation ofP;. An open answer saif P is an open interpretatiofi/, M) of P with
M an answer set aP;. An n-ary predicatey in P is satisfiable w.r.tP if there is an open
answer setU, M) of P and a(xy,...,z,) € U™ suchthap(zy,...,z,) € M.

We introduce some notations for trees which extend thos®and{1998). Let- be a
concatenation operator between different symbols suclvastants or natural numbers.
A tree T' with root ¢ (also denoted a%.), wherec is a specially designated constant, is
a set of nodes, where each node is a sequence of thedfornwheres is a (possibly
empty) sequence of positive integers formed with the helihefconcatenation operator;
forz-d € T,d € NP, we must have that € 7. For example a tree with roetand 2
successors will be denotedfsc- 1,¢- 2} or{c, cl, 02}@.

Foranoder € T, we callsucer(x) = {z-n € T | n € N*}, successorsf z in T'. As
the successorship relation is captured in the codificatidheonodes, a tree is literally the
set of its nodes. Tharity of a tree is the maximum amount of successors any node has in
the tree. The setly = {(z,y) | z,y € T,3n € N* : y = x - n} denotes the set of arcs of

5 N* is the set of positive integers
6 By abuse of notation, we consider that there are at most ®ssots for every node, so we can abbreviaté
with ab
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a treeT. We define a partial ordef on a tre€l” such that forr,y € T,z <p y iff zis

a prefix ofy. As usualx <7 yif v <p y andy <1 x. A path fromzx to y in T', where
x <t y, denoted withpathr(z,y), is a subset of’ which contains all nodes which are
at the same time greater or equaktin 7" and lesser or equal t9in 7" according to the
partial order relation, i.epathr(z,y) = {z | * <7 z <7 y}. A branchB in a treeT. is

a maximal path (there is no path’i which strictly contains it). We denote tiseibtreeof
TatzbyTz],ie, Tx]l={yeT|z<ry}.

A forestF is a set of tree§T. | ¢ € C}, whereC' is a finite set of arbitrary constants.
The set of node¥Vy of a forestF and the set of arcd of I are defined as follows:
Np = UperT and Ap = UpepAr. For a noder € N, we denote withsuccp () =
sucer(x), wherex € T andT € F, the set of successors ofin F'. Also, as for trees, we
define a partial order relationshipz on the nodes of a fore$t wherex <g yiff x < y
for some tred’ in F.

An extended foresEF is a tuple(F, ES) whereF = {T. | ¢ € C} is a forest andES
is a binary relation which contains tuples of the fofmy) wherex € Ny andy € C, i.e.,
ES relates nodes of the forest with roots of trees in the forgStextends the successorship
relation:succgr(z) = {y | y € succp(z) or (z,y) € ES}.

Figure[1 depicts an extended forest.

<
EF : a b

al bl b2 b3
all al2 b21

Fig. 1: An extended forest

The presence oflS gives rise to so-called extended treesHR', where such a tree
(actually, a particular type of graph) is onefif € F, extended with the arc§(x,y) |
(x,y) € ES,z € T,.} and with the node$y | (z,y) € ES,z € T.}. The extension of
T. in EF is denoted withT'*¥". For example, the extension @f, in EF from Figure[l
contains the extra af@12, b) and the extension df, in EF contains the extra ard$, a)
and (b2, a). An extended subtree with roat of an extended tre&”* is denoted with
TEF[z]: it is defined (as a graph) as the extensiofidf] with the arcs{(y, z) | (y,2) €
ES,y € T.[z]} and with the node$z | (y,z) € ES,y € T.[z]}. Finally, by Ngr = Np
we denote the set of nodes of an extended fokdstand byAgr = Ap U ES the set of
arcs of EF.

Finally, a directed grapky is defined as usual by its sets of nodésnd arcs4. We
introduce two graph-related notationgiths denotes the set of paths @, where each
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path is a tuple of nodes fromi: pathsg = {(x1,...,2n) | (i, zi41) € A)i<i<n}
and conng denotes the set of pairs of connected nodes fiémeconng = {(z,y) |
Pt = (z1,...,2,) € pathsg : ©1 = = Az, = y}. As an extended forest is a par-
ticular type of graph, these notations apply also to extdrfdeests. Additional notation
needed for the proofs is introduced in the appendix.

3 Forest Logic Programs

As mentioned in the introductioRprest Logic Programs (FoLPgre a fragment of OASP
which have the forest model property. In this section we fahyintroduce the fragment
and the notions diorest satisfiabilityandforest model property

Definition 1
A forest logic program (FoLP)s a program with only unary and binary predicates, and
such that a rule is either:

o afreerule
a(s) V not a(s) + (1)
or,
f(s,t) Vnot f(s,t) + (2)
wheres andt are terms;
e aunary rule
a(s) < B(s), (Ym (s, tm), Gm(tm)) 1 <m<k, ¥ ®3)
with 1) C U, <;z;<, {t: # t;} andk € N, or abinary rule
f(s,t) <= B(s),7(s,1),8(2) (4)

wherea € upreds(P) and f € bpreds(P), s, t, and(t,,)1<m<k are termsg, 4,
(Om)1<m<k C upreds(P) U not (upreds(P)) (sets of (possibly negated) unary
predicates);y, (Ym)i<m<k C bpreds(P) U not (bpreds(P)) (sets of possibly

negated binary predicates), and

1. equality and inequality do not appear in any{=,#} N v, = 0, for 1 <
m < k,and{=,#} N~y = 0;

2. there is a positive atom that connects the head tewnith any successor term
which is a variabley. # 0, if ¢, is a variable, fol < m < k, andy™ # 0,
if ¢ is a variable;

e aconstraint < a(s) or < f(s,t), wheres andt are terms.

In every rule, all terms which are variables are dislﬁnct

7 This restriction precludes the presence in rules of ligegdithe formf (X, X) or not f(X, X) which would
break the forest model property.
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Example 5

Consider again rule; from Example 25 : happy(X) + friend(X, Y), friend(X, Z),

Y # Z.Thisruleis a unary rule with head tetk, andk = 2, i.e., there are two successor
terms, variabley” andZ. In this case3 = (), v1 = 2 = {friend}, 61 = 62 = 0, and

v = {Y # Z}. There is an atom which link& with each of the successor terffisand
Z: friend(X,Y) and friend(X, Z), respectively.

Constraints can be left out of the fragment without losingressivity. Indeed, a con-
straint « body can be replaced by a rule of the fornstr(z) < not constr(z), body,
for a new predicateonstr.

We denote withlegree(r), wherer is a unary rule as ifi{3), the numblerintuitively, &
indicates the maximum number of successor individualsedé&aimake the rule true. The
degree of a free rule is 0.

For a unary predicatg, degree(p) = maz{degree(r) | p € head(r)}. Finally, the
rank of a FOLPP is defined asrank(P) = Y- c,,cas(p) degree(P).

As already mentioned FoLPs have tlogest model propertyif a unary predicate is
satisfiable then there is a model which satisfidhat can be seen as an extended forest.
The forest contains for each constant in the program a tr@adnghe constant as root, and
possibly an additional tree with an anonymous root. Theipage checked to be satisfiable,
p, belongs to the label of one of the root nodes. While the @oistappearing in the
program are mandatorily part of the universe of any modeingean anonymous root tree
is considered ag might be satisfied only in conjunction with an anonymousvitlial,
and not a constant.

Example 6
Consider a program with two ruleg(a) < p(a), not ¢(a), andp(X) V not p(X) + .
While p is satisfiablep(a) does not appear in any open answer set.

Definition 2

Let P be a program. A predicaiec upreds(P) is forest satisfiablev.r.t. P if there is an
open answer s€t/, M) of P and there is an extended fordst' = ({T.} U{T, | a €
cts(P)}, ES), wheree is a constant, possibly one of the constants appganng, and a
labeling function’ : {T.} U{T, | a € cts(P)} U Agp — 2P™%(P) such that

* peL(e)

e U = Ngr,and

o M ={L(x)@) |z € Npr} U{L(z,y)(@,y) | (z,y) € Apr ), and
o forevery(z,z-i) € Agp: L(z,2-1),# 0.

We call such gU, M) aforest mod and a progranP has theforest model property
if the following property holds:
If p € upreds(P) is satisfiable w.r.tP thenp is forest satisfiable w.r..

8 Note that in this cas@:. € {T, | a € cts(P)}. Thus, the extended forest contains for every constant ffom
a tree which has as root that specific constant and possililydb necessarily, an extra tree with unidentified
root node.

9 Remember that’(x) and £(x,y) are sets of unary and binary predicates, resp., and thusvéoy p <
upreds(P): p(xz) € M iff p € L(z) and for everyf € bpreds(P): f(z,y) € M iff f € L(z,y).

10 Note that technically, a forest model is a subset minimal@had it is an open answer set.
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Proposition 1((Heymans et al. 200Y)
FoLPs have the forest model property.

Example 7

Let EF be the extended forest depicted in Exampl&8: = ({1.,T;},{(y,7)}), where

¢ = x. According to the notation we introduced for trees, the sasor ofr in T}, y, has
the formz - 4, with ¢ € N*. One can see thauppy, the predicate checked to be satisfiable,
is in the label ofs: happy € L(x), the universé/ of the open answer set is indeed equal
to Ngr = {x,y,j}, and every predicate symbol corresponding to some atohf is in
the label of the argument of the atom, emguhappy € L(j). The reciprocal also holds:
every node/arc of the extended forest in conjunction witerg\predicate symbol in its
label forms an atom which is part of the interpretation. $odholds that: andy = « - i are
linked by a positive binary predicaté{z, y)™ = {sees, friend} # 0.

In (Feier and Heymans 2008), we introduced the class of sif@phceptual Logic Pro-
grams. Itis easy to see that every simple CoLP is an FoLP. ##iahility checking w.r.t.
simple Conceptual Logic ProgramsagpPTIME-hard, the following property follows:

Proposition 2
Satisfiability checking w.r.t. FoLPs BxPTIME-hard.

Note that, at present, we do not have a tight complexity attaraation for FOLPs: we
have a lower boundexPTIME) established by the inclusion of simple CoLPs in FoLPs,
while the algorithm described in this article runs in the starase in double exponential
time, thus establishing an upper bound.

4 An Algorithm for Forest Logic Programs

In this section, we define a sound, complete, and terminaiggrithm for satisfiability
checking w.r.t. FOLPs. In (Heymans et al. 2007) it has beewnshhat several restrictions
of FoLPs which have the finite model property are decidahletiere was no result so far
regarding the whole fragment. Thus, the algorithm desdrib¢his section also establishes
a decidability result for FoLPs.

The basic data structure for our algorithm iscaampletion structureA completion struc-
ture describes a forest model in construction. As such, #iia omponents of the structure
are an extended forestF, the forest-shaped universe of the constructed open ars&uer
and a labeling functionT, which assigns to every node, resp. arddf, a set of possibly
negated unary, resp. binary predicates, calledrstent The presence of such a predicate
symbol/negated predicate symbol in the content of some nodec indicates the pres-
ence/absence in the forest model in construction of the &omed with that predicate
and the current node or arc as argument. Note that unlikeab®dihg function’ in defini-
tion[2 which describes which atoms are in the forest modellgbeling functiorcT keeps
track also of which atoms are not in the forest model. Thiesded as the forest model is
updated by justifying the presence or absence of a certam &t itself.

The presence (absence) of an atom in a forest model in cotistrus justified by im-
posing that the body of at least one ground rule which hastbigerctive atom in the head is
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satisfied (no body of a rule which has the respective atomem#fad is satisfied). In order
to keep track which (possibly negated) predicate symbolkérncontent of some node or
arc have already been justified a so-called status fundtiorroduced. The status function
ST assigns the valuenezp to pairs of nodes/arcs and possibly negated unary/binadrpr
icates which have not yet been ‘expanded’, i.e. justified, e valuecxp to such pairs
which have already been considered.

Furthermore, in order to ensure that the constructed fonestel is a well-supported
one (Fages 1991), or in other words, no atom in the modeldsileirly justified (does not
depend on itself) or infinitely justified (does not depend nimdinite chain of other atoms),
a graphG which keeps track of dependencies between atoms in the rizoghalintained.

In the following, for a predicatg, +p denote® or not p, whereby multiple occurrences
of +p in the same context refer to the same symbol (eith@rnot p). The negation of-p
(in a given context) isFp, thatis,Fp = not p if +p = pandFp = pif £p = not p.

Definition 3
A completion structure for a FOLP is a tuple( EF, cT, ST, G) where:

e EF = (F, ES) is an extended forest, its set of nodes being the universeedbtest
model in construction,

e CT : Ngp U App — 2preds(P)Unot (preds(P)) jg the ‘content’ function which maps
a node of the extended forest to a set of (possibly negateaty ymmedicates and an
arc of the extended forest to a set of (possibly negated)pip@dicates such that
cT(z) C upreds(P) U not(upreds(P)) if z € Ngp, andct(z) C bpreds(P) U
not(bpreds(P)) if x € Agr,

e ST : {(x,%q) | £¢ € cT(x),x € Ngr U Agr} — {exp,unezp} is the ‘sta-
tus’ function which indicates which predicates in the comief some node/arc are
justified, and which are not,

e G = (V, A) is a directed graph with verticd8 C atoms(Py,,) and arcsd C
atoms(Py ) X atoms(Py,,),

For checking satisfiability of a unary predicate.r.t. a FOLPP, one starts with an initial
completion structure which is defined as follows: the exeshtbrestE F is initialized
with the set of single-node trees having as root a constgrgaang inP and possibly a
new single-node tree with an anonymous @otn case the anonymous root tree exists,
its content is initialized with{p}, the predicate checked to be satisfiable. Otherwise the
content of the root of one of the other trees is initializedhw{ip}. The contents of the
other nodes (roots) are initialized wifh G is initialized to the graph with a single vertex
p(e).

Definition 4

An initial completion structurefor checking satisfiability of a unary predicgtew.r.t. a
FoLP P is a completion structuréEF, cT, sT, G) with EF = (F,ES), F = {T.} U
{T, | a € cts(P)}, wheree is a constant, possibly ints(P), andT, = {z}, for every
x € cts(P)U{e}, ES = 0,G = (V,A), V = {p(e)}, A = 0, cr(e) = {p}, and
ST(g,p) = unexp.

11 This is in order to comply with the generic shape of a forestiehdescribed in sectidd 3.
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In the following, we show how to expand such an initial contiple structure to prove
satisfiability of a unary predicagew.r.t. a FOLPP, how to determine when no more ex-
pansion is needed, that is, either the structure repreadntsopen answer set or a clash
has occurred, and under what circumstancelashoccurs. In particulagxpansion rules
evolve a completion structure, starting with a guess foméral completion structure for
checking satisfiability op w.r.t. P, to a complete clash-free structure that corresponds to
a finite representation of an open answer set in pasesatisfiable w.r.tP. Applicability
rulesstate the necessary conditions such that these expangsrcen be applied.

4.1 Expansion Rules

Expansion rules update the completion structure by makipticit constraints which are
necessary to hold for a certain literal to be part of a foresdettd.

An atom is part of a forest model if there is a ground rule whiels the atom as head
and all body literals are also part of the forest model; thitkaken care of by thexpand
unary/binary positiveules. New domain elements might have to be introduced bsethe
rules in order to obtain such a ground rule.

Conversely, an atom is not part of the forest model if all badif ground rules which
have as head the atom are not satisfied by the forest modetuldsewhich enforce this
are theexpand unary/binary negativeles. The absence of an atom in the forest model is
proved only when there is no possibility to introduce newvittlials in the domain which
would lead to a ground rule having the atom in the head andisfiahte body. As such,
there is an interaction between these rules and the rulehwistify the presence of atoms
in the open answer set.

Newly introduced domain elements give rise to new grounthatand rules and some
of these rules might render the program inconsistent. ler@be sure that the partially
constructed model is a complete one every ground atom haes podved to be either part
or not part of the forest model. If the atom is not constraitzebe or not to be part of the
forest model, a random choice is made. Theose unary/binaryules take care of this.

The expansion rules make extensive use of a sequence ofiopemaeant to enforce the
presence of a literatp(z) in the forest model (whereis a term in case € upreds(P),
and a pair of terms in cage € bpreds(P)) as part of justifying the presence of another
literal [. This consists in inserting-p in the content oz and mark it as unexpanded, in
case the predicate symbol is not already there, and intaéeg) is an atom, ensuring that
itis a node inG and if{ is also an atom, creating a new arc frémo £p(z) to capture the
dependencies between the two elements of the forest maztehafy:

e letcT(z) := cT(2) U {£p} andsT(z, £p) := unexp,
o if £tp=p,thenletV :=V U {£p(z)},
o if | € atoms(Pn,,) and+p = p, thenletd := AU {(I, £p(z))}.

As a shorthand, we denote this sequence of operationgdse(l, +p, z); more gen-
eral, update(l, 8, z) for a set of (possibly negated) predicatgsdenotesV + a € S,

12 A negative literal ‘is part’ of a forest model when the copesding atom does not make part of the model.
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update(l, +a, z). In the following, for a completion structurgsF', cT, ST, G), letx €
Ngr and(z,y) € Agr be the node, respectively arc, under consideration.

4.1.1 (i) Expand unary positive.

Consider a unary positive predicatec c¢T(x) such thasT(x,p) = unezp. If p is not a
free predicate symbol:

e pick aruler € P, of the form [3) such that (the term in the head of the rule)
matchese. The rule will be used to justify the presencepdt) in the tentative open
answer set.

o for thes in the body ofr, update(p(x), 8, x),

e considerk successors far: (ym)i1<m<k, (0y picking from the existing successors
and/or by introducing new ones), such that:

— foreveryl < (i,j) < ksuchthat; # t; € ¥:y; # vj;
— foreveryl <m < k:
— Ym € succgr(x), Of
— ym is defined as a new successorcdh the treeT,., wherex € T,: y,, :=
x - n,wheren € N*s.t.x - n ¢ succgr(x), andT, := T, U {y,, }, or
— ym IS defined as a new successormoin EF' in the form of a constant:
ym = a, Wherea is a constant fromets(P) s.t.a ¢ succgr(x). In this
case also ad(lr, a) to ES: ES := ES U {(x,a)}.

o foreveryl < m < k: update(p(x), Ym, (€, ym)) @andupdate(p(x), 5, Ym)-
e setsT(z,p) := exp.

If pis free, its status in the content.efs simply updated to expandeic(z, p) = exp,
as the presence ofz) in the forest model in construction is trivially justified tye free
rule which defineg grounded withe.

4.1.2 (ii) Choose a unary predicate.

Ifthereis ap € upreds(P) suchthap ¢ ct(z) andnot p ¢ cT(x), andforallg € cT(z),
sT(z,q) = exp, and for all(z,y) € Agr and+f € cT(z,y) (both positive and negative
predicatesyT((x,y), +f) = exp then do one of the following:

e addp to cT(x) and letsT(z, p) := unexp, Or
e addnot pto ct(z) and letsT(x, not p) = unexp.

In other words, if there are still unary predicates which dbappear ircT(z) (eitherin a
positive or a negated form) and all positive predicatesaérctintent ofr have been justified,
as well as all positive or negative predicates in the coraénne of the arcs starting in
have been justified, one has to non-deterministically picihsa unary predicate symbpol
and inject eithep or not p in cT(z).

As mentioned in the introduction to this section, this rele@eded in order to ensure that
the partially constructed forest model is part of an actuadiet: as a result of introducing
new domain elements in the process of constructing a foredemthere might be ground
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rules whose heads are not relevant per se for the satidfyataisik at hand, but which are
not satisfiable in any total extension of the partial forestlel. One tries to effectively con-
struct such an extension by making a random choice for utiined ground atoms re-
garding their membership to the forest model. As an analo¢fye DL world, tableau algo-
rithms which check concept satisfiability typically intafize the TBox, i.e. reduce reason-
ing w.r.t. a terminology to checking satisfiability of a neancept|/(Horrocks et al. 1999).
This new concept is constructed by taking into account athras in the TBox and not
only those on which the initial concept checked to be sakifidepends.

As an example consider the program with only two rulesX) vV not a(X) « and
b(X) < not b(X). Suppose one wants to check whethés satisfiable: while it is trivial
to see that is justified by the first rule, the program has no open answedse to the
inconsistency introduced by the second rule. This will laeked down by our algorithm
by trying to proveb(e) andnot b(e) (after each of them is inserted in the content af a
result of applying the choose unary rule), and failing inreease.

For reasons described in the next subsection, this rule tasty over the rule which
describes the expansion of unary negative predicates.

4.1.3 (iii) Expand unary negative.

In general, for justifying that a negative unary literalt p € cT(z) (or in other words, the
absence gf(x) in the constructed forest model), one has to refute the bbelyssy ground
(non-free) rule with head atom(z). Letr € P, andr’ : p(z) < B(z), (vm(z,Ym),
m (Ym))1<m<k, ¥, With ¢ € U, ;<. {vi # y;}, andk € N, be a ground version of
The body ofr’ can be either:

o (i) ‘locally’ refuted: by refutation of a literal fron®(x). For this, one has to enforce
that there is atg € (B which does not appear ior(x), or in other wordsFq €
ct(z); note that this refutes all ground versionsrofvhere the head variable is
substituted withe.

e (ii) refuted in the ‘successor’ part of the rule: by refutetiof a literal from one of
(Ym (2, Ym))1<m<k OF (0m,(Ym)))1<m<k, OF by impossibility to satisfy). In a forest
model, all groundings af, in which one of the successor terms has been substituted
with ¢, wherey is a node in the forest which is not a direct successar,cdre
refuted: there is no arc which linksto y, and as such there are no literals of the
form f(z,y) with f € bpreds(P) in the constructed open answer set. Thus, one
has to consider only groundings in whi¢h,,)1<m< are successors af in EF":

(Ym = @ - zm)1<m<k, @and which satisfyy. For such ground rules, the body can be
refuted by enforcing that there istaf € §,, which does not appear ir(z, x - z,,)
(equivalent with:Ff € cT(z,z - 2,,)) or that there is atq € ~,, which does not
appear incT(x - z,,,) (equivalent with=q € cT(z - 2,,)), for somel < m < k.

As we want to refute the bodies of all ground versions,ofie either apply (i) once, or
apply (ii) for every assignment of successor terms with successors of in E'F which
satisfiesy). As ¢ imposes a minimum bound on the number of distinct successmist if
the number of successorsoin E'F is smaller than this bound, there is no such assignment
which satisfies). In this case, all bodies of ground versions-are refuted.
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Formally, for a unary negative predicat®t p € ct(z) for which st(z, not p) =
unezp, and for every rule: € P, of the form [3 such that: matches (s is the term from
the head of the rule), given that, ..., y, are the successors ofin EF', do one of the
following:

e pick atq € 8 andupdate(not p(x), Fq, x), or
o for all Yivs -+ Yip S. t.(l < ij < n)lsjgk: if forall 1 < 7,1 <k, t; €=
Yi; # Yi,» do one of the following:

— forsomem, 1 < m <k, pick+f € d,, andupdate(not p(z), Ff, (z,yi,,))
or
— forsomem, 1 < m < k, pick +¢ € 7,,, andupdate(not p(x), Fq, v, )-

Finally, setsT(x, not p) := exp.

Note that the introduction of new successors @ives rise to new ground unary rules
with headp(z). Such successors are introduced in the process of expapakitye unary
predicates. In order to ensure thét:) is indeed refuted, this rule should be applied only
when all successors afhave been introduced, i.e., when there is no possibilitytthéer
expand a positive unary predicate:

o forallp € upreds(P), p € ct(z) or not p € cT(x), and
e forallp € cT(x), sT(p, z) := exp

In other words, the rule is applied when neither of the exemnsaules(i) Expand unary
positiveor (ii) Choose unargan be further applied w.r.t. a certain nagdén this case there
is and there will be no unexpanded positive predicate in dmant ofx.

4.1.4 (iv) Expand binary positive.

Consider a binary positive predicate symijole ct(z,y) such thatst((z,y), f) =
unezp. If f is not free, pick a rule- € Py of the form [4) such that matchess and
y matches witht (s andt are the terms from the head of the rule) to justjfy For
B, v, andé corresponding to- do: update(p(x,y), 5, x), update(p(x,y),~, (z,y)), and
update(p(z,y),d,y). Finally, letst((x,y), f) := exp (this is applied also whejiis free).

4.1.5 (v) Expand binary negative.

For a binary negative predicate symbalt f € cT(x,y) such thasTt((x,y), not f) =
unexp, and for every rule: € Py of the form [4) such that matches; andy matcheg (s
andt are the terms from the head of the rule) do one of the following

e pick axp from 8 andupdate(not f(x,y), Fp,x), or
e pick atg from~ andupdate(not f(z,y), Fg, (z,y)), or
e pick a+q from ¢ andupdate(not f(z,y), Fq,y)).

Finally, letst((z,y), not f) := exp. Note that the expand binary negative rule, unlike its
unary counterpart, does not have to consider all succes$atgusty. As such, there are
no complex interactions between this rule and the exparatpipositive one.
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4.1.6 (vi) Choose a binary predicate.

If no (possibly negated) unary predicate: € cT(z) can be expanded according to
expansion rules (i)-(iii), and for allz,y) € Agr none of+f € cT(x,y) can be ex-
panded according to rules (iv) and (v), and for sofne bpreds(P): f ¢ cT(z,y) and
not f ¢ ct(z,y), then do one of the following:

e addf tocT(x,y) and letst((x, y),p) := unezp, Of
e addnot ftoct(z,y) andletst((z,y), not p) := unezp.

4.2 Applicability Rules

A second set of rules is not updating the completion strecturder consideration, but
restricts the use of the expansion rules. We refer to thdes as so-called applicability
rules.

4.2.1 (vii) Saturation

We call a noder € Ngr saturatedf

o for all p € upreds(P) we havep € cT(z) or not p € cT(x) and none oftq €
ct(z) can be expanded according to the rules (i)-(iii) ,

o for all (z,y) € Arsr, T € EF andp € bpreds(P), p € cT(x,y) Or not p €
cT(z,y) and none oftf € cT(z,y) can be expanded according to the rules (iv)-

(vi).

We impose that no expansions can be performed on a nodeigmwhich does not
belong tocts(P) until its predecessors are saturated (we exclude consarttsey can
have more then one predecessor in the completion, inclutamgselves).

4.2.2 (viii) Blocking

A nodex € Ngp is blockedif there is an ancestay of x in F, y <p x,y ¢ cts(P),
s.t.cr(z) C cr(y) and the setonnpra(y,z) = {(p,q) | (p(y),q(x)) € conng A

q is not freg is empty. We cally, =) ablocking pair No expansions can be performed on

a blocked node. Intuitively, if there is an ancesjoof = which is not a constant, whose
content includes the content of one can extend the interpretation such that the contents
of x and its outgoing arcs are identical to the contentgarfid its outgoing arcs. The newly
introduced atoms which haveas an argument will be justified in a similar way as their
counterpart atoms which hayeas an argument. One can either:

1. reuse the successors gpfas successors aof: this consists in the introduction of
‘backward’ arcs in the extended forest from the leaf node the said successors.
The contents of these backward arcs will replicate the edrdktheir counterpart
arcs fromy to its successors. The interpretation thus obtained is ngdoa for-
est shaped one. This is the approach we consider for prokrexgdundness of the
algorithm and it is exemplified in Sectibn #.5.
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2. introduce new successors fowhich are similar to the successorsyoénd which
at their turn will be justified similarly to the successorgofind so on. In this case,
one obtains an infinite forest interpretation. This apphaa@xemplified at the end
of Sectiof4.4.

However, in order for the interpretation constructed in ofithe above ways to be a forest
model, it is necessary that no atom in the interpretatioirésiarly or infinitely justified: a
sufficient condition to enforce this is to impose that thewere paths irG from a positive
literal p(y) to another positive literaj(x). For more insight into this please check Section
[4.3 and the complete soundness proof in the appendix.

4.2.3 (ix) Redundancy

A nodex € Ngr is redundantf it is saturated, it is not blocked, and there &rancestors
of 2 in F, (y;)1<i<k, Wherek = 22(2°° — 1) + 2, andp = |upreds(P)], such that
ct(z) = cT(y;). In other words, a node is redundant if there are otheodes on the
same branch with the current node which all have content égjttee content of the current
node. The presence of a redundant node stops the expanst&Esgr

In the completeness proof we show that any forest model oL#Fowhich satisfiep
can be reduced to another forest model which satigfaesd has at mogt + 1 nodes with
equal content in any branch of a tree from the forest model farthermore théx + 1)st
node, in case it exists, is bIocl@i One can thus search for forest models only of the latter
type. This rule exploits that result: we discard models Wlace not in this shrunk search
space. For more intuition regarding the reduction of a fomesdel to a forest model with
at mostk + 1 nodes with equal content in any branch of a tree from the foneslel, we
refer the reader to the completeness proof in the appendix.

4.3 Clash-Free Complete Completion Structures

We call a completion structureontradictoryif for somex € Ngr anda € upreds(P),
{a,not a} C cr(x) or for some(z,y) € Agr and f € bpreds(P), {f,not f} C
ct(z,y). A complete completion structufer a FOLPP and ap € upreds(P) is a com-
pletion structure that results from applying the expansidas to an initial completion
structure forp and P, taking into account the applicability rules, such that Rpansion
rules can be further applied. Furthermore, a complete cetiopl structureCS = (EF,
CT, ST, G) is clash-fredif:

e (1) CS is not contradictory,
e (2) EF does not contain redundant nodes, and
e (2) G does not contain positive cycles.

13 The reduction consists in collapsing parts of the forestamfacing a subtree with roetwith another subtree
with root d, wherect(c) = ct(d), andd is a (non-constant) successor ®fn the forest. However, this
reduction can be applied only when certain conditions arg eng. there are no blocking nodes on the path
betweenc andd. As such, the value df depends on the number of possible contents for natfedhut it is
greater than that, due to the fact that the reduction can fleedonly in certain situations.
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Next section will give an example for constructing a clastefcomplete completion
structure, while section 4.5 will show that a predicatis satisfiable w.r.t. a FOLPP iff
there exists a clash-free complete completion structugevef.t. P.

4.4 lllustration of the algorithm

Consider a slightly modified version of the FOLP program desd in Sectiofill, in which
the constraints have been replaced by unary rules as deddéritSectio 3, and the last
rule has been removed. We will refer to this progranfas

r1: happy(X) «—sees(X,Y), friend(X, Y), happy(Y)

ro: happy(X) +—sees(X,Y), enemy(X, Y), unhappy(Y)
r3: unhappy(X) —sees(X,Y), friend(X, Y), not happy(Y')
4+ unhappy(X) +—sees(X,Y), enemy(X, Y), happy(Y)

r5: happy(X) —friend(X,Y), friend(X,Z),Y # Z

r6: sees(X, YY)V not sees(X,Y) +—
ry: friend(X, Y) V not friend(X,Y) «
rg: enemy(X, Y) V not enemy(X, V)«

r9: ¢(X) +not ¢(X), happy(X), unhappy(X)
r10:d(X,Y) —not d(X,Y), friend(X,Y), enemy(X, Y)
7112 unhappy(j) «hungry(j)

We want to check the satisfiability of the predicateopy w.r.t. P. For this purpose, we
first define an initial completion structure fornppy w.r.t. P: (EF, CT, ST, GG). There is
one constant inP, j, so there will be a tree with rogt, 77, in EF'; further, we choose
not to include a tree with anonymous root/it¥', and thus the only choice for placing the
initial constrainthappy is the content of nod¢ The initial status ohappy in this node is
unexpanded, so the status function is updated accordifigé/graphG = (V, A) which
keeps track of dependencies between atoms in the model &traotion is initialized such
thatV = {happy(j)}, andA = (). The picture below depicts the initial completion struc-
ture forhappy w.r.t. P. Note that the fact that the statustafppy is unexpanded is marked
by appending the superscripto happy.

j {happy"}

According to the expansion rul@ Expand unary positivethe presence of the unex-
panded predicatkappy in the content of a nodg, or in other words ofappy(j) in the
corresponding tentative open answer set, has to be judbfi@deans of a unary rule with
head predicatkappy and head term which matchgsWe apply the expansion rule using
the unary ruler; : happy(X) + sees(X,Y), friend(X, Y), happy(Y): a new succes-
sorj1 is created foy in T; and the predicateses and friend are inserted in the content
of the arc(j, j1), and the predicateappy is inserted in the content gi.. G is also updated
by addition of the nodeBappy(j1), sees(j, 1), and friend(j, j1) to V, and of the arcs
(happy(j), sees(j, j1)), (happy(j), friend(j, j1)), and(happy(j), happy(j1)) to A. In
other wordshappy(35) is in the model in construction if there is an individyalsuch that
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sees(j,j1), friend(j,j1), andhappy(j1) are all present in the same open answer set.
Next figure depicts the situation after the application &f ¢éixpansion rule. The predicate
happy in the content ofj1 is marked as unexpanded. The other predicates are either ex-
panded kappy in the content ofj) or free predicatessées and friend in the content of

(4, 71)), and as such they are not superscripted.

j {happy}
J{sees, friend}

j1{happy"}

Once again the only unexpanded predicatedigpy, only this time in the content ofl.
However, we cannot proceed to its expansion sjhisenot saturated: there are predicates
which do not appear either in a positive or a negative formhim ¢ontents off and its
outgoing arcs. Remember that according to applicabilliy (i) Saturationno expansions
can be performed on a node which is not a constant until itdgmessor is saturated. We
pick the predicatdiungry and apply the expansion ru{@) Choose unanby inserting
not hungry in the content ofj. It is not possible to applyiii) Expand unary negative
w.r.t. not hungry in the content ofj, as one can still apply th@) Choose unaryule: as
such we pick the predicateand choose to insertot c in the content oj. Once againj
is not saturated an(i) Choose unarycan be applied w.r.unhappy: we choose to insert
unhappy in the content ofj:

j {happy, not hungry*, not c*, unhappy™}
{sees, friend}

j1{happy"}

Among the unexpanded predicates in the content afe pick unhappy as the next
candidate for expansion &3 Expand unary positiv@as priority ovef(iii) Expand unary
negative A rule with head predicatenhappy and head term which matchgss picked
to justify the presence afrnhappy(j) in the model in construction’s : unhappy(X) +
sees(X, Y), friend(X, Y), not happy(Y'). Either the successor gf j1, is reused or a
new one is introduced to satisfy the non-local part of the.r@uppose we pick up the
already existing successgt,. In this casesees and friend are inserted into the content of
the arc(j, j1) (they are already there), whileot happy is inserted into the content gi.:
this leads to a contradiction as now bttt happy andhappy are in the content of1.

14 Note thatc (which is used to simulate a constraint) does not appearimdéad or body or any other rule than
rg and is never satisfiable: as such, an applicatiofijo€hoose unaryule w.r.t.c is needed for saturating the
content of every node, and for simplification of expositioa will always choose to inseftot c in the content
of the node (as the other choice would lead to a contradictibime same reasoning appliesdtdfor every arc,
there has to be an application of v Choose binaryule w.r.t.d and the choice in each case will be to insert
not d in the content of the arc.



22 Cristina Feier and Stijn Heymans

Jj {happy, not hungry*, not c*, unhappy™}
{sees, friend}

J1{happy", not happy"}

The algorithm backtracks and introduces a new successgy for sees and friend are
inserted into the content of the aff, j2), andnot happy is inserted in the content gP.
Now unhappy in the content off can be marked as expanded, and we proceed further with
the expansion process. Suppose we piekc for expansion. There is a single ground rule
which defines:(j): ¢(j) < not c(4), happy(j), unhappy(j). According to the expansion
rule (iii) Expand unary negativethe body of this rule has to be refuted. There are three
possible choices for doing this: insertingnot happy, or not unhappy into the content
of j. Each of the three choices leads to a contradiction. Thedigalow depicts the case
whennot unhappy was chosen to refute the body of the rule.

Jj{happy, not hungry®, unhappy, not ¢, not unhappy™}

{sees, friend}/ \{sees, friend}

{happy"}j1 Jj2{not happy"}

The algorithm backtracks to the previous choice, which vis@sdhoice of the rule to
justify unhappy in the content of . There are still two more rules iR whose head matches
unhappy(j): r4 andry;. However, from the previous developments one can see teat ev
if unhappy is satisfied in some other way, one will eventually reach aregliction due
to the presence dfappy, unhappy, andnot ¢ in the content ofj. As such, we skip the
remaining two choices as concerns rules to justifyuappy(j). Backtracking further, one
has to retractinhappy from the content ofj, and insertnot unhappy instead, and mark
it as unexpanded. Next step is to seleet unhappy for expansion. According to the
expansion ruldiii) Expand unary negativeevery ground rule which defines.happy(j)
has to be considered and its body to be refuted. There is at@niiation for each rule
whose head matches.happy(j):

o r3: unhappy(j) < sees(j, j1), friend(j, j1), not happy(j1). The body of this rule
has to be refutedsees(j, j1) and friend(j,j1) are already part of the tentative
open answer set so they cannot be refuted. The only remathioige is to refute
not happy(j1), thus to inserhappy into the content of 1.

o 14 unhappy(j) + sees(j,jl), enemy(j,j1), happy(j1). Here the only choice
which does not lead to contradiction is assertitg enemy to the content ofj1.
The predicatenemy is a free predicate, defined only by a free rule, so it is thiyia
expanded.

e 711: unhappy(j) + hungry(j). The body of this rule is refuted by the presence of
not hungry into the content of.

Finally, in order to saturatg we apply th€vi) Choose binaryule and insertot d in the
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content of(j, j1). Then,not d is expanded usinf/i) Expand binary negativave observe
that the body of the ground rulé(j,j1) < not d(j,j1), friend(j,j1), enemy(j,j1)
derived fromry is already refuted by the presencemt enemy in the content ofj, j1).

J {happy, not hungry, not unhappy, not c}

J {sees, friend, not enemy, not d}
j1{happy*}

At this moment,j is saturated and by means of applicability r(N&@) Saturationwe
can proceed to its successfr. One can see that the content f is included in the
content ofj, so according to ruldviii) Blocking, (j,j1) is a candidate blocking pair.
HoweverG contains the ar¢happy(j), happy(j1)), so connpra(j,j1) # 0, and the
second condition of the blocking rule is not met. Intuitiyaf one would justifyj1 in
a similar manner ag, an infinite chain of the typé&appy(j), happy(j1), ... would be
present in the model in construction, each atom in the setgbgistified by the next
one in the set, thus there would be atoms in the model whichmairdinitely justified.
Thus, 1 cannot be blocked and we proceed to expanding its conter#.tifine we pick
rule r5 : happy(X) + friend(X,Y), friend(X,Z), Y # Z to justify the presence of
happy(j1) in the tentative open answer set. To satisfy the body of scmengled version
of the rule, two distinct successors fdf, j11 and;j12, are created, anfl-iend is asserted
to the content of botlyj1, j11) and(j1, j12). The arcghappy(j1), friend(41,j11)) and
(happy(j1), friend(j1, j12)) are added tAd in G to capture the new dependencies be-
tween atoms in the tentative open answer set.

J {happy, not hungry, not unhappy, not c}

J{sees“, friend, not enemy, not d}

J1{happy}

{friend"}/ \{friend“}

{rin J12{}

Now we proceed to saturajé by choosing to addot ¢, not hungry, andnot unhappy
to the content ofj1 by repeatedly applying the expansion rl&) Choose unary neg-
ative The first two additions are expanded in a similar manner ag tounterparts in
the content ofj. As concernsnot unhappy, we have to consider again all three rules
which define the predicatenhappy. The justification w.r.tr1; is similar as above, as
the rule is a local rule. There are two successorglefjl1 and j12, so there are two
ground versions ofs: unhappy(j1) < sees(j1,j11), friend(j1,511), not happy(j11),
and unhappy(j1) <« sees(j1,7j12), friend(j1,j12), not happy(j12), and two ground
versions of rulery: unhappy(jl) < sees(j1,j11),enemy(j1,511), happy(j11), and
unhappy(j1) + sees(j1, j12), enemy(j1, j12), happy(j12). The bodies of all these four
ground rules have to be refuted. This is achieved by asgéttippy to the content of11,
not sees to the content ofj1,j12), andnot enemy to both the contents ofj1, j11)
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and(j1, j12). Finally, we saturatgl by completing the contents of the argd, j11) and
(41, 412) in a similar manner as for the af¢, j1).

j{happy, not hungry, not unhappy, not c}

J{sees, friend, not enemy, not d}

Jj1{happy, not unhappy, not hungry, not c}
{friend, sees, not enemy, not dy \{friend, not sees, not enemy, not d}

{happy"}j11 Jr2{}

At this moment,j1 is also saturated and we observe that the contents of bashdts
cessors are included in its own content. Unlike the case evbe(j1) C ct(j), but
connprg(7,51) # 0, we have that botkonnprg(j1,511) = 0, andconnprg (71, 712)
= (), thus both(j1,j11) and(j1, j12) are blocking pairs. Thus, the completion structure
depicted in the figure above is a complete clash-free complstructure. We can derive
a forest-shaped open answer set by unraveling the stryesirexplained already in the
context of rulg(viii) Blocking. The contents 0f11 and;j12 are made to be identical to the
content ofj1 and they are justified similarly as the contengdf This will give rise to two
new successors for bogh 1 and;12, which again will be justified in the same manner, etc.
The obtained forest model is depicted in the figure below.

J{happy}
{friend, sees}
j1{happy}
{friend, sees) { friend}

{happy}j1l Jj12{happy}

{friend, sees}/ \{friend} {friend, sees]/ \{friend}

Thus,happy is satisfiable w.r.tP. The open answer set which satisflegpy is (U, M),
with U = {j, 71,411,712, 5111, 4112, ...}, andM = {happy(j)} U{happy(js), friend
(js, jsl), friend(js, js2), sees(js,js1) |s = 1,11,12,111,112, .. .}.

4.5 Termination, Soundness, and Completeness

We show that an initial completion structure for a unary jratkp and a FOLPP can
always be expanded to a complete completion structeren{natior), that, if there is a
clash-free complete completion structupés satisfiable w.r.tP (soundnegs and finally,
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that, if p is satisfiable w.r.tP, there is a clash-free complete completion structacen-
pletenesp

Proposition 3(terminatior)

Let P be a FoLP ang € upreds(P). Then, one can construct a finite complete completion
structure by a finite number of applications of the expangibes to the initial completion
structure fop w.r.t. P, taking into account the applicability rules.

Proof sketch

Assume one cannot construct a complete completion stuttyia finite number of ap-
plications of the expansion rules, taking into account thpliaability rules. Clearly, if
one has a finite completion structure that is not completaji fapplication of expansion
rules would complete it unless successors are introducedgektr, one cannot introduce
infinitely many successors: every infinite path in the exeshfibrest will eventually con-
tain |k + 1| saturated nodes with equal content, whieie as in the redundancy rule, and
thus either a blocked or a redundant node, which is not fuekganded. Furthermore, the
arity of the trees in the completion structure is bound byriheber of successor variables
in unary rules, more precisely byink(P), whereP is the FoLP under consideration ]

Proposition 4(soundnegs
Let P be a FOLP ang € upreds(P). If there exists a complete clash-free completion
structure fop w.r.t. P, thenp is satisfiable w.r.tP.

Proof sketch

From a clash-free complete completion structure, one castoact an open interpretation
and show that this interpretation is an open answer sét tifat satisfiep. One way to
construct such an open interpretation, by unraveling tinepdetion structure to an infinite
structure (an open answer set with an infinite universe andfanite interpretation), has
been exemplified in the previous section. However, for sicitglof the proof we chose a
different approach: from a forest-shaped completion stineove generate a graph-shaped
open answer set by extending the content of the blocked nodesidentical to the content
of the corresponding blocking nodes and introducing agidéi arcs from blocked nodes
to successors of blocking nodes which mirror the arcs frommittocking nodes them-
selves to their successors (thus, also inheriting theitesah Also, at this stage all negated
predicates from the contents of nodes/arcs can be ignomtsidering our example from
sectior 4.4, the complete clash-free completion strualeseribed there gives rise to the
graph-shaped open answer set depicted by Figure 2.

The universe of the open interpretation is the set of nodéseofiew graph (identical to
the set of nodes of the extended forest), while the inteaicet is the set of atoms having
as arguments nodes/arcs of the graph and as predicate sypnedicates in the content of
these nodes/arcs. In the example above, the open answer{getipy(j), friend(j,j1),
sees(4,71), happy(jl), friend(j1,j11), sees(j1,711), happy(jl11), friend(j11,j11),
sees(j11,411),, friend(j11,j12), sees(j11,512), ...}. Intuitively, the atoms having as
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j {happy}

{friend, sees}

j1 {happy}

{friend, sees} {friend}

) {friend, sees} )
{friend, se¢s} friend}

(1 (l

{happy} j11 j12 {happy}

{friend}

Fig. 2: Graph-shaped open answer set derived from a claghemplete completion
structure

arguments non-blocked nodes are justified by the way the legiop structure was con-
structed, while atoms having a blocked node as one of thenaegts are justified in a
similar way to their counterpa@

The blocking condition which states that there should beatb from ap(x) to aq(y)
in G if (z,y) is a blocking pair, is crucial in showing that this open iptetation is mini-
mal. The intuition was given in the previous section wheredigeussed how although the
content of nodg1 was included in the content of noget a certain point in the expansion
process they do not form a blocking pair as there is a path freppy(j) to happy(j1).
For more details, we refer the reader to the complete proappendix. [

Proposition 5(completenegs
Let P be a FOLP ang € upreds(P). If p is satisfiable w.r.tP, then there exists a clash-
free complete completion structure fow.r.t. P.

Proof sketch
If pis satisfiable w.r.tP thenp is forest-satisfiable w.r.#2. We construct a clash-free com-
plete completion structure ferw.r.t. P, by guiding the non-deterministic application of the
expansion rules with the help of a forest modePofvhich satisfiep and by taking into ac-
count the constraints imposed by the saturation, bloclkind redundancy rules. The proof
is inspired by completeness proofsin DL for tableau, fomepke in (Horrocks et al. 1999),
but requires additional mechanisms to eliminate redunparts from Open Answer Sets.
There are two main stages in the proof: in the first stage,aaiedcomplete clash-free

15 The counterpart atom of an atopix)/ f(x, y), wherez is a blocked node is the atop{z)/f(z,y), where
(2, z) is a blocking pair.
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relaxed completion structuiis constructed with the help of a forest modelfofvhich sat-
isfiesp. Such a structure is defined/constructed similarly as aicialscompletion structure
apart from the fact that the redundancy rule is not emplopedordingly, for a relaxed
completion structure to be clash-free the condition reigarthe absence of redundant
nodes is not relevant.

The second stage consists in transforming such a compéestie-flee relaxed completion
structure into a clash-free complete completion structlihe transformation consists in
several successive steps, each step ‘shrinking’ the ateydty cutting some parts of it, in
such a way that the new structure is still a complete clasbelaxed completion structure.
It is shown that the result of this transformation is a stuefor which every branch of the
tree has at most nodes with equal content, withas defined in the redundancy rule, and
thus, it is a complete clash-free completion structure ritore details, we refer the reader
to the appendix. [

Proposition 6
The algorithm runs in the worst case in double exponentia in the size of the program.

Proof sketch

That the algorithm takes in the worst case at least doublereqtial time can be seen from
the fact that an extended forest in a completion structuseitngéhe worst case a double
exponential number of nodes in the size of the program: therenaximumnk + 1 nodes
with equal content on any branch of a tree in the completidreret = 2”(2"2 -1 +2,
andn = |upreds(P)|, there are2™ different possible configurations for the content of a
unary node, the number of trees in the extended forest isdsaliny|cts(P)| + 1, and the
arity of any such tree is bounded by= rank(P); thus the bound on the number of nodes
isb=(c+ 1)r22"+"2‘22"+2"“, which is double exponential in the size Bf

We consider the transformation of the algorithm to a deteistic procedure. One can
see the deterministic procedure as constructing an AND/GBnded forest with depth
double in the size of the largest depth encountered wheningrthe nondeterministic
algorithm. At odd levels, there are OR nodes with unexpamdedent (they contain just
the constraints imposed by their predecessor or the prtediteecked to be satisfiable in
case of one root node and an empty set for the other root nadeitd at even levels, there
are AND saturated nodes which are ‘realizations’ of the@dacessor, i.e., they (together
with their outgoing arcs and direct successors) describessilple way to saturate the
predecessor node. For every OR node, each of its ‘realitipawns a new copy of the
graphG. A leaf of the AND/OR extended forest is labeled witliseif it is a redundant
node and withtrue otherwise. A predicatg is satisfiable in such a structure if the root
node of every tree in the structure evaluatesue.

First of all, we notice that it takes polynomial time to jdgtthe presence of a unary
predicate in the content of a node and the presence of a ypssigated) binary predi-
cate in the content of an arc. Justifying the presence of atedgunary predicate in the
content of a node takes exponential time (all groundingsafin unary rules have to be
considered, and, in general, there is an exponential nuoflserch groundings). As such,
justifying the content of a node takes exponential time |avjuistifying the content of an
arc takes polynomial time.
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We count how many ways there are to saturate the content odle& imothe worst case
there is an exponential number of choices for justifyingatesence of a (possibly negated)
unary predicate in the content of a node, a polynomial nurobahoices to justify the pres-
ence of a (possibly negated) binary predicate in the comteainode, and an exponential
number of choices regarding the possible content of a nodlea such, in the worst case
there is an exponential number of choices to saturate a tlmge an exponential number
of successors to an OR node, and the maximum branching fafdtoe AND/OR extended
forest is exponential in the size &f. The maximum depth is also exponential in the size
of P as it is double of the maximum depth of a complete completicucture which is
22”(2”2 — 1) + 27+, wheren is as above. Thus, the AND/OR extended forest has in the
worst case a double exponential number of nodes and arcaustifipg the content of
each of these nodes and arcs can be done in exponential time.

There will also be a double exponential number of dependgragyhs generated (as an
exponential number of them is spawned at each OR node), afdoéahem has double
exponential size (the number of atoms in an open answer ketrsded by(b — 1)m + bn,
wherem = |bpreds(P)|, andb andn are as above. Checking for the existence of certain
paths in such a graph (necessarily for the blocking congjitan be done again in double
exponential time. As such the construction of the AND/OReagted forest and of the
dependency graphs can be done in double exponential tineeeviiuation of the AND/OR
extended forest can be done in double exponential time irsittes of P, and thus the
deterministic procedure, and implicitly our algorithmneuin the worst case in double
exponential time.

O

Note that such a high complexity is expected when dealing tableau-like algo-
rithms. For example in Description Logics, although satlsfity checking inSHZQ is
EXPTIME-complete, practical algorithms run in non-determinigticible exponential time
(Tobies 2001).

Proposition 7

FoLPs have the bounded finite model property: if there is anamswer set, there is an
open answer set with a universe that is bounded by a nhumbéemkats which can be
specified in function of the program at hand.

Proof sketch

The property follows as a corollary of the soundness and ¢etepess results. The com-
pleteness proof shows that from an open answer set one catnatira clash-free complete
completion structure with maximubmodes, wheréis defined as in the proof for the com-
plexity result. At the same time, the soundness result shiatsany clash-free complete
structure gives rise to an open answer set whose universa@lethe set of nodes of
the completion. Thus, any open answer set can be reduceddpeamanswer set with a
bounded-size universe.[d

Note that the bounded finite model property opens the wayfaisiandard Answer Set
Programming reasoning. Lét be a FOLP. We define the progrda to be a new program
obtained fromP by addition of a constraint

< not p(xl)v KRR not p(Ik)v not p(cl)v s 7p(cm) )
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wherek is a natural numbet, < k < b— |cts(P)|, 1, - . ., z; are some newly introduced
individuals, andcts(P) = {e¢i,...,cm . To check whethep is satisfiable w.r.tP one
can simply check answer set existence for the progrBmB, ..., P,_|..(p)- Once an
answer set is found for one of these programs it can be coedltiaty is satisfiable and
the procedure is curtailed. If no answer set is found, thismot satisfiable. A is double
exponential in the size aP, b — |cts(P)| is also double exponential in the size Bf It
follows that constructing the progran, ..., P,_|.s(p) Starting frompP is also double
exponential in the size d? (one has to add t& in each case a new rule with2, ..., b —
|cts(P)| atoms). Checking the existence of answer sef3,dy, . .. P,_|css(p)|, iNVolves a
double exponential number of calls to an oracle which chéok&xistence of answer sets
for a non-ground program with bounded predicate aritiexotding to (Eiter et al. 2007)
checking answer set existence for a non-ground programlvatinded predicate arities
is in NP¥?(= XF). Thus, such an algorithm runs in the worst case in double rexqutial
time with an oracle ir%. As this is worse than the run-time of our algorithm (double
exponential time, Propositidn 6), we indeed have an ininahat our tableaux algorithm
is more efficient than naively using the bounded finite modepprty and finite Answer
Set Programming.

5 F-hybrid Knowledge Bases

In this section, we introdudehybrid knowledge bases, a formalism that combines knowl-
edge bases expressed in the Description L6gi#0 © with forest logic programs.

Description logics (DLspare a family of logical formalisms based on frame-based sys-
tems (Minsky 1985) and useful for knowledge representatisrbasic language features
include the notions ofonceptsandroles which are used to define the relevant concepts
and relations in some (application) domain. Different Dias ¢hen be identified, among
others, by the set of constructors that are allowed to formpiex concepts or roles; see,
for example, the 2 left-most columns of Talble 1, that defire ¢bnstructs iNSHOQ
(Horrocks and Sattler 2001).

The semantics of DLs is given by interpretatidns- (A%, -7) whereAZ is a non-empty
domain and? is an interpretation function. We summarize the constrot&H O Q with
their interpretation in Table 1.

A SHOQ knowledge basés a set ofterminological axiomg® T D with C and D
SHOQ-concept expressionmle axiomsk T S with R and S roles, andtransitivity
axiomsTrans(R) for a role nameR. If the knowledge base contains an axidimans(R),
we call R transitive For the role axioms in a knowledge base, we defires the transitive
closure of—. A simple roleR in a knowledge base is a role that is not transitive nor does it
have any transitive subroles (w.r.t. to reflexive transitlosure= of C). Terminological
and role axioms express a subset relation: an interpratatgatisfiesan axiomC; C Cs
(R1 C Ry)if C¥ C CF (R C RI). An interpretation satisfies a transitivity axiom
Trans(R) if RT is a transitive relation. An interpretation isi@odelof a knowledge base
3 if it satisfies every axiom irt. A conceptC' is satisfiablew.r.t. ¥ if there is a model
of ¥ such thaCZ # (). In order to avoid undecidability of satisfiability checgimumber
restrictions(at most and at least) are always such that the Role, e.g.,> nR.C, is (see,
e.g., (Horrocks et al. 1999)).
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Table 1: Syntax and Semantics®HOQ Constructs

| construct name | syntax | semantics

atomic concep€ A AT C AT

role R RTC AT x AT

nominalsl {0} {o*} C AT,

concept conj. CcnbD (cn D)X =c*tnD*

concept disj. cubD (CuD)r =c*tuDbD*

negation -C (~C)F = AT\ C*

exists restriction | 3IR.C (BR.C)Y ={z| 3y : (z,y) € RT andy € C*}
value restriction | VR.C (VR.C)T ={z|Vy: (z,y) € RT = y € CF}
atleast restriction] > nS.C'| (>nS.C)* ={z | #{y| (z,y) € ST andy € CT} > n}
atmost restriction < nS.C| (< nS.C)F ={z|#{y|(z,y) € ST andy € CT} < n}

We will assume theinique name assumptidry imposing thab? = o for individuals
o € I. Note that individuals are thus assumed to be part of any doma. Note that
OWL does not have the uniqgue name assumption (Smith et a#)2@6ad thus different
individuals can point to the same resource. However, the apswer set semantics gives
a Herbrand interpretation to constants, i.e., constastmserpreted as themselves, and for
consistency we assume that also DL nominals are interptieteday.

Example 8
Consider the followingSHOQ knowledge bas&:

Father T dchild. Human M —Female
{john} C (< 2child. Human)

Intuitively, the first terminological axiom says that fate@ave a human child and are not
female. The second axiom says thin has less than 2 human children.

Definition 5
An f-hybrid knowledge bass a pair(%, P) whereX is aSHOQ knowledge base angl
is a FoLP.

Atoms and literals inP might have as the underlying predicate an atomic concept or
role name fromy, in which case they are callddlL atomsandDL literals respectively.
Additionally, there might be other predicate symbols alai, but without loss of gen-
erality we assume they cannot coincide with complex conoepble descriptions. Note
that we do not impose Datalog safenes¢vaeakly) DL safenegdlotik and Rosati 2010;
Rosati 2005; Rosati 2008; Rosati 2006) for the rule compbnetuitively, the restricted
shape of FoLPs suffices to guarantee decidability; FoLPé$nageneral neither Datalog
safe nor weakly DL-safe; we will discuss the relation withalkly DL-safeness in detail in
SectiorlY.
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Example 9
An f-hybrid knowledge bas&:, P), with 3 as in Exampl€&l8 ané, the FoLP,

unhappy(X) <« not Father(X)
indicates that persons that are not fathers are unhappyewhéer(X ) is a DL literal.

Similarly as in[[Heymans et al. 2008), we define, given a DeriptetatiorZ = (AZ, 1)
and a ground prograr®, the projectionII(P,Z) of P with respect taZ, as follows: for
every ruler in P,

o if there exists a DL literal in the head of the form

— A(t1, ..., tn) With (t1,...,t,) € AT, or
— not A(ty,... t,) With (¢1,...,t,) & AZ,

then delete,
o if there exists a DL literal in the body of the form

— A(t1, ..., tp) With (t1,...,t,) & AT, or
— not A(ty, ..., t,) With (t,...,t,) € AZ,

then delete,
e otherwise, delete all DL literals from

Intuitively, the projection “evaluates” the program witgspect t&Z by removing (evaluat-
ing) rules and DL literals consistently wify conceptually this is similar to the GL-reduct,
which removes rules and negative literals consistenth it interpretation of the pro-
gram.

Definition 6
Let (X, P) be an f-hybrid knowledge base. Amerpretationof (3, P) is a tuple(U,Z, M)
such that

e U is a universe forP,
e 7 = (U,-%)is aninterpretation of}, and
e M is an interpretation ofl( Py, Z).

Then,(U,Z, M) is amodelof an f-hybrid knowledge basg:, P) if Z is a model of and
M is an answer set di(Py, 7).

The semantics of an f-hybrid knowledge bde P) is such that if> = @, a model
of (3, P) corresponds to an open answer setthfand if P = (), a model of(3, P)
corresponds to a DL model &f. In this way, the semantics of f-hybrid knowledge bases is
nicely layered on top of both the DL semantics and the opewanset semantics.

Example 10
For the f-hybrid knowledge bag&, P) in Exampld 9, take a univergé = {john, z} and
7 defined such thaFather” = {z}, child® = {(x, john)}, Female* = 0, Human® =
U, andjohn® = john. Itis easy to see that = (U, -Z) is indeed a model af.

We project the progran® taking into account, such thatP; is the program

unhappy(z) < not Father(z)
unhappy(john) < not Father(john)
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and sincer € Father” andjohn ¢ Father™, we have thatl(Py,T) is
unhappy(john) <+

such that\l = {unhappy(john)}is an answer set d1(Py,Z), and(U,Z, M) is a model
of (¥, P).

For p a concept expression frol or a predicate fromP, we say thap is satisfiable
w.r.t. (3, P) ifthere is amode(U, Z, M) such thap” # O orp(z1,...,x,) € M for some
x1,...,2, In U, respectively. Note that Definitidd 6 is in general applieab other DLs
thanSHOQ as well as to other programs than FoLPs. Indeed, in (Heymaais2008), a
similar definition was used fabLRO~ 1=} andguarded programs

We can reduce satisfiability checking w.r.t. f-hybrid kneddgje bases to satisfiability
checking of FoLPs only. Roughly, for each concept expressiee introduces a new pred-
icate together with rules that define the semantics of theesponding DL construct. Con-
straints then encode the axioms, and the first-order irg&pon of DL concept expres-
sions is simulated using free rules.

Taking the knowledge base of Exampld 9,Father T Jchild. Human M —~Female
can be translated to the constraiat Father(X), not (3child. Human M —Female)(X),
where(3child. Human M —Female) is a predicate defined by the rules

(3child. Human M —Female)(X) + (Ichild. Human)(X), (mFemale)(X)

i.e., a DL conjunction translates to a set of literals in tobdy Further, we define an exists
restriction and negation as follows:

Jehild. Human(X) <+ child(X,Y), Human(Y)
—Female(X) <+ not Female(X)

Finally, the first-order semantics of concepts and rolebtaioed as follows:

Father(X) V not Father(X) <+
Female(X) V not Female(X) <
Human(X) V not Human(X) <

child(X,Y)Vnot child(X,Y) <«

Similarly, the axiom{john} C (< 2child. Human) is translated as the constraint
+— {john}(X), not (< 2child. Human)(X)

and rules

{john}(john) <+
(< 2child. Human)(X) <« not (> Schild. Human)(X)
%

(> Schild. Human)(X) child(X, Yy), child(X, Yz), child(X, Y3),
Human(Y;), Human(Y2), Human(Ys),
Yi# Yo, Yi#Ys, Yo # Y3

Before proceeding with the formal translation, we definecdbeureof aSHOQ knowl-
edge base, clos(X), as the smallest set satisfying the following conditions:

e for eachC' C D an axiom inX (role or terminological){C, D} C clos(%),
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e for eachTrans(R) in X, {R} C clos(X),
e foreveryD in clos(X), we have

— if D = -Dy, then{D;} C clos(%),

— ifD= Dy U Do, then{Dl, DQ} - ClOS(E),

— ifD= DM Dy, then{Dl, DQ} - ClOS(E),

— if D =3R.Dy, then{R, D1} U{35.D1 | SER, S # R, Trans(S) € £} C
clos(X),

— if D =VR.Dq, then{3R.-D1} C clos(X),

— ifD=(<nQ.Dy), then{(>n+1Q.D1)} C clos(¥),

— if D= (>nQ.D1),then{Q, D1} C clos(X).

Concerning the addition of the extedS.D; for 3R.D; in the closure, note that €
(3R.D;)* holds if there is somér, y) € RT with y € DZ, and, in particularSE R with
S transitive such thatr, ug) € SZ, ..., (un,y) € ST with y € Df. The latter amounts to
x € (35.D;1)T. Thus, in the open answer set setting, we havekaD; () is in the open
answer set ifR(z, y) and D (y) hold or3S.D; (z) holds for some transitive subrokeof
R. The predicatelS. D, will be defined by adding recursive rules, hence the inclusib
such predicates in the closure.

Furthermore, for 4< n Q.D;) in the closure, we adfi(> n+ 1 Q.D)}, since we will
base our definition of the former predicate on the DL equivedd< n Q.D;) = —(>

Formally, we definegb(X) to be the following FoLP, obtained from ti&H O Q knowl-
edge bas&::

e For each terminological axiod = D € ¥, add the constraint
«— C(X),not D(X) (5)
e For each role axionkR C S € ¥, add the constraint
+ R(X,Y),not S(X,Y) (6)

o Next, we distinguish between types of concept expresstatsappear irclos(X).
For eachD € clos(X):

— if D is a concept name, add
D(X)V not D(X) + (7)

— if D is a role name, add

D(X,Y)Vnot D(X,Y) + (8)

— if D = {0}, add
D(o) (9)

— if D=-FE, add
D(X) + not E(X) (10)

— ifD=FENF, add
D(X)+ E(X),F(X) (11)
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— if D=FUF,add

b0 < FY) a2
— if D=3Q.E, add
D(X)+ Q(X,Y),E(Y) (13)
and for allSEQ, S # Q, with Trans(S) € %, add rules
D(X) + (3S.E)(X) (14)
If Trans(Q) € X, we further add the rule
D(X)+ Q(X,Y),D(Y) (15)
— if D=VR.F, add
D(X) + not (3R.—E)(X) (16)
— ifD=(<nQ.E), add
D(X) <+ not (>n+1 Q.E)(X) (17)

— if D= (>nQ.E), add

D(X)FQ(Xv Yl)v"" Q(X’ Yn)aE(Yl)""aE(Yn)v(Yi 7& Yj)lﬁi#jﬁn
(18)

Rule ([I3) is what one would intuitively expect for the exists restdot However, in
case( is transitive this rule is not enough. Indeed(fz,y), Q(y, z), E(z) are in an
open answer set, one expeti).E)(x) to be in it as well ifQ is transitive. However,
we have no rules enforcin@(z, z) to be in the open answer set without violating the
FoLP restrictions. We can solve this by addingi8) the rule(@5), such that such a chain
Q(z,y), Qy, z), with E(z) in the open answer set correctly deduc¥s).

It may still be that there are transitive subrolesibthat need the same recursive treat-
ment as above. To this end, we introduce 1({d4).

We do not need such a trick with the number restrictions siheeoles in a number
restriction are required to be simple, i.e., without tréimsisubroles.

Proposition 8
Let (X, P) be aSHOQ knowledge base. The®(X) U P is a FOLP, and has a size that is
polynomial in the size of.

Proof
Observing the rules i®(Y), it is clear that this program is a FoLP.
The size of the elements iflos(X) is linear and the size aflos(Y) itself is polynomial

in 3. The size of the FOLR (X)) is polynomial in the size oflos(3). The only non-trivial
case in showing the latter arises by the addition of (& which introduces@
inequalities for a number restrictiqe> n Q.E). We assume, as is not uncommon in DLs
(see, e.g./(Tobies 2001)), that the numiés represented in unary notation

11...1

N——"

n
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such that the number of introduced inequalities is quadiatthe size of the number re-
striction. [

Proposition 9
Let (X, P) be an f-hybrid knowledge base. Then, a predigeite satisfiable w.r.t(Z, P)
iff pis satisfiable w.r.td (%) U P.

Proof

The proof goes along the lines of the proof|in (Heymans et@G&2Theorem 1).

(=). Assumep is satisfiable w.r.t(x, P), i.e., there exists a mod@V, Z, M) of (X, P) in
which p has a non-empty extension. Now, we construct the open ietton(U, N) of
®(X) U P as follows:

N=MU{C(x) |z € CE C € clos(X)} U{R(z1,22) | (x1,72) € RE, R € clos(X)}

with C' and R concept expressions and role names respectively.

Itis easy to verify thatU, V) is an open answer set®{X) U P and thatU, N) satisfies
p.
(«<). Assume(U, N) is an open answer set &%) U P such thap is satisfied. We define
the interpretationtU, Z, M) of (X, P) as follows:

e 7 = (U,-T) is defined such thatt? = {z | A(z) € N} for concept namesl, P* =
{(z1,22) | P(z1,22) € N} for role names? ando” = o, for o a constant symbol i&. Z
is then an interpretation of.

M = N\{p(x1,...,2z,) | p € clos(X)}, such thatM is an interpretation dfl( Py, Z).

As a consequencél/,Z, M) is an interpretation ofX, P) and it is easy to verify that
(U,Z, M) is a model of(3, P) which satisfiep. O

Note that Proposition]9 also holds for satisfiability chegkef concept expression
introduce a rule(X) < C(X) in P and check satisfiability af.

Using the translation from f-hybrid knowledge bases to $btegic programs in Propo-
sition[d and the polynomiality of this translation (Propimsi[8), together with the com-
plexity of the terminating, sound, and complete algorittumdatisfiability checking w.r.t.
FoLPs, we have the following result:

Proposition 10
Satisfiability checking w.r.t. f-hybrid knowledge basemi2-NEXPTIME in the size of the
f-hybrid knowledge base.

As satisfiability checking ofALC concepts w.r.t. andLC TBox (note thatALC is a
fragment ofSHOQ) is ExPTIME-complete[(Baader et al. 2003, Chapter 3), we have that
satisfiability checking w.r.t. f-hybrid knowledge basegisTIME-hard.

Proposition 11
Satisfiability checking w.r.t. f-hybrid knowledge basegs i TIME-hard.
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6 Simple Forest Logic Programs

Simple Conceptual Logic Programs (CoLPslere defined in (Feier and Heymans 2008)
as a fragment o€Conceptual Logic Programs (CoLP¢ieymans et al. 2006). As men-
tioned in the introduction, simple Conceptual Logic Pragsasimplify Conceptual Logic
Programs by introducing a restriction on predicate reouargi programs. Here we adopt
a similar restriction on Forest Logic Programs, and we obtafragment which we call
simple Forest Logic Programs (simple FoLPs). As we will ge&,algorithm can be eas-
ily adapted such that it checks satisfiability w.r.t. simpte_Ps in exponential time, one
exponential level lower than the time needed for FoLPs.

Some preliminaries are needed for introducing this fragnieor such a FOLRP, let
D(P) be themarked positive predicate dependency grapiiP) is a directed graph that
has as vertices the non-free predicates fiBrand as arcs tuple®, ¢) if there is either
a rule of the form[(B) or a rule of the forrml(4) with a head liteaand a positive body
literal I> such thatred(l1) = p, andpred(ls) = q. An edge(p, q) is calledmarked if ¢
is a predicate in som&,, for rules [3), respectively for rules [4). In order forP to be a
simple FoOLP,D(P) must not contain any cycle that has a marked edge.

The restriction onD(P) ensures that there is no path from some ajdm) to some
atomp(y) in the atom dependency graph Bff which does not contain some ataytx),
such thatg is free, wherep € upreds(P), ¢ € preds(P), U is some arbitrary universe,
andz,y € U, xz # y. Consider the prograrR:

R p(X) q(X), f(X,Y),not p(Y)
Tg @ Q(X) P(X)
T3 : f(X7 Y) — g(X7 Y)aQ(Y)

<_
<_
The marked positive dependency graph is depicted in Figu&'t8le (p,q,p) is an

unmarked cycle(q, p, f, ¢) is a marked cycle, and thu3 is not a simple FoLP. However,
if the last rule ofP is dropped, it becomes a simple FoLP.

(P XD
/
(O_©
Fig. 3: Marked Dependency Gragh(P)

6.1 Reasoning with Simple FoLPs

Similarly as for FoLPs we define an initial completion sturetfor checking the satisfia-
bility of a unary predicate w.r.t. a FOLPP. The completion is expanded via expansion
rules, whose application is governed by applicability suléll expansion rules for FOLPs
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(rules (i)-(vi)) are employed also in this case. As concénesapplicability rules, rulévii)
Saturationstays the same, rul@iii) Blocking is modified such that instead of the com-
plex condition for FOLPs an anywhere subset blocking tempimiis applied, and rul@x)
Redundancis dropped. We give below the formal definition for the newdiiag rule:

6.1.1 (viii") Blocking

A nodex € Ngr is blockedif there is a saturated nodec Ngr, with y & cts(P), such
thatcT(x) C ct(y). Like for FOLPs, we call(y, ) ablocking pair No expansions can be
performed on a blocked node.

Intuitively, if there is a saturated nodein EF which is not a constant, whose content
includes the content of, as there are no paths from apfr) to someg(y) (due to the
restriction that there is no cycle in the marked positiveetdefency graph of), one can
reuse the justification foy when dealing withz. Note thaty andz do not have to be on
the same path in a tree iF'. Such a blocking technique is called “anywhere blocking”.

The notions otontradictory clash-free completecompletion structure are defined anal-
ogously as for FOLPs.

Proposition 12(termination

Let P be a simple FoLP and € upreds(P). Then, one can construct a finite complete
completion structure by a finite number of applications eféekpansion rules (i)-(vi) to the
initial completion structure fop w.r.t. P, taking into account the applicability rules (vii)
and (viil’).

Proof sketch

Clearly, if one has a finite completion structure that is manplete, a finite application
of expansion rules would complete it unless successorsyamuced. One cannot intro-
duce successors indefinitely as given the finite number dfiplescontents of a node, the
blocking condition will eventually be met. (]

Proposition 13(soundness

Let P be a simple FoLP ang € upreds(P). If there exists a complete clash-free com-
pletion structure fop w.r.t. P (expanded according to rule (i)-(vii) and (viii’)), thenis
satisfiable w.r.tP.

Proof sketch

Similarly to the case for FOLPs, from a clash-free complet®gletion structure, one can
construct an open interpretation and show that this iné¢agion is an open answer set of
P that satisfiep. Here, due to the restrictions on the the predicate depeydgaph of
the program, the subset blocking condition is enough torensinimality of such an open
interpretation. There are no infinite dependency chainghvhre not cycles in the atom
dependency graph of the grounded prograrl

Proposition 14(completenegs
Let P be a simple FOLP angd € upreds(P). If p is satisfiable w.r.tP, then there exists a
clash-free complete completion structure fos.r.t. P.
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Proof sketch

If pis satisfiable w.r.tP thenp is forest-satisfiable w.r.tP. We construct a clash-free
complete completion structure fprw.r.t. P, by guiding the non-deterministic application
of the expansion rules with the help of a forest modePokhich satisfiep and by taking
into account the constraints imposed by the saturationtamdew blocking rule. [

Proposition 15
The algorithm runs in the worst case in exponential time indize of the program.

Proof sketch
The size of a completion structure is bounded by the follgyfactors: if we leave all the
leaves of the trees in the completion apart, there are at #fost c nodes, where =
|upreds(P)|, ande = |cts(P)|, as there are at mog¢ different possible configurations
for the content of a unary node, and all the nodes which arkeawés or constants have to
have different content (otherwise they would form blockjrairs and at least one of them
would be a leaf). The maximum number of leaves(& + ¢ — 1), wherer = rank(P) is
the maximum arity of any of the trees in the extended foresttt® completion has in the
worst case an exponential number of nodes in the size of tggaam:b = (2P +¢)(r+1)—
r. As was the case for FOLPs, the nondeterministic algoritamhe determinized using
an AND/OR extended forest. The new deterministic versidhstill run in the worst case
in exponential time, and thus we can conclude that the dlganiuns in exponential time.
O

Note that the complexity of simple FOLPs is one level lowartithe complexity of full
FoLPs, the decrease in complexity being achieved by empyolyie anywhere blocking
technique. This, at its turn, has been made possible thritnggtestriction imposed on the
shape of simple FoLPs. By allowing anywhere blocking fol FdLPs we would lose the
soundness of the algorithm (in particular the interpretationstructed as described in the
soundness proof would not always be minimal).

Proposition 16

Simple FoLPs have the bounded finite model property: if tiea® open answer set, there
is an open answer set with a universe that is bounded by a mohbkments which can
be specified in function of the program at hand.

Proof sketch

The property follows as a corollary of the soundness and éetepess results. The com-
pleteness proof shows that from an open answer set one catrwtra clash-free com-
plete completion structure with maximuinnodes, wheré is as defined above. At the
same time, the soundness result shows that any clash-fngglei® structure gives rise to
an open answer set whose universe is exactly the set of nbttess@mpletion. Thus, any
open answer set can be reduced to an open answer set with @dabsize universe. [
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6.2 Simple F-hybrid Knowledge Bases

Similar with defining f-hybrid knowledge bases one can defingple f-hybrid knowledge
bases which are combinations dfCCHOQ knowledge bases with simple FoLPs. An
ALCHOQ knowledge base can be seen &0 Q knowledge base where no transitive
roles are allowed.

Definition 7
A simple f-hybrid knowledge basea pair(X, P) whereX is an ALCHOQ knowledge
base and® is a simple FoLP.

Note that the f-hybrid KB in exampld 9 is a simple f-hybrid KB.

The semantics of simple f-hybrid knowledge bases is defimailbsly as the semantics
of f-hybrid knowledge bases. We employ the same strategyefasoning with simple f-
hybrid knowledge bases as the one used for reasoning wigtorichknowledge bases:
translating satisfiability checking in the DL part of the krledge base, thelLCHOQ
knowledge base, into satisfiability checking in the LP pathe hybrid formalism, FoLPs.
In order to do this we define th@osureclos(X) of an ALCHOQ knowledge bas& and
the transformatio® (%) from an ALCHOQ knowledge base to a FOLP in a similar way
as their homonym transformation in Sectidn 5: we simply dhgpaxioms which deal with
transitivity in the general case. In particular, by drogpaxiom[1%, the obtained FoLP
becomes a simple FoLP:

Proposition 17
Let (3, P) be anALCHOQ knowledge base. Thei,(X) U P is a simple FoLP, and has
a size that is polynomial in the size bf

Proof sketch

That®(X) U P is a FoLP which has a size that is polynomial in the siz&dbllows
from propositio 8 and the fact that alyCCHOQ is aSHOQ knowledge base. That the
resulted FOLP is a simple FOLP can be seen by analysis of tygeshf axioms used for
defining® introduced in Sectio]5: the only axiom which introducegrate recursion is
axiom[I% which has been eliminated in this version of thediaion. [

Proposition 18
Let (X, P) be a simple f-hybrid knowledge base. Theris satisfiable w.r.t(3, P) iff pis
satisfiable w.rt® (%) U P.

The proof for the above proposition is similar with the prdof[@. That there exists
such a polynomial translation from simple f-hybrid knowgecbases to forest logic pro-
grams, together with the complexity of the terminating,rehiand complete algorithm for
satisfiability checking w.r.t. simple FoOLPs, we have thédwing result:

Proposition 19
Satisfiability checking w.r.t. simple f-hybrid knowledgades is IrEXPTIME.

As satisfiability checking oA £C concepts w.r.t. anlLC TBox (note thatdLC is a frag-
ment of ACCHOQ) is EXPTIME-complete [(Baader et al. 2003, Chapter 3), we have that
satisfiability checking w.r.t. simple f-hybrid knowledgedes i€xPTIME-hard, and com-
bined with the result above, that satisfiability checkingtwsimple f-hybrid knowledge
bases i€XPTIME-complete.
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Proposition 20
Satisfiability checking w.r.t. simple f-hybrid knowledgades i€XPTIME-complete.

7 Discussion and Related Work

We compare f-hybrid knowledge bases to r-hybrid knowledageb from[(Rosati 2008),
which extendDL+log from (Rosati 2006) with inequalities and negated DL atoms.

In (Rosati 2008), an r-hybrid knowledge base consists of akBawledge base (the
specific DL is a parameter) and a disjunctive Datalog progrdmare each rule igveakly
DL-safe

e every variable in the rule appears in a positive atom in ttetytwd the rule Datalog
safeness and

e every variable either occurs in a positive non-DL atom intibely of the rule, or it
only occurs in positive DL atoms in the body of the rule.

The semantics of r-hybrid and f-hybrid knowledge baseslapdp a large extent. The
main difference is that f-hybrid knowledge bases do not nth&standard names assump-
tion, in which basically the domain of every interpretation is #ame infinitely countable
set of constants.

Some key differences to note are the following:

e We do not require Datalog safeness neither do we requirelw@dksafeness. In-
deed, f-hybrid knowledge bases may have a rule componenttfie program part)
that is not weakly DL-safe. Take the f-hybrid knowledge b@eP) from Example
with P:

unhappy(X) <+ not Father(X)

The atomFather(X) is a DL-atom such that the rule is neither Datalog safe nor
weakly DL-safe. Modifying the program to

unhappy(X) <« Human(X), not Father(X)

leads to a Datalog safe prograi @ppears in a positive atoffuman(X) in the
body of the rule), however, it is still not weakly DL-safe &sis not appearing only
in positive DL-atoms.

On the other hand, both the above rules are FoLPs and thustatma valid com-
ponent of an f-hybrid knowledge base.

e In the case of r-hybrid knowledge bases, due to the safemeshtions, it suffices
for satisfiability checking to ground the rule componentwite constants appearing
explicitly in the knowledge bas@ One does not have such a property for f-hybrid
knowledge bases. Consider the f-hybrid knowledge §as#) with > = () and the
programpP

16 (Rosati 2008} Rosati 2006) considers checking satisfipbili knowledge bases rather than satisfiability of
predicates. However, the former can easily be reduced tiattee.
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This program is a FOLP, but it is not Datalog safe nor is it Wwe&K_-safe. Ground-
ing only with the constants in the program yields the pragect

a(0) <« mnot b(0)

such that: is not satisfiable. However, grounding with, e, z}, one gets

a(0) <+ mnot b(0)
a(z) <+ not b(x)
b(0) <«

such that is indeed satisfiable, in correspondence with one would@xpe

o Decidability for satisfiability checking of r-hybrid knoetige bases is guaranteed
if decidability of the conjunctive query containment/umiof conjunctive queries
containment problems is guaranteed for the DL at hand. Itrast) we relied on
a translation of DLs to FoLPs for establishing decidahil#yd not all DLs can be
translated this way; we illustrated the translation$6{©0 Q.

Conceptual modeling using FoLPs is not restricted to sitmdeDL KBs: one can also
translateobject-role modeling (ORMjodels as sets of FOLP rules.|In (Heymans 2006)p.96
a translation of a particular ORM model to a CoLP (thus, alsolaP) is provided. While
a formal translation from ORM models to CoLPs/FoLPs is novjated there, the example
translation shows how one can use CoLP satisfiability cimgcta verify that the various
ORM obiject types can be populated, that some derived piiep&td (not) hold, etc.

MKNFT knowledge base$ (Motik and Rosati 2010), consist of a DL aomept and a
component of so-called MKNF rules. Such MKNF rules allow for modal operators
K andnot in front of atoms, but also for non-modal atoms, unlike th@iedecessor,
hybrid MKNF knowledge bases$ (Motik and Rosati 2006; MotikE?2006); non-modal
atoms can be eliminated by a transformation leading to MKNBWedge bases. Also,
unlike the rules in hybrid MKNF knowledge bases, atoms in MKNrules are ‘gener-
alized’, in the sense that they can be arbitrary first-ordemtilae. This allows the ap-
proach to capture languages liIEQL-Lite(Q) (Calvanese et al. 2007), dI-programs by
(Eiter et al. 2008) and disjunctive dl-programs by (Lukasiz 2004). Other approaches
to integrating ontologies and rules which are generalizedKNF ™ knowledge bases are:
(Levy and Rousset 1996)1£-log (Donini et al. 1998), DL-safe rules (Motik et al. 2005),
the Semantic Web Rule Language (SWRL) (Horrocks and Pateté&der 2004), and r-
hybrid knowledge bases (Rosati 2008).

MKNF knowledge bases are in the general case undecidablerder to regain de-
cidability aDL-Safetycondition is imposed, together with a notion of admissipilvhich
concerns decidability for the DL inference. As with r-hybkinowledge bases, our f-hybrid
knowledge bases do not have such a restriction of the irtteraloetween the structural
DL component and the rule component, but rely instead onxistemce of an integrating
framework (FoLPs under an open answer set semantics) fahwie provided reasoning
support in this article.

Description Logic Program@Grosof et al. 2003) represent the common subset of OWL-
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DL ontologies and Horn logic programs (programs withoutat@g as failure or disjunc-
tion). As such, reasoning can be reduced to normal LP reagolm (Motik et al. 2005),
a clever translation o HZQ(D) (SHZQ with data types) combined withL-safe rules
to disjunctive Datalog is provided. The translation religsa translation to clauses and
subsequently applying techniques from basic superpaditieory. Reasoning i L+ log
(Rosati 2006) and r-hybrid knowledge bases (see above) nimtesse a translation to
other approaches, but defines a specific algorithm based artial grounding of the pro-
gram and a test for containment of conjunctive queries dverDL knowledge bases.
di-programg(Eiter et al. 2008) have a more loosely coupled take on iatégy DL knowl-
edge bases and logic programs by allowing the program toydherDL knowledge base
while as well having the possibility to send (controlled)unt to the DL knowledge base.
Reasoning is done via a stable model computation of the fagigram, interwoven with
gueries that are oracles to the DL part.

Description Logic Rules (DL rule€Krotzsch et al. 2008a) are defined as decidable frag-
ments of SWRL. Rules have a tree-like structure similar sodtiucture of FoLPs. They
are positive rules with only unary and binary atoms, coresiing to concept expressions
and role names in a specific DL, where some relations betwesetetms appearing in the
atoms in a rule have to be fulfilled: (i) every term can be readby maximum one path
from another term (a term reaches another if it is the firstiawgnt of the first atom in a
chain of binary atoms where the last argument of the last &édhe term reached), (ii) the
first term in the head is an ‘initial’ term, i.e., it is not réeed from any other term, (iii) each
non-initial node is reached from exactly one initial nodaus, a syntactical comparison
between FoLP rules and DL rules yields the following:

e FoLPs allow for a negation as failure operator, while DL sutkd not support any
type of negation

e FoLPs allow for binary atoms conjunctions, i.e. the presafdinary atoms having
identical arguments in the body of a rule, while DL rules tésa this (the presence
of such atoms would imply the presence of two paths betweetwtb terms which
compose the arguments of these atoms)

e DL rules allow for term tree depths higher than 1, i.e., farstouctions likef (X, Y),
9(Y, Z),...in the body of a rule. FoLPs allow only term trees of depth 1,duch
constructions can be seen as syntactic sugar in our langsag®e can always sim-
ulate a rule with term tree depth afvia n FOLP rules with term tree depth of 1.

e DL rules allow for unsafe rules lik¢(X,Y) «+ C(X), or f(X,Y) « ¢(Z,T),
while FoLP rules do not allow for such constructions.

Although Description Logic Rules have tree-shaped bodnesaae from this perspec-
tive similar to FOLPs, their semantics is not a minimal magghantics. Like Description
Logics, their semantics is first-order based. Dependindneruhderlying DL, one can dis-
tinguish betweeROZQ rules,£LTT rules, Description Logic Program rules, and ELP
rules (Krotzsch et al. 2008b).

The most expressive fragme&§tR OZ Q rules, does not actually exteSROZ Q, as the
rules can be mapped&ROZQ. In order to ensure that such a translation is possible some
more restrictions are imposed on the rule component. Onkeskt restrictions concerns
the fact that simple roles are defined also with respect todfiaition of their counterpart
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binary atoms in the rule KB: any binary atom which is definedasrule with more than one
atom in the body corresponds to a non-simple role, and thuisatappear in a qualified
number restriction, a role disjunction axiom or a role reafligyx axiom. Obviously, there
is no such restriction on FOLPs as the translation is perforim the other direction, from
the DL KB to the rule KB, and thus there is no need to have sué¢mpligity assumption
in the rule KB.

Inthe case of LT rules, the DL rules are the core expressive mechanism tdwthéc
ELTT KBs are reduced. No simplicity or regularity constraints anposed on the rule
KB.

Description Logic Program rules have as an underlying féismathe DLP fragment
described above. So-called DL2 KBs are defined as combiveatibDLP rules KBs with
DLP KBs, which additionally might contain role disjunctiarioms and/or role asymmetry
axioms. No simplicity or regularity condition is imposedich a KB can be transformed
into a set of function-free first-order Horn rules.

The last type of DL rules, ELP rules, can be seen as an exten$iooth€ L1 rules
and Description Logic Program rules, hence their name. hdt@éch et al. 2008b) a new
type of DL rules, so-called extended DL rules, is introducHus extended type of rules
allows for ‘role conjunctions’ in rule bodies, i.e., consttions like f(X,Y), g(X,Y) as
long as bothf andg are simple roles, or the presence of binary atgifs, X) in the rule
bodies as long ag is simple. Also, a relaxed restriction on simple r@as introduced:
only certain role chains are omitted from DL rules with simpdles in the head, rules like
fX,Y) <« a(X)AbY)and f(X,Y) < g(X,Y) A D(Y) not precludingf to be a
simple role. Note that rules of the first type are not allowgdrbLPs.

The focus in DL rules is on extending DLs with rule bases wtdoh as expressive as
possible while at the same time preserving the computdtoperties of the initial DL.
This leads sometimes to rather intricate syntactical atariaations of different fragments.
Syntactically, some of these fragments allow for more c@xpule shapes than FoLP
rules, but FoLPs distinguish themselves through the fatthey have aegation as failure
operator and adopt a minimal model semantics, thus addiiffeaemt type of expressivity
to such combinations of rules and ontologies, which is net#jg to the DL world. This
seems to come at the price of reasoning complexity (noteviieatlo not have a tight
characterization of FOLPS).

There are several extensions of DL which adopt a minimdésgmantics like autoepis-
temic (Donini et al. 2002), default (Baader and Hollunde®3and circumscriptive DL
(Bonatti et al. 2006; Grimm and Hitzler 2008; Grimm and HitzZ2009). The first two are
restricted to reasoning with explicitly named individyatile (Grimm and Hitzler 2008;
Grimm and Hitzler 2009) allow for defeats to be based on thstemxce of unknown indi-
viduals. A tableau-based method for reasoning with theAXICO in the circumscriptive
case has been introduced in (Grimm and Hitzler 2007). A speceference clash condi-
tion is introduced there to distinguish between minimal aad-minimal models which is
based on constructing a new classical DL knowledge basetsuking its satisfiability.

Datalog* (Cali et al. 2009a; Cali et al. 2009b) is an extension ofldatwhich can sim-

17 The restriction is relaxed as compared to the restrictiolS®OZQ rules; there is no such restriction for
general DL rules.
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ulate some DLs from the DL-Lite family (Calvanese et al. 200he extension consists
in allowing a special type of rules with existentially quidiet variables in the head, called
tuple generating dependencies (TGDs). Note that our fies are different from TGDs,

as they allow for universally quantified variables which dxa appear in the body of the
rule to appear in the head.

The formalism is undecidable in the general case. Like incdme of OASP, several
syntactical restrictions have been imposed on the shap&@fsTin order to regain de-
cidability. Two such restrictions are: (1) every rule sltbhhve a guard, an atom which
contains all variables in the rule body, giving risegtiearded Datalog, and (2) every rule
should have a singleton body atom, giving risdinear Datalogt. The guardedness con-
dition has been relaxed teeakly-guardedneswhere the weak guard has to contain only
the variables in the body that appear in so-called affectsitipns, positions where newly
invented values can appear during reasoning (Cali et @B)2®easoning relies on a proof
technique from database theory, the chase algorithm, whighirs databases according to
the set of dependencies.

Some further generalizations to the guarded fragment oflDgt are so-calledsticky
setsof TGDs (Cali et al. 2010ajyeakly-stickysets of TGDS, andticky-joinsets of TGDs
(Cali et al. 2010b) which generalize both sticky sets ameldi TGDs. All these fragments
are defined by imposing restrictions on multiple occurrenmfevariables in rule bodies.
The syntactical restrictions on rules bodies are orthogtméhe ones we imposed for
achieving decidability on FoLPs: neither Datatorules are enforced to have a tree-shape
like FOLPs, nor variables in FOLP rules have to fulfill the ddions required for the dif-
ferent sets of TGDs to belong to one of the previously mesetibdecidable fragments
of Datalog". TGDs do not contain negation. However, so-called stratifiermal TGDs
have been introduced, which are TGDs whose body atoms caaappa negated form
together with a semantics in terms of canonical models. Badupport full negation as
failure (under the stable models semantics).

In the area of proof systems for Answer Set Programming, élbich You 2002) describes
a goal rewrite system for brave reasoning under the stabiehsemantics which is sound
and complete only for partial stable models. If the progras ho odd loops (cycles in
the predicate dependency graph of the program), its patadle models and its stable
models coincide. Note that such programs cannot have @imstias they are represented
using rules in which a predicate depends negatively orf.itfee problem with such rules
is that they can render the program inconsistent, and thagetwriting, even if it is suc-
cessful, is no longer valid. In our approach, we overcome pihdblem by going beyond
the dependencies generated by the predicate checked todfialske: we construct a com-
plete answer set by taking care that the content of every imotihe completion structure
is saturated. As concerns terminatidn, (Lin and You 200&jrijuishes between positive,
negative, odd, and even loops and deal with them accordimgtgrms of our approach,
this amounts to checking for cycles in the dependency géajgind identifying inconsis-
tencies. However, for achieving terminatidn, (Lin and Y&02) proposes to consider only
“domain restricted programs”, which can be instantiately om domain predicates over
variables which do not appear in the head. In our case, we tlhbave such a restriction:
there are FOLPs (actually CoLPs) in which no constant ageat which still have infinite
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groundings. As such, we need the more complicated blockeghamnism for ensuring that
there are no atoms with infinite justifications in the openarset.

A resolution-based calculus for credulous reasoning in AMaRh is sound for ground
order-consistent programs and complete for ground finderséve programs is introduced
in (Bonatti et al. 2008). The calculus is extended to the nouagd case, where it is proved
to be sound for programs whose ground versions are orderstemnis and complete for
finitely recursive, odd-cycle free programs. In particuthe calculus is not sound for pro-
grams which have odd cycles, which are needed for simulatmgtraints. An extension
for ground programs with constraints is provided, but noggahsolution is provided for
the non-ground case. As already mentioned we have no prshlemealing with such
constraints. Also the calculus is not complete for prograrhih are not finitely recur-
sive, i.e., for programs for which there is at least a groutminawhich depends on an
infinite number of other ground atoms (w.r.t. the atom depeny graph of the grounded
program). Our approach deals with programs which may notrbelff recursive: con-
sider a FoLP which contains the rulg€ X) < f(X,Y), a(Y); grounding the program
with an infinite universe leads to an infinite path in its atoependency graph of the form
a(zy),a(za), .. .. ]

A formalism related to FoLPs BDNC (Simkus and Eiter 2007FDNC is an extension
of ASP with function symbols where rules are syntacticadistricted in order to maintain
decidability. While the syntactical restriction is simila the one imposed on FoLP rules,
predicates having arity maximum two, and the terms in a ifitaral can be seen as arcs
in a forest (imposing the Forest Model Property), the dicecof deduction is different:
while for FOLPs, all binary literals in a rule body have anritlieal first term which is also
the term which appears in the head, KibNC (with the exception of one rule type) the
second term is the one which also appears in the HEBNC rules are required to be safe
unlike FOLP ones. The complexity for standard reasoninkstéer FDNC is EXPTIME-
complete and worst-case optimal algorithms are provided.

(Gebser and Schaub 2006) introduces a system based onutabéthods for Answer
Set Programming (ASP). Unlike in our case, where a clasheoenplete completion struc-
ture represents an open answer set which satisfies a certglicgte, a branch in a tableau
as described in_(Gebser and Schaub 2006) corresponds teessfid/unsuccessful com-
putation of an answer set and an entire tableau represerageadal of the search space.
Note that in the case of FoOLPs a computation of all models igassible as their number
may be infinite. Also, the tableau calculi in_(Gebser and 8bi2006) addresses only the
propositional ASP case, as any ASP program can be groundegl aisly the constants
presentin the program, while in our case grounding is peréat dynamically, introducing
new individuals when needed.

(Lierler 2008) describes an extension of an abstract frammlevior executing DPLL
which computes supported models and stable models of a drogical program. The
framework employs a graph structure for encoding the diffecomputation paths. Mod-
els are constructed in a bottom-up fashion: transitionsrplescribe how new atoms are
derived as being part/not being part of the model based atigisupport/counter-support
for such atoms. As such, there are similarities betweerettrassition rules and our ex-
pansion rules which justify the presence/absence of ubiagty atoms in an open answer
set. However, our expansion rules also have to introduceatewents in the domain and
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to perform grounding, and thus, they become much more complee abstract DPLL
framework has also a nondeterministic choice rule whicklgasghe value true to a certain
literal which is otherwise not constrained. This rule isigamin a sense with our Choose
unary/binary expansion rules: while our approach is a togrdapproach, and we are not
interested in constructing models per se, it turned out todmessary to construct a whole
model for ensuring soundness of the approach.

8 Conclusions and Outlook

We introduced FoLPs, a logic programming paradigm suitéddiéntegrating ontologies
and rules, and provided a sound, complete, and terminatgayitom for satisfiability
checking that runs in double exponential time. We showedtoawse FoLPs as the under-
lying integration vehicle for reasoning with f-hybrid knlaglge bases, a non-monotonic
framework that integrateSHOQ with FoLPs, without having to resort to (weakly) DL-
safeness. We also introduced a restricted variant of FosiRgle FoLPs, which allow
integration of ACCHOQ knowledge bases with themselves and provided a sound, com-
plete, and terminating algorithm for satisfiability chewithat runs in exponential time.

From a theoretical perspective, the combination of staldelehsemantics and open
domains posed specific challenges for our tableau-basedthlg: among these, were en-
suring that every atom in the constructed model is finitedfified, and that the constructed
model is part of an actual open answer set. In dealing with thir approach differentiates
from other existing approaches in the literature.

We are currently looking into extensions of FOLPs (and oftéideau algorithm) which
would allow one to simulate DLs richer th&H O Q, in the direction ofSROZQ(D), the
DL underlying OWL-DIH in owL 2.
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APPENDIX

Appendix A Additional Preliminaries

A labeled treeis a pair(T,t) whereT is a tree and : T — X is a labeling function;
sometimes we will identify the tre@, t) with ¢. For a labeled tree: T — X, the subtree
of tatx € T ist[z] : T[x] — ¥ such that[z](y) = t(y) fory € T[x].

A labeled forest is a tupléF, ) whereF' is a forest andf : Nyp — X is a labeling
function; sometimes we will identify the fore&F, f) with f. A labeled forestF, f), with
F = {T. | ¢ € C}, induces a set of labeled tre¢fl,t.) | c € C}, witht, : T, - &
defined as followst.(xz) = f(x), for anyz € T.. Figurdl/A1 depicts a labeled forest which
contains two labeled treég andt; (their roots are: andb, respectively).

ta : a{z} tb/z}\
I al{y} b1{z} b2{x} b3{x}
all{z} al2{z} b21{z}

Fig. A1: A Simple Labeled Forest

A labeled extended forest is a tugl&F, ef ) where EF is an extended forest ang :
Ngr — ¥ is alabeling function; sometimes we will identify the extex fores{ EF', ef )
with ef. A labeled extended forest can be seen as a set of labeletlextérees, where a
labeled extended tree is a tuglE® , t), whereT* is an extended tree anéf : T¢ —
¥ is a labeling function defined such tht (z) = ef (x), for x € T¢. For a labeled
extended tree” : T¢ — ¥, the subtree of* atz € T ist[z] : T*/[x] — X such that
t/2)(y) =t (y) fory € T [].

Figure[A2 depicts an extended labeled forest (a labeledores the extended forest
from Figure1).

We introduce the operation of replacing in a labeled extdrfdeestef an extended
subtreet®/[z] with another extended subtre€ [y], where bothr andy are from Ngp,
and denote this operation witlplace s (z, y). FiguredlA3 describes the result of applying
the replace operation on the extended forest from Figlureti twio different sets of op-
erators. In the first case;’ [b2] is replaced witht¢/ [a1], while in the second cag¢/ [a1]
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: a{f} ‘ / Z}\
al{y} ' b1{z} b2{x} b3{x}
all{z} a12{é} b21{z}

Fig. A2: A labeled extended forest

is replaced with:¢f [a12]. Note that the names of nodes of the subtree which is replaced
are not changed with the names of the nodes from the replacibgee, but new names
are generated for the new nodes in concordance with the gesaireme for nodes of that
tree. Also, observe how in the first replacement one of th&aéarcs ofty, (b2, a), is
dropped (it was part of the replaced extended subtree) ard/éextra’ arc is introduced,
(b22,b), which mirrors the ar¢a12, b) from the replacing extending subtree. Similarly, in
the second transformatiofu12, b) is dropped andal, b) is introduced.

replace. (b2, al) : {2} bz}
| I
al{y} ' bi{z}  02{y}  b3{=z}
all{z} a12{é} b21{x} 622{‘,2}
replace. (al, al2) : {2} : biz}
al{z} bi{z}  b2fe}  b3{x}
b21{z}

Fig. A 3: Two applications of the replace operatoragn
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Appendix B Proofs
B.1 Soundness Proof

Proof

From a clash-free complete completion structuresfaesr.t. P, we construct an open inter-
pretation, and show that this interpretation is an open anset ofP that satisfiep. Let
(EF, cT, ST, G) be such a clash-free complete completion structure With= (F, ES)
the extended forest ar@ = (V, A) the corresponding dependency graph andilee the
set of blocking nodes corresponding to the completion.

. Construction of open interpretation
We construct a new graffic,: = (Vest, Acst) by extending= in the following way: first,
we setV.,; = V andA.,;, = A, and then for every paitr, y) € bl do the following:

e (a) for everyp such thap(x) € V, addp(y) t0 Veut: Vst = Veur U {p(y)};
e (b) for everyf andz such thatf(z,z) € V, add f(y, 2) t0 Vege: Veur = Vegr U

{f(y,2)};
e (c) for everyp, ¢ such that(p(z), q(z)) € Acor, add(p(y), q(y)) 10 Acat: Aexr =

Acat UL (p(y), a(w))};

e (d) for everyp, ¢, z such that(p(z), ¢(z)) € Aen, andz # z add(p(y),q(z)) to
Aemt: Aemt = Aea:t U {(p(y)7 Q(Z))}a

e (e) for everyp, f, z such that(p(x), f(z,2)) € Aew, add(p(y), f(y,2)) 10 Aegs:
Aext = Aemt U {(p(y)v f(ya Z))}'

o (f) for every f, ¢, z such that(f(z, z), q¢(x)) € Ay, add(f(y, 2), q(y)) 10 Aey:
Acar = Acat U{(f(y,2),a(y)) };

e (g) for everyf, q, z such that(f(z, 2),q(2)) € Aext, add(f(y, 2),q(2)) 10 Aegs:
Aext = Aemt U {(f(% Z)v Q(Z))}!

e (h) for everyf, g, z such that(f(z, z), g(x, 2)) € Aexnt, @add(f(y,2),g(y,z)) to
Aext: : Aext = Aemt U {(f(yv Z)ag(yv Z))}'

Basically, this amounts to copying the content of the blogknode into the content of
the blocked node, and also all the connections from/withékilocking node as connec-
tions from/within the blocked node (or, in other words, tlomtent of the blocked node is
identical with the content of the blocking node and it isifiestl in a similar way).

Let there be an open interpretati@ii, M), with U = Ngp, i.e., the universe is the set of
nodes in the extended forest, ahfl = V., i.e., the interpretation corresponds to the set
of nodes in the extended graph.

. M is amodel ofP}. All free rules are trivially satisfied.

Take a ground unary rule? : a(z) < B (z), (v (2, ym), 6 (Ym)) 1 <m<k from PHM
originating fromr : a(s) < B(s), (Ym (s, tm), Om(tm))1<m<k, ¥, With 3= (z) € M,
forall 1 < m < ki vy~ (z,ym) € M andd,,” (ym) € M, and for allt; # t; € :

yi # y;- Assume thabl |= 5% (x) U U, <nr Yo (2 Um) U U<z O (ym) (together
with the assumptions about the negative part of the ruls,amounts ta\f = §(z) U
Ur<me<ie Ym (@ Ym) U Ui < p<r Om(ym) Uy) @anda(z) ¢ M (the rule is not satisfied).
Depending onx there are two cases:
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e zis nota blocked node. Thewt a € cT(z), = is saturated, and no expansion rules
can be further applied taot a. This means that for every ground rule derived from
aruler € P, with heada(x), theexpand unary negativelle has been applied. Such
arule isr’. The application of thexpand unary negativeile tonot a € cT(z) and
r’ leads to one of the following situations:

— there is a unary predicate symbbf € 3, such thatrq € cT(x) (the result of
update(not a(z), Fq, x)), or in other wordsz¢(z) € M. This contradicts with
M = B(x).

— there are two successorsafy; andy; such thaty; = y; andt; # t; € . This
contradicts the assumption that for glk£ ¢; € i y; # y;.

— forsomel < m < k, there is a binary/unary predicate symbof € ~,,/+q €
dm such thatrf € cr(z, ym)/Fq € CT(ym) (the result ofupdate( not a(x),
Ff, (x,ym)) l update(not a(x), Fq, ym)), Or in other wordsz  f (z, y,,) € M/
Fq (ym) € M. This contradicts withV! |= v, (2, ym )M = dp (Y )-

e z is a blocked node. Leg be such thaty,z) € bl: by replacingz with y in +/,
one obtains a ground ruté which again should not be satisfied because due to the
construction ofM, M = B(z) U U <,pecr Ym (@ Ym) U Ui <pnar 0m(Ym) U P

impliesM E S(y)U Uicmes<t Ym ¥ Ym) UU < e Om (Ym) Ut anda(z) ¢ M
impliesa(y) ¢ M. Thus, this case is reduced to the previous one.

Both cases lead to a contradiction, thus the original asiomthat ruler’ is not satisfied
by M was false. Thus, every unary rule is satisfied\idy

The proof for the satisfiability of binary rules is similar.

. M is a minimal model of?}’. Before proceeding with the actual proof we introduce a
notation and a lemma which will prove useful in the followirigpt EF’ be the directed
graph(Ngr, A/) which has as nodes all the nodes fr&@® and as arcs all the arcs of
EF plus some 'extra’ arcs which point from blocked nodes to sasors of corresponding
blocking nodesd” = Apr U {(y,2) | 3zs.t.(z,y) € bl A z € succgr(x)}. The new
graph captures in a more accurate way the structuid dblocked nodes are connected to
successors of the corresponding blocking nodes, as thefents is justified similarly to
the content of the blocking nodes. Figlire]B 1 exemplifies thestruction ofEF’ from an
extended foresEF' by addition of extra arcgz, y) is a blocking pairz4, . .., z,, andb are

the successors af, so extra arcs frony to each of these successors are added (the dotted
arrows). Among the successorsaothe one which is on the same path withs singled
out and denoted with.

Lemmal

For everyz,y € Ngp, if there is a pattPt, = (p(x),...,l1) € pathsg/pathsg,,,, with
I = q(y) for someq € upreds(P) orly = ¢(y, z) for someg € bpreds(P), andx # v,
then there is a patRt; = (z,...,y) € pathsgr/paths g, such that for every € Pty
there is a unary atoha € Pty with args(ls) = z.
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Fig. B 1: Constructin@F,: (x,y) is a blocking pair

Proof
Let S = (z1 = =z,29,...,2,) be a tuple of nodes fronEF/EF/ constructed in the
following way: consider each elemehbf Pt; at a time: ifargs(l) = y andy is not
already part of the tuple, adgto the tuple. We show thef € pathsgr/paths g, and
furthermore that;,, = y.
For every two consecutive elements$fr; andz; 1, with 1 < i < n, there must be two
unary atoms’ and!” in Pt, with args(l’) = x; andargs(l”) = z,;41, respectively, such
that there is no other unary atdnn the sub-path of’¢;: (I, ...,1"”). Itis easy to see that
such a sub-path has the for(: = r(z;), f1 (i, Tit1), - -« frn (@i, Tit1), 1" = s(xit1)),
with 7, s € upreds(()P), andfy, ... f,n € bpreds(()P), and thugz;, z;,1) € A/A’ for
everyl <i < n:(x1,...,2,)isapath inEF/EF'.
To see thatr,, = y, consider the opposite:, # y. Then there must be a unary atom
I = r(z,) in Pt; with args(l) = z, such that there is no other unary atom in the
sub-path ofPty: (r(z,),...,g(y, z)). This would imply that the sub-path has the form
r(zn), f1(Tn,t)y ..., fm(zn, t),9(y, 2), wheret is some successor af, in EF/EF':
(zn,t) € AJA". But there is no arc of the forty,,, (z,, t), g(y, z)) in A/A" with z,, # v,
so we obtain a contradiction.

O

Now we can proceed to the actual proof of statement. Assugre th a modeM’ ¢ M

of Q = Py. Then3l; e M : 1; ¢ M’'. Take aruler; € @ of the formi; + §; with

M = B4; note that such a rule always exists by constructiodbfind expansion rule
(). If M" = B, thenM'’ = I; (as M’ is a model), a contradiction. Thud/’ (= 5,
such thatdl, € 8, : I ¢ M’'. Continuing with the same line of reasoning, one obtains
an infinite sequencély, lo, ...} with (I; € M)1<; and(l; ¢ M')1<;. M is finite (the
complete clash-free completion structure has been canesttin a finite number of steps,
and when constructingy/ (V...:) we added only a finite number of atoms to the ones already
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existing inV), thus there must bé < (4, ), ¢ # j, such that; = [;. We observe that
(lisliv1)1<i € Eeqe by construction ofE.,: and expansion rule (i), so our assumption
leads to the existence of a cycledh.,;.

Claim 1
LetC = (I1,12,...,l, = 11) be acycle inG.,;. If one of the following holds:

e (i) there is no unary atom in’ and for everyl; = fi(z;,v:), 1 < i < mn, z; is not
blocked

o (ii) there is at least one unary atom @ and for every unary atom if’: {; with
args(l;) = y;, y; is not a blocked node i6'S, 1 < j < n.

thenC'is a cycle inG.

Proof
From the construction af .,; one can see that any arc which is addedtis of the form
(p(x),1) or (f(=x,y),1), wherep is some unary predicaté,is some binary predicate, and
x is a blocked node. It is clear that when condition (i) or cdiodi (i) holds there is no
arc of the first form inC'. As concerns arcs of the latter type, it is again obviousttezrte
are no such arcs if condition (i) is fulfilled. In case cordliti(ii) holds, assume there is
an arc(f(z,y),!) wherez is a blocking node. We know that there must be at least one
unary atom in the cycle. Let this hgz). In this case there is a path@ (and also inG..,;)
from p(z) to f(z,y) andz is different fromz by virtue of (ii). According to lemmaAl1 this
path contains a unary atom with argumenr(as any path irEF from z to z containsz).
However this contradicts with condition (ii) which says thizere is no such atom i@'.

O

Claim 2
LetC = (I1,12,...,l, = 11) be acycle inG.,;. If one of the following holds:

e (i) thereis no unary atom i@ and for someé; = f;(z;,v:), 1 <14 < n, 2; is blocked
e (ii) there is at least one unary atom@hand all unary atoms have the same argument
y which is a blocked node

thenG contains a cycle.

Proof

We will treat the two cases separately:

(i) First, notice that in this case (when there is no unaryrato the cycle)args(l;) =
args(la) = ... = args(l,) = (x,y) as there is no arc iM.,; from a binary atom
f(x,y) to another binary atom(z,t), with © # z ory # ¢ (by construction ofGc,;).
So the cycle can be written & = (f1(x,y), f2(x,y), ..., fo(z,y) = fi(z,y)), where
(fi € bpreds(P))1<i<n. Let z be the blocking node correspondingato(z, z) € bl. As
((fi(z,y), fir1(z,y)) € Acat)1<i<n, it follows that ((f;(z,y), fi+1(2,9)) € A)i<icn,
soC" = (f1(z,v), f2(2,y), ..., fu(z,y) = fi(z,y)) is a cycle inG.

(i) Let p1(y), p2(y), - . -, pn(y) be the unary atoms i with y being a blocked node. With-
out loss of generality we considgy, = p;. Then the cycle can be written aS:= (p1(y),

Ji(y, 21)s o frmy (s 21), 02(Y), for (s 22), -+ -5 fama (Y, 22)), - - pa(y) = p1(y) where
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(fij € bpreds(P))1<icn1<j<mir» (y,zi) € A/)1§i<n (as the only binary atoms reach-
able fromp(y) are of the formf(y, z), where(y,z) € A"). Similar with the previ-
ous case one can show tt@t = (p1(x), f11(x, 21),- .., fim, (T, 21), P2(2), f21(z, 22),
oy Jomo (%, 22)), .. . pn(x) = p1(x), wherez is the corresponding blocking node fgr
(z,y) e blisacycleinG. O

Claim 3

LetC = (l1,ls,...,l, = l1) be acycle inG.,. If there are at least two unary atoms in
C with different arguments and at least one unary atom hasgasrent a blocked nodg
then there is a path i@ from an ator; to an atoms whereargs(ly) = x, args(ls) = y,
andz is the corresponding blocking node far(z, y) € bl.

Proof

Let ¢t be the argument of a unary atom in the cycle different foprmd\s there is a path
in G, from somep(t) to someg(y) and also viceversa from somgy) to somep(t)
according to lemmgl1 there must also be a path“l?h’ from ¢ to y and a path fronmy to

t. In other words there exists a cycleEF’ which involves bothy andt. Furthermore for
every element of the cycle iBF | there is a unary atom i@’ which has this element as
an argument. From the WaEF/ was constructed (see also FiglirelB 1), one can see that
any cycle inEF" which involves a blocked nodgwhich makes part from a treg in the
corresponding simple forest contains the patf'iftom z to y, wherez is the node which
is a successor aof in T, and is on the same pathihasz andy, x being the corresponding
blocking node fory: formally, (x,y) € bl, z € sucer(x), z € pathr(z,y). There are two
kinds of cycles inEF:

e cycles which contair;, z, andy (these cycles will contain also elements from other
trees thar"): in this case there is a unary atdpwith argument: in C and there is
as well a unary atory with argumenty in C' (from the condition of the claim) - so
the claim is satisfied

e cycles which contair, andy, but do not contain (actually, this is a unique such cy-
cle which has all elements froputhr(z, y)): in this case there are two unary atoms
l2, andls in C, with argumentg, andz respectively, such that there is no other unary
atom on the path induced Iy in G.,; from 5 to I3. In this case this path has the
form: p(y), f1(y, 2),- .., fn(y, 2), ¢(z). Due to the construction af.,:, the exis-
tence of the patkp(y), f1(y, 2), - - -, fa(y, 2), ¢(2)) in G, implies the existence of
the path(p(z), fi(x, 2),..., fu(z, 2),9(2)) in G. At the same time note that there is
a path inG from ¢(z) to p(y). So,(p(x), ¢(2)) € conng and(q(z), p(y)) € conng,
thus(p(x),p(y)) € conng and the claim is satisfied.

O

One can see that the hypotheses of the three claims covarssibte types of cycle§' in

G ..+ and that the consequences of having such a cycle are cartingdin each case with
the fact that EF', cT, sT, G, bl) is a complete clash-free completion structure (in the case
of the first two claims, one obtains that there must be a cyalé iwhile the conclusion of
the third claim contradicts with the blocking condition #pair of blocking nodes from
bl). Thus, there cannot be such a cy€lén G .,; andM is minimal.

O
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B.2 Completeness Proof

Proof

If pis satisfiable w.r.tP thenp is forest-satisfiable w.r.t? (Propositiori ). We construct
a clash-free complete completion structuregav.r.t. P, by guiding the non-deterministic
application of the expansion rules with the help of a forestdlel of P which satisfies
p and by taking into account the constraints imposed by theat@nn, blocking, redun-
dancy, and clash rules. The proof is inspired by completepesofs in Description Logics
for tableau, for example in_(Horrocks et al. 1999), but reggiadditional mechanisms to
eliminate redundant parts from Open Answer Sets.

In order to proceed we need to introduce the notiometdixed completion structure
which is a tuple(EF, cT, sT, G, bl), whereEF is an extended forest, ar@, cT, st, bl
represent the same kind of entities as their homonym cqpantisrin the definition of a
completion structure. Amitial relaxed completion structure for checking satigfiay of
a unary predicate w.r.t. a FOLP P is defined similarly as an initial completion structure
for checking satisfiability op w.r.t. P. A relaxed completion structure is evolved using
the expansion rules (i)-(vi) and the applicability rules)¢gviii). Note that theredundancy
rule is left out. A complete clash-free relaxed completivocure is a relaxed completion
structure evolved from an initial relaxed completion stae forp and P, such that no
expansion rules can be further applied, which is not comdta and for whichG does
not contain positive cycles.

The first step of the proof consists in constructing a coneptéash-free relaxed com-
pletion structure starting from a forest model of a FaPRvhich satisfieg. Note that in
the general case, constructing a complete clash-freee@leampletion structure might
be a non-terminating process (the termination for the congon of complete clash-free
completion structures was based on the application of tthen@ancy rule), but as we will
see in the following, the process does terminate when atforedel is used as a guidance.

So, let(U, M) be an open answer set of a FoEPwhich satisfiep which at the same
time is a forest model aP. Then there exists an extended for&#t = ({T.} U{T, | a €
cts(P)}, ES), wheree is a constant, possibly one of the constants appearidy nd a
labeling functionl : {T.} U {T, | a € cts(P)} U Agr — 2P7%(P) which fulfill the
conditions from definitiofi2.

We define an initial relaxed completion structut§, = (EF’, ct, sT, G, bl) for p and
P such thatEF' = (F',ES"), F' = {T!} U{T! | a € cts(P)}, wheree is the same
used to defin&gF, andT,, = {z}, for everyx € cts(P)U{e}, andES’ =0, G = (V, A),

V = {p(e)}, A = 0, andct(e) = {p}, ST(c,p) = unexp, bl = 0. We will evolve this
completion structure using rules (i)-(viii). To this pugsowe inductively define a function
m: Ngpr — U that relates nodes in the relaxed completion structure desio the forest
model satisfying the following properties:

{q| g€ cr(2)} C L(n(2)), forall z € Ngp:
{q | not g€ ct(2)}NL(r(z)) =0, forall 2 € Ngp-

Intuitively, the positive content of a node/edge in the ctetipn structure is contained in
the label of the corresponding forest model node, and thativegcontent of a node/edge
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in the completion structure cannot occur in the label of theesponding forest model
node.

Claim 4

Let CS be a relaxed completion structure derived fréifi, ands a function that satisfies
(1). If an expansion rule is applicable @S then the rule can be applied such that the
resulting relaxed completion structug&’ and an extension’ of = still satisfies f).

We start by settingr(x) = z, for everyz € cts(P) U {e} (the roots of the trees in the
relaxed completion structure correspond to the roots ofréfes in the forest model). It is
clear that {) is satisfied forC'Sy. By induction letC'S be a relaxed completion structure
derived fromCS, and a function that satisfies). We consider the expansion rules and
the applicability rules saturation and blocking:

. Expand unary positiveAs ¢ € ct(z), we have, by the induction hypothesis, that
L(m(x)). SinceM is a minimal model there is an € P, of the form [3) and a ground
versionr’ : q(m(x)) « BF(n(x)), (vh (7(2), 2m))1<m<, (04, (2m))1<m<i € (P
suchthat |= 1 (7 (z)) U (v (7m(x), 2m ) )1<m<k U (6 (2m))1<m<k- SEtRL(q, ) =1
andupdate(q(x), 8, z). Next, for eachl < m < k:

o If 2, = w(z) for somez already inEF’, takey,, = z; also, if 2 € cts(P) and
(x,2) ¢ ES"thenES’ = ES" U {(z,2)},

o if 2, = n(z)- s andz,, is not yet the image af of some node irEF’, then addr - s
as anew successorefn F': T) = T U{x-s}, wherex € T/, setr(z-s) = () s
andn(z,z - s) = (w(x), m(x) - 8).

o update(q(x), Ym: (2, Ym)),

o update(q(x), Om, Ym)-

In other words we removed the nondeterminism fromeékpand unary positive rujdy
choosing the rule and the successors corresponding to the open answgr,set). One
can verify that {) still holds for.

. One can deal with the rules (ii-vi) in a similar way, makihg non-deterministic choices
in accordance witfU, M).

. Saturation No expansion rule can be applied on a node f@R{ which is not a constant
until its predecessor is saturated. This rule is indepetfehe particular open answer set
which guides the construction, so it is applied as usually.

. Blocking Consider a node € Ngr which is selected for expansion. If there is a saturated
nodey € Ngg which is not a constany, <7, x, whereT, € F’, ct(z) C ¢1(y), and
connpra(y,z) = 0 thenz is blocked andy, z) is added to the set of blocking pairs:
bl = bl U {(y, z)}. Furthermore, we impose that if there are more nagdedich satisfy
the condition we will consider as the blocking node fothe one which is closest to the
root of the treeT,. (the tree from whiche makes part), so the nodefor which there is
no nodez such that <z, y, cT(z) C cT(z), andconnpra(z,y) = 0. This choice over
possible blocking nodes is relevant for the next stage optbef, where a complete clash-
free relaxed completion structure is transformed into amete clash-free completion
structure. The condition) still holds form as we have not modified the content of nodes,
but just removed some unexpanded nodes.
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So, () holds for C'S’ which was evolved fronC'S, no matter which expansion rule
or applicability rule was used. It is easy to see, that)fH{olds for a particular relaxed
completion structur€'S then this fact together with the fact th@f, M) is an open answer
set of P guarantees thaf'S is clash-free. So, in order to obtain a complete clash-free
relaxed completion structure one has just to apply rulesiifiin the manner described
above. To see that the process terminates, assume it dod$eot for everye,y € Ngp/
such thatr <% y andcT(x) = ct(y), the blocking rule cannot be applied, so there
is a path from a(z) to someg(y). This suggests the existence of an infinite patldin
(as on any infinite branch in a tree frof{ there would be an infinite number of nodes
with equal content - there is a finite amount of values for thetent of a node), which
contradicts with the fact that any atom in an open answesgastified in a finite number
of stepg(Heymans et al. 2006, Theorem 2).

At this point we have constructed a complete clash-freexeela&ompletion structure
CS for p w.r.t P starting from a forest open answer set fowhich satisfie.

The preference relation over different blocking nodes cb®in the construction above
has several consequences described by the following sesult

Lemma 2

Let CS = (EF, cT, sT, G bl) be a complete clash-free relaxed completion structure
constructed in the manner described abadvg (= (F, ES)). Then, for every: such that
there exists g so that(x, y) € bl (x is a blocking node irC'S), there is no node <, z,

T. € F such thatr(z) = cT(x).

Proof

Assume by contradiction thatis a blocking node ir€”'S, so, there is g such tha{x, y) €

bl, and that there exists also<r. z, T, € F such thatct(z) = cT1(z). Observe that
conna(z,y) = {(p(2),4(y)) | p € CT(2) Aq € CT(y) A (3r € OT(x) 5. t.(p(2),7(x)) €
conng(z,x) A (r(z), q(y)) € connprg(z,y))} (according to lemmal1 the existence of a
path from gp(z) to aq(y) in G implies the existence of a path franto y in EF; all paths
from z to y in EF include the path from to y in T, and conversely;,, and then according
to the same lemma there must be a atom in the initial path with argumentz: r(z) in
this case). Butonnprg(z,y) = 0 as(x,y) € bl, soconnpra(z,y) = (. Additionally,
ct(z) = c1(z) 2 cT(y), so the existence of is in contradiction with the preference
condition over potentially blocking nodes. Thus, the lemmbls. [

Corollary 1

Let CS = (EF, cT, sT, G, bl) be a complete clash-free relaxed completion structure
constructed in the manner described abdvE (= (E, ES)) andI B a branch of a tre&,
from F'. Then there are at mo2t distinct blocking nodes i B wherep = |upreds(P)].

Proof
The result follows from the fact that there cannot be two kilog nodes with equal content
on the same path in a tree according to the previous lemmaarfihite number of values
for the content of a node which is given by the cardinalitytef power set ofipreds(P).

U
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The next step is to transform a relaxed clash-free comptatgtetion structure’'S =
(EF, cT, ST, G, bl), whereEF = (F, ES), into a complete clash-free completion struc-
ture, that is, a complete clash-free relaxed completiamctire which has no redundant
nodes. This is done by applying a series of successive tranafions on the relaxed com-
pletion structure - each transformation “shrinks” the ctetipn structure in the sense that
the newer returned relaxed completion structure has arleasgber of nodes than the orig-
inal one and is still complete and clash-free. The resultppiyang the transformation is
a relaxed clash-free complete completion structure whahdbound on the number of
nodes on any branch which matches the boufrdm the redundancy condition, which is
thus a clash-free complete completion structure.

A way to shrink a (relaxed) completion structure is that wdear two nodes andv in
a treeT, from F are on the same path, <7, v, and they have equal contentr(u) =
cT(v), the subtreel.[u] is replaced with the subtreE.[v]. We call such a transforma-
tion collapsecs(u,v) and its results is a new relaxed completion structité = (EF’,
ct’, sT/, G', bl’), where the elements of this new completion structure ar@efn the
following.

Letef : Ngpr — C be alabeled extended forest which associates to every rfiadE o
a label from a set of distinguished consta@tsuch thatef (x) # ef (y) for everyx and
y in Ngp such thatr # y. Let ef’ = replace.s(u,v) be a new labeled extended forest
and EF’ be the corresponding unlabeled extended forest. For evenyF’ let z be the
counterpart ofc in EF in the sense thakf’(z) = ef (). Note that for every: € EF’
there is a unique such counterpartfi#'. For simplicity we also introduce the notation
S to refer to the counterpart tuple (the tuple of counterpades) corresponding to the
tuple of nodes front from 77 . Formally,(z1, ..., x,) = (Z1, ..., T,). With the help of
this notion of counterpart node we will define also the ottmnponents of the resulted
completion structurefF’ has already been defined):

G' = (V’, A"). The set of nodeB”’ of the new grapld=’ contains all atomsfor which there

is a atom inV” formed with the same predicate symbollaand having as arguments the
counterpart of the arguments bfAdditionally, V' contains binary atoms which connect
the predecessor af (it is the same both iZF and EF') with the new node: which were
also present iV - this is necessarily a8 = v, so otherwise these connections would be
lost:

Vv’ :{ll | Jls € V s. t.pred(ly) = pred(l2) A args(lh) = GT‘gS(lg)}U
{f(zu) | z€T' A f(z,u) eV}

The set of arcs!’ of the new graplt:’ contains all pair of atom@1, l2) for which there is

a corresponding pair iv, (Is,14), such thais andi, have the same predicate symbols as
l; andis, respectively, and their argument tuples are the countievptne argument tuples
of 11, andls, respectively. AdditionallyA’ contains arcs fromd which connect atoms
whose arguments include the predecessar(ifis the same both iff’ andT”) with atoms
whose arguments include the new nedethis is necessarily a8 = v, so otherwise these
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connections would be lost:
A" ={(l1,12) | I(I3,14) € As. t.pred(ly) = pred(l3) A pred(ls) = pred(ly)
Nargs(l) = args(ls) A args(lz) = args(ls) }U
{(I1,12) | (I1,1) e EAu € arg(la) Az € arg(li) Az < u}.

ct’(z) = c1(T), for everyz € ef’;

s1/(z) = sT(%), for everyz € ef’;

bl = {(z,y) | (Z,7y) € bl A connpre(z,y) = 0}. We maintain those blocking pairs
whose counterparts iBF formed a blocking pair, and which further more still fulfilie
blocking condition.

Note that the result of applying the transformation on a detepclash-free relaxed
completion structure might be an incomplete clash-freexedd completion structure. If
completeness of the original structure was achieved byamgpamong others the blocking
rule, the transformation might leave some branches “ufadsin case the blocking node
is eliminated or simply because two nodes who formed a biagckiir are still found in
the new structure, but they do not longer fulfill the blockmwndition. We will describe
two cases in which the transformation can be applied withmgihg the completeness of
the resulted structure by means of two lemmas. Before tloateher, we need to state
a general result which will prove useful in the demonstratid the two lemmas. The
result states that if as a result of applying th&apse transformation on a complete clash-
free relaxed completion structure one obtains a complettacture in which the path
between a blocking pair of nodes remains untouched (evetyg imothe original path is the
counterpart of some node in the new structure), then theswet&h have as counterparts
the nodes of the blocking pair form a blocking pair in the n@mpletion structure.

Lemma 3

LetCS = (EF, cT, ST, G, bl), EF = (F, ES) be a complete clash-free relaxed comple-
tion structure and’S’ = (EF’', c1’, s1/, G’, bl') the result returned bypllapsecS(u,v),
whereu andv are two nodes fronEF which fulfill the usual conditions necessary for
the application ofollapse. Then, for every(x,y) € bl: if for every z € pathr, (z,y)
(z,y € T.), existsz’ € EF’ such thatz’ = z, then(a’,y’) € bl’, wherez',y’ € EF’,

2/ =z andy’ = y.

Proof

Let EF, EF', z, y, «/, andy’ be as defined in the lemma. The conditions for the two
nodesz’ andy’ from EF’ to form a blocking pair{z’,’) € bl’, are that(z,7) € bl and
connprg:(2',y") = 0. The first condition is part of the prerequisites of the lemsmit
remains to be proved thatnnpre: (2/,y') = 0. Assume by contradiction that there exists
a path inG’ from ap(z’) to aq(y’). Then according to lemnid 1 there is a p&thin EF’
from 2z’ to 3’ such that for every € P there exists a unary atom with argumerit the
path inG’ from p(z') to ¢(y’). Any path inEF’ from 2’ to ¢’ includes the path iff’. (the
tree from which bothr’ to 3’ make part) frome’ to y'. Assumepathr:(z',y') = (z1" =

' o, ... x, = y'): then Pt contains the unary atondg', lo/, . .., ,," with args(l;’) =

xj, for1 <4 < nsuchthatl;’,lj, ) € connprg., for everyl <i < n. Let:c_; = x;. As



62 Cristina Feier and Stijn Heymans

every node on the paffuthr, (z,y) is the counterpart of some nodegiathr (2, y') and
every node irpathr; (z',y’) has the some counterpartjpnthr, (x,y), one can conclude
thatpathr, (z,y) = (z1,22,...,2,). Also, from the definition oktollapse one can see
that the presence of unary atomswith args(l;’) = z; in Pt/G’ implies the presence
of atomsl; with args(l;) = x; andpred(l;) = pred(l;’) in G, for everyl < i < n.
Furthermorg(l,’,l;, ) € connprg: implies(l;,1;11) € connprg, for everyl < i < n.
The latter results leads tdl,1,) € connprg with args(ly) = =1 = 77 = x and
args(l,) = x, = T’ = y, or in other words tdpred(l), pred(l,)) € connpra(z,y).
This contradicts with the fact thét, y) € bl, and thusonnpre(z,y) = 0. 0O

Lemma 4

LetCS = (EF, cT, sT, G, bl), EF = (F, ES) be a complete clash-free relaxed com-
pletion structure. If there are two nodesandv in a treeT, in F such thatu <7, v,
cT(u) = cT(v), and there is no blocking nodé, »’ <1, v, collapsecs(u,v) returns a
complete clash-free relaxed completion structure.

Proof

We have to show that'S’ = collapsecs(u,v) is complete, that is, no expansion rule
further applies to this completion structure. We will catesievery leaf node of EF’ and
show that no rule can be applied to further expand such a Addee are three possible
cases as concerns the counterpant of EF, T (which at its turn is a leaf node iBF):

T is a blocked node id’S, which does not make part from the tr€efrom whichw andwv
make part. Lefl; be the tree from whiclt makes part: then there is a noglec T,; such
that(y', ) € bl. No node was eliminated froffi; as a result of the transformation so for
everyz € pathr, (Z,vy'), existsz’ € EF’ such that’ = 2. Thus lemma&l3 can be applied:
(z,y) € bl’, wherey is the node inEF’ for whichy = y/. Sox is a blocked node i@’'S.

T is a blocked node i'S which makes part from the same tfEefrom whichu andv also
make part: then there is a nogee T. such that(y’, =) € bl. Depending on the location
of 4/ in T, one can distinguish between the following situations :

— ' #r. u (FigurdB2 a)): in this casg is on a branch which does not contaiandv
(asitis also the case thglt £ u due to the fact that there is no blocking nadesuch
thate < 2’ < v) and it is not eliminated as a result of applying the transfation,
so the path fron to ¢’ in T, is preserved as a result of the transformation. Lefima 3
can be applied with the result that, y) € bl wherey is the node inEF’ for which
y=v

— y' >r, wandy’ # v (FigurdB2 b)): in this casg is eliminated as a result of apply-
ing the transformation, bt is also eliminated which contradicts with the existence
of z in C'S’. To see whyt is also eliminated notice thagt £ v (as again this would
contradict with the fact that there is no blocking nadesuch that < 2’ < v) and
T > 4. This implies thatt > w andT £ v which suggests that is one of the
eliminated nodes, too.

— ¢’ > v (Figure[B2 c)): in this casg’ is not eliminated as a result of applying
the transformation, so the path framto 3’ in T, is preserved as a result of the
transformation. Lemm@ 3 can be applied with the result thay) € bl wherey is
the node inEF’ for whichy = v/
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Fig. B 2: Shrinking a completion structure by eliminatinguigee with a root above any
blocking node (the eliminated part is highlighted with doobus line; the part
highlighted with dashed line is still kept in)

So the conclusion of the analysis above is the existenceoflegne 7" such tha(y, T) €
bl. As connpre(y,@) = 0, connpre:(y,z) = 0 as the subtre&[y] can be found irl”
intact in the form of the subtreE’[y]: the eliminated nodes were not part of this subtree
as, again, there is no blocking noglein T', such that < 2’ < v.

e T is nota blocked node i6'S; asC'S is complete, no expansion rule can be applied io
CS and, by transfer neither toin C'S’ (as they are two nodes which have equal contents
which are justified in a similar way).

O

Lemma 5

LetCS = (EF, cr, sT, G, bl) be a complete clash-free relaxed completion structure. If
there are three nodesw, andv in 7' such that: < u < v and there is no blocking node
2’ such that: < 2’ < v, andconnprg(z,u) C connprg(z,v), collapsecs(u, v) returns

a complete clash-free relaxed completion structure.

Proof

Like for the lemma above we show that any leaf node in the cetigpl structure”'S’ =
collapsecs(u,v) (or more precisely in the corresponding trE§ cannot be further ex-
panded. Again we consider every such leadnd we distinguish between three cases as
concerns its counterpart ifi, T:

e T is ablocked node id'S, which does not make part from the trf€gfrom whichu andv
make part.This case is similar with the first case in the prewlemma.

e T is a blocked node il”'S which makes part from the same tréefrom which« andv
make part: then there is a noge e T, such that(z,y’) € bl. Using a similar argument
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as for the previous lemma one concludes that there is apad&” such thaty’ = 7, or

in other wordg)’ has not been eliminated as a result of applying the transftiom In the
following we will show that(y, =) € bl’ andz is not further expanded. We will do this on
a case-basis considering different locationg ahdz in T, w.r.t. the nodes, u, anv (we
consider only those cases in which after the transformdtidh7 andz are maintained in
the structure):

— 7 <r, z and there is a nod€ such that’ <. u, 2’ > ¥, andZ >r, 2’ (Figure
a)): in this case the transformation does not remove adg frompathr, (7, T)
so lemmaB can be applied with the result that:) € bl’.

— 7y >, v (Figure[B3 b)): in this case no nodes from the subtfefy] are re-
moved during the transformation so using the same argunseabave we obtain
that(y, z) € bl’.

— 7 #r. zandy £r, z (Figure[B3 c)): in this casg is not on the same path asu,
andv and again the subtré@ [y] is copied intact intd’/, so(y, z) € bl’.

— g <r, zandz >, v:in this caseyj, z, u, v andz are all on the same path if..
Assume by contradiction thabnnpre: (y, x) # 0, or in other words there is a path
in G’ from ap(y) to someg(z). By lemmdl one obtains that there must be a path
Pt betweeny andz in EF': note that every such path contajnghz (y, ). From
the same lemma and the previous observation one obtainththratexists a set of
unary atomsy, ls, ..., I, in G’ witharguments:y, x, . . . 2,,, wherepathr, (y, x) =
(x1 = y,x2,...2, = y) such that(l;,l;+1) € connpre/, for1 < ¢ < n. Note
that (I;,1;41) € connprgs, for 1 < i < n implies that(l;,1;) € connprg, for
1<i<j<n.

Observe that the counterpart offrom T, in T/ is still z and the counterpart af
from T, in T is u, or in other word€ = z andu = v. S0,z,u € pathr:(x,y), orin
other words exist$ < j < k < n such thatr; = z andzy, = u. As (I1,1;), (I;,1x),
Ik, 1n) € connpree: (pred(ly), pred(l;)) € connpra:(y, z), (pred(l;), pred(ly)) €
connprag: (z,u), and(pred(ly), pred(l,)) € connprg: (u, ).

By definition of collapse: connpre: (y,u) = connpra(g,u), connpre: (z,u) =
connpra(z,u) andconnpre: (u,y) = connpra (v, T), so: (pred(ly), pred(l;)) €
connprg (7, z), (pred(ly), pred(ly)) € connprz,u), and(pred(ly), pred(l,)) €
connprg: (v, Z). From the lemma conditiononnprz,u) C connpr(z,v), thus
(pred(l;), pred(lx)) € connpre: (z,v).

Finally, (pred(l1),pred(l;)) € connpra(g, z), (pred(l;), pred(lx)) € connprg
(z,v), and(pred(l), pred(ly)) € connprg: (v, T) implies (pred(ly), pred(l,)) €
connpra (¥, ™), which is a contradiction with the fact thabnnprq(y,z) = 0 as
(y,T) € bl. Thus, our assumption is falsemnpre: (y,z) = 0, and(y, x) € bl’.

e Tis not a blocked node i6'S (FiguredB3 d)); using a similar argument as for the previous
lemma one can show that no expansion rule appliasitoC'S’.

O

Now, we will describe a sequence of transformations on xeel@lash-free complete
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Fig. B 3: Shrinking a completion structure by eliminatingusee with a root below a
blocking node (the eliminated part is highlighted)

completion structur€'S = (EF, cT, sT, G, bl ), EF = (F, ES), which returns a com-
plete clash-free completion structure. The transfornmatishich have to be applied S
are the following (the order in which they are applied islgvant):

for every two nodes andv in a treeT, € F such that <p, u <r, v, CT(u) = CT(v),
and there is no blocking node ¢ <7, = <7, v, collapsecs(u,v) (we will call such a
transformation a transformation of type 1) ;

for every two nodes, andv in a treeT,. € F for which there exists a nodein T, such
thatz <7, u <p, v and there is no blocking node such thatz: <y, = <, v, and
connprg(z,u) C connpr(z,v), collapsecs(u,v) (we will call such a transformation a
transformation of type 2).

That the resulted completion structure is complete folldivsctly from Lemmd¥# and
Lemmdb. We still have to prove the following claim:

Claim 5

LetCS = (EF, cT, sT, G, bl) be a complete relaxed completion structure to which no
transformation of the form described above can be furthpliegh Then every branch of
CS has at mosk = 27(2¢" — 1) + 3 nodes withp = |upreds(P)|.

We will analyze every branch of every trég at a time. Consider the current branch is
IB and that it contains the blocking nodes z-, . . . z,,. From Corollanyl we know that
n < 2P, wherep = |upreds(P)|. The last node of the branch will be denoted withi
(Figure[B4). We split the branchB in n + 1 paths and count the maximum number of
nodes with a certain content in each of these paths. In oodéo this need an additional
lemma which is defined next.
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Lemma 6
Let I B be a branch in a treE. as depicted in Figufe B 4. For a givere 2u»reds(P):

e foranyl < i < n, there can be at mogt’ nodes inpathr, (x;, z;4+1) with content
equal tos, in case there is no nodec T, such that <, « <r, z; andcT(z) = s

e foranyl < i < n, there can be at mo&P” — 1 nodes inpathr, (2;,x;+1) with
content equal t®, except forz;, in case there is a node € T, such thatt <,
x <7, x; andcT(z) = s

e there can be at mo&F” nodes inpathr, (z,, end) with content equal ta, except
for z,,.

Proof

We will prove that for anyl < i < n, there can be at mogt” nodes inpathy, (x;, Tiy1)
with content equal ta in case there is no node € T, such thate <r, * <, z; and
cT(z) = s. Assume by contradiction that there are at I€45t-1 nodes irpathr, (z;, zi+1)
with content equal ta. Let’s call these nodeg,, 2, . . ., ym, Wherem > 2¢” It is neces-
sary thatconnpra (y1,y:) O connpra(yi1, yit+1) for everyl < ¢ < m, otherwise a trans-
formation of type 2 could be further applied €5S. As connprg(z,y) C upreds(P) x
upreds(P) and [2upreds(P)xupreds(P)| — 9p” and there at least’” distinct values for
connpra(y1,y:), whenl < i < m, there mustbe ah < i < m such thatonnpra(y1, yi)
= (). But in this cas€y,y;) € bl (as the two nodes also have equal content) which con-
tradicts with the fact thay; % end. The other cases are proved similarlyl]

Now we will proceed to the actual counting. Lete 2urm4s(P) pe a possible content
value for any node i B. We will count the maximum number of nodes with conteir
1B -in order to do this we have to distinguish between threekffit cases as regards

Fig. B4: A random brancli B in the resulted complete clash-free relaxed completion
structurexy, ..., x, are blocking nodes
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e there is no node: € T, with ¢ <7, z <, 27 such thatcT(xz) = s, and there is no
1 < 4 < n such thatct(z;) = s. In this case there is maximum 1 node with content
equal tos in pathr, (c,z1) (the root), maximun2?’ nodes in eachathr, (x;,2; + 1) and
maximum2?” nodes inpathr, (z,,end) (according to lemmhal6); for the last path there
cannot be?’ + 1 nodes as that would mean that is a blocked node with content equal
to s, so there would be a blocking node with content equal, tavhich contradicts with
the fact the hypothesis there is no blocking node with cdregnal tos). Also there are at
most2P — 1 blocking nodes (if there would b2 such nodes, the maximum indicated by
corollary] there would remain no valid value fgc Summing all up, in this case there are
at mosQP2(2P — 1) + 1 nodes with content equal to

e there is no node: such thate <r, = <r, x; such thatcT(xz) = s but there is a node
x;, 1 < 4 < n such thatcT(z;) = s. In this case there is no nodesuch thate <r,

x <. z; which has content equal to (lemmal2), and thugathr, (c,z1) maximum 1
node with content equal te(the root).pathr, (z;, z;4+1) has maximun2?” nodes, every
path(x;,z;41), wherei < j < n has maximun2?’ — 1 nodes, and the patfx,,, end)
has maximun2?’ nodes (according to lemrha 6). Summing all up, in this casethe at
most(2?° — 1)(n — i 4+ 1) + 3 nodes with content equal tg wheren is the number of
blocking nodes. There are at m@stblocking nodes (corollaryl1), so the maximum of the
expression is met whein= 1 andn = 2? and is2? (27" — 1) + 3.

e thereis a node such that <. = <, z; andct(z) = s. In this casecT(z;) # s, for
everyl < i < n (lemma2). The counting is as followgathr, (c,z1) has maximum 1
node with content equal te (z), otherwise a transformation of type 1 could be applied,
pathr, (x;, 2;41) has maximun2?” — 1 nodes,] < i < n and the path{(z,, end) has
maximum2?” nodes (according to lemrha 6). Also there are at st 1 blocking nodes
(if there would be2? such nodes, the maximum indicated by coroll@ry 1 there wianthin
no valid value fors). Summing all up, in this case there are at n(@gf -1)(2r-1)+1
nodes with content equal to

From the three cases the maximum of number of nodes with cbatgial to a given
in any branchl B of a treeT, € F'is 217(2172 — 1) + 3, which is exactlyk.

At this point we have a complete relaxed clash-free commiettructure with at mosgt
nodes on any branch, thus a complete clash-free complétiectgre forp w.r.t. P. [
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