
ar
X

iv
:1

11
0.

27
73

v1
 [

cs
.L

O
]

12
 O

ct
 2

01
1

Under consideration for publication in Theory and Practiceof Logic Programming 1

Reasoning with Forest Logic Programs and f-hybrid
Knowledge Bases∗

CRISTINA FEIER, STIJN HEYMANS†
Knowledge-Based Systems Group, Institute of Information Systems

Vienna University of Technology
Favoritenstrasse 9-11, A-1040 Vienna, Austria

(e-mail:{feier,heymans}@kr.tuwien.ac.at)

submitted 30 November 2009; revised 30 May 2011, 21 September 2011; accepted 4 October 2011

Abstract

Open Answer Set Programming (OASP) is an undecidable framework for integrating ontologies and
rules. Although several decidable fragments of OASP have been identified, few reasoning procedures
exist. In this article, we provide a sound, complete, and terminating algorithm for satisfiability check-
ing w.r.t. Forest Logic Programs (FoLPs), a fragment of OASPwhere rules have a tree shape and
allow for inequality atoms and constants. The algorithm establishes a decidability result for FoLPs.
Although believed to be decidable, so far only the decidability for two small subsets of FoLPs, local
FoLPs and acyclic FoLPs, has been shown. We further introduce f-hybrid knowledge bases, a hybrid
framework whereSHOQ knowledge bases and forest logic programs co-exist, and we show that
reasoning with such knowledge bases can be reduced to reasoning with forest logic programs only.
We note that f-hybrid knowledge bases do not require the usual (weakly) DL-safety of the rule com-
ponent, providing thus a genuine alternative approach to current integration approaches of ontologies
and rules.

KEYWORDS: Forest Logic Programs, finite model property, f-hybrid knowledge bases, open answer
sets, integration of rules and ontologies

1 Introduction

Integrating Description Logics (DLs) with rules for the Semantic Web has received consid-
erable attention. Such approaches for combining rules and ontologies areDescription Logic
Programs(Grosof et al. 2003),DL-safe rules(Motik et al. 2005),DL+log (Rosati 2006),
dl-programs(Eiter et al. 2008),Description Logic Rules(Krötzsch et al. 2008a), and Open
Answer Set Programming (OASP) (Heymans et al. 2008). OASP combines attractive fea-
tures from the DL and the Logic Programming (LP) world: an open domain semantics
from the DL side allows for stating generic knowledge, without the need to mention actual

∗ A preliminary version of this paper appeared in the proceedings of theEuropean Semantic Web Conference
20009 (ESWC2009). We extended that paper with detailed examples, a more detailed description of the algo-
rithm and of the fragment of f-hybrid knowledge bases, a detailed characterisation of simple FoLPs, as well as
with proofs for all theorems.(Feier and Heymans 2009).

† This work is partially supported by the Austrian Science Fund (FWF) under the projects P20305 and P20840,
and by the European Commission under the project OntoRule (IST-2009-231875).

http://arxiv.org/abs/1110.2773v1

2 Cristina Feier and Stijn Heymans

constants, and a rule-based syntax from the LP side supportsnonmonotonic reasoning via
negation as failure. Concretely, Open Answer Set Programming is an extension of(unsafe)
function-free Answer Set Programming (Gelfond and Lifschitz 1988) with open domains,
i.e., the syntax remains the same, the semantics is still stable-model based, but programs
are interpreted w.r.t. open domains, i.e., non-empty arbitrary domains which extend the
Herbrand universe.

Example 1
Consider the following program:

fail(X) ← not pass(X)

pass(john) ←

Although the predicatefail is not satisfiable under the ordinary answer set semantics – the
only answer set being{pass(john)} – it is satisfiable under the open answer set semantics.
If one considers, for example, the universe{john , x}, with x some individual which does
not belong to the Herbrand universe, there is an open answer set {pass(john), fail(x)}
which satisfiesfail.

Open Answer Set Programming is undecidable. One way to obtain decidable fragments
is to impose syntactical restrictions while carefully safe-guarding enough expressiveness
for integrating rule- and ontology-based knowledge. Such restrictions typically ensure the
tree-model property: predicates are either unary or binary, and if a unary predicatep is
satisfiable then there is a model which can be seen as a labeledtree such that: each node of
the tree is labeled with a set of unary predicates, the label of the root includesp, and each
arc is labeled with a set of binary predicates.

Such a restriction led toConceptual Logic Programs (CoLPs)(Heymans et al. 2006)
which are able to simulate reasoning in the DLSHQ. CoLPs make use only of unary and
binary predicates and disallow the presence of constants inprograms. They also impose
some constraints on the shape of rules: unary and binary rules are tree-shaped rules which
have as head a single unary atom and binary atom, respectively. The tree-like structure of
rules refers to the chaining pattern of rule variables: one variable can be seen as the root
of a tree and the others as successors of the root such that forevery arc in the tree there
is a positive binary literal in the body which connects the two corresponding variables.
Inequalities between ‘successor’ variables can also appear in the body of such a rule; we
will refer to the set of literals in the body of a rule formed only with the help of the ‘root’
variable as the ‘local part’ of the rule and to the remaining part of the rule body as the
‘successor part’ of the rule. Constraints, i.e., rules withempty head, are also allowed, but
their body also has to be tree-shaped, so that they can be simulated via unary rules. Another
type of rules which can appear in CoLPs are so-calledfree ruleswhich have one of the
following shapes:a(X) ∨ not a(X) ← or f (X ,Y) ∨ not f (X ,Y) ← , wherea is a
unary predicate andf is a binary predicate. Conceptual Logic Programs were proved to be
decidable by a reduction of satisfiability checking to checking non-emptiness of two-way
alternating tree automata (Heymans et al. 2006).

Example 2
The following programP is a CoLP which describes the fact that somebody is happy if she
meets a friend who is happy or an enemy who is unhappy, and somebody is unhappy if she

Reasoning with FoLPs and f-hybrid KBs 3

meets an enemy who is happy or a friend who is not happy. This isexpressed by means of
four unary tree-shaped rules,r1-r4, each of these rules havingX as the root variable and
Y as the successor ofX . Furthermore, somebody is happy if she has at least two different
friends: ruler5 captures this knowledge in a tree-style fashion,X being the root of a tree,
andY andZ its distinct successors (expressed by the inequality in thebody of the rule).
The binary predicatessees, friend, andenemy are free predicates, i.e., they are defined
only via free rules. The last two rules are constraints whichdisallow that somebody is
friend and enemy with the same person, or that somebody is at the same time both happy
and unhappy.

r1 : happy(X) ←sees(X ,Y), friend(X ,Y), happy(Y)

r2 : happy(X) ←sees(X ,Y), enemy(X ,Y), unhappy(Y)

r3 : unhappy(X) ←sees(X ,Y), friend(X ,Y), not happy(Y)

r4 : unhappy(X) ←sees(X ,Y), enemy(X ,Y), happy(Y)

r5 : happy(X) ←friend(X ,Y), friend(X ,Z),Y 6= Z

r6 : sees(X ,Y) ∨ not sees(X ,Y) ←

r7 : friend(X ,Y) ∨ not friend(X ,Y) ←

r8 : enemy(X ,Y) ∨ not enemy(X ,Y)←

r9 : ←happy(X), unhappy(X)

r10 : ←friend(X ,Y), enemy(X ,Y)

Next figure describes a tree-shaped open answer set with universe{x, y, z, t} and inter-
pretation{unhappy(x), sees(x, y), enemy(x, y), happy(y), friend(y, z), friend(y, t)}
– one can see from this thatunhappy is tree-satisfiable:x is unhappy as she sees an enemy
y which in turn is happy, as she has at least two different friends,z andt. Note that there
are no empty labels on the arcs of the tree andy does not see either of her friendsz and
t; otherwise, as it is not known either aboutz or aboutt that they are happy, seeing them
would rendery unhappy (according to ruler3), and that would lead to an inconsistency
(according to ruler9).

x

y

z

{friend}

t

{friend}

{sees, enemy}

{unhappy}

{happy}

{} {}

Another fragment of OASP, calledForest Logic Programs (FoLPs), has, as its name
suggests, theforest-model property(Heymans et al. 2007). Theforest-model propertyis a
generalization of the tree-model property: if a unary predicatep is satisfiable then it is
satisfied by a model that can be seen as a special type of labeled forest, where the forest
contains for each constant in the program a tree having as root the corresponding constant,
and possibly an additional tree with an anonymous root. The forest is special in the sense
that it can contain additional arcs from any node in the forest to one of the roots, standing

4 Cristina Feier and Stijn Heymans

for constants. FoLPs implement the forest-model property by allowing also for constants in
the programs. Rules have practically the same tree-shape asCoLPs, with the exception of
constants not being treated as successors in the tree1. As such, FoLPs are generalizations of
CoLPs and are expressive enough to deal with the DLSHOQ (the presence of constants
allows the simulation of DL nominals).

Example 3
Consider a slightly modified version of the CoLPP , P ′:

r1 :

. . .

r10 :

r11 : unhappy(j) ← hungry(j)

r12 : hungry(j) ←

Two new rules,r11 andr12, both referencing a constantj, have been added to the CoLP.
The figure below describes a forest-shaped open answer set with universe{j, x, y} and
interpretation{unhappy(j), hungry(j), happy(x), sees(x, y), friend(x, y), happy(y),
enemy(y, j), sees(y, j)} – one can see from this thathappy is forest-satisfiable:x is
happy as it sees a friendy which at its turn is happy, as it sees an enemy,j, who is unhappy
because it is hungry. The forest is composed of two trees, onewith rootj, the constant ap-
pearing in the program, and the other one with rootx, wherex is an anonymous individual,
whose content contains the predicate checked to be satisfiable,happy.

x

y

j

{sees, enemy} {sees, friend}

{happy}

{happy}

{unhappy, hungry}

A serious shortcoming of both CoLPs and FoLPs is their lack ofeffective reasoning
procedures. Furthermore, it has not been known so far whether satisfiability checking w.r.t.
Forest Logic Programs (FoLPs) is decidable. The decidability of two closely-related frag-
ments of FoLPs, local FoLPs, and acyclic FoLPs, together with a reasoning procedure
(for both fragments) based on a reduction to ordinary ASP reasoning has been provided
in (Heymans et al. 2007). Both fragments are quite inexpressive compared to the whole
FoLP fragment. For example, local FoLPs allow only the presence of negated atoms in the
successor part of the tree structure of the unary or binary rules2.

The reduction of reasoning to the ordinary ASP case has been made possible by the fact
that local and acyclic FoLPs have thebounded finite model property, i.e., if there is an open

1 This means that the ‘root’ term does not necessarily have to be linked with a successor term which is a constant
via a binary atom.

2 This restriction does not apply to literals who have a constant as argument.

Reasoning with FoLPs and f-hybrid KBs 5

answer set, then there is an open answer set with a universe that is bounded by a number
of elements that can be specified in function of the program athand.

Example 4
The FoLPP ′ can be ‘adapted’ into a local FoLP as follows:

r1 : happy(X) ← sees(X ,Y), friend(X ,Y),

not unhappy(Y)

r2 : happy(X) ← sees(X ,Y), enemy(X ,Y),

not happy(Y)

r3 : unhappy(X) ← sees(X ,Y), friend(X ,Y),

not happy(Y)

r4 : unhappy(X) ← sees(X ,Y), enemy(X ,Y),

not unhappy(Y)

r5 : happy(X) ← friend(X ,Y), friend(X ,Z),

Y 6= Z

r6 : sees(X ,Y) ∨ not sees(X ,Y) ←

r7 : friend(X ,Y) ∨ not friend(X ,Y) ←

r8 : enemy(X ,Y) ∨ not enemy(X ,Y) ←

r9 : ← happy(X), unhappy(X)

r10 : ← friend(X ,Y), enemy(X ,Y)

r11 : unhappy(j) ← hungry(j)

r12 : hungry(j) ←

Note that the two programs, the original FoLP and the local FoLP, are not equivalent: for
example, the infinite universe{x1, x2, x3, . . .} and the infinite interpretation{happy(x1),
friend(x1, x2), sees(x1, x2), happy(x2), friend(x2, x3), sees(x2, x3), . . .} form an
open answer set of the local FoLP, but they do not form an open answer set of the gen-
eral FoLP.

Finally, another fragment with reasoning support consistsof simple CoLPs. Simple
CoLPs are CoLPs that disallow the use of inequality and impose a restriction as concerns
predicate recursion, but that are still expressive enough to simulate the DLALCH. In
(Feier and Heymans 2008), a sound and complete tableaux-algorithm for simple CoLPs
has been devised. The algorithm constructs so-called completion structures, which are fi-
nite representations of (partial) models. The particular restriction on predicate recursion
is a sufficient condition to establish the bounded finite model property and to enable the
usage of a simple subset blocking condition to ensure the termination of the algorithm. As
is usual in Description Logics (Baader et al. 2003), subset blocking consists in checking
whether the label of a node of the forest is a subset of the label of one of its ancestors; if
this is the case, the initial node is said to be ‘blocked’ by its ancestor, and it is no longer
expanded as the content of its label can be justified in a similar way as the content of the
label of its ancestor.

In this article, we provide a tableaux-based algorithm for reasoning with the full frag-
ment of FoLPs, and thus implicitly also with full CoLPs: in order to check whether a unary
predicate is satisfiable, the algorithm tries to construct aforest model which satisfies the

6 Cristina Feier and Stijn Heymans

predicate. This is done by evolving a so-called completion structure which essentially is a
forest shaped structure which describes a forest model in construction. When certain con-
ditions are met, such a structure is said to becompleteandclash-freeand can be unraveled
to an actual forest model. The algorithm can be seen as an extension of the algorithm for
reasoning with simple CoLPs (Feier and Heymans 2008); however, due to the lack of any
restriction concerning predicate/literal recursion, things get significantly more complex.
Unlike in the case of simple CoLPs, termination can no longerbe ensured by a classical
subset blocking condition; using only such a condition for stopping the expansion of a
branch can lead to unsound results: the interpretation obtained by unraveling a clash-free
complete completion structure may contain infinite chains of atoms, where the presence
of each atom in the interpretation is justified by the presence of next atom. This violates a
result regarding OASP which says that every atom in an open answer set has to be finitely
justified (Heymans et al. 2006, Theorem 2). A more complex blocking condition has been
devised, which when applied guarantees soundness, but which no longer ensures termina-
tion, as it may never be fulfilled in the expansion process. However, it turns out that FoLPs,
like local and acyclic FoLPs, also have the bounded finite model property: termination is
then ensured by exploring forest branches only up to a certain depth.

The algorithm runs in the worst case in double exponential time, one exponential level
higher than the algorithm for reasoning with simple CoLPs. The increase in complexity
(compared to the algorithm for simple CoLPs, but also compared to tableaux procedures
for reasoning withSHOQ) is due to the interaction between the requirement concerning
the minimality of open answer sets and the unrestricted recursion in rules which leads to a
double exponential bound on the number of individuals whichmight be needed to satisfy
a certain predicate.

We also define simple FoLPs as a particular kind of FoLPs whichare in a similar rela-
tionship with FoLPs as simple CoLPs with CoLPs: there is a similar restriction on predicate
recursion, but unlike the case of simple CoLPs we allow also the presence of constants and
inequalities in rule bodies. The algorithm can be simplifiedin such a case and the worst
case complexity drops one exponential level. Simple FoLPs can be seen as a generalization
of local FoLPs and acyclic FoLPs.

As already mentioned, FoLPs serve well as an underlying integration vehicle for on-
tologies and rules. In order to illustrate this, we definef-hybrid knowledge bases (fKBs),
consisting of aSHOQ knowledge base and a rule component that is a FoLP, with a non-
monotonic semantics similar to the semantics ofDL+log (Rosati 2006),r-hybrid knowl-
edge bases(Rosati 2008), andg-hybrid knowledge bases(Heymans et al. 2008). Our ap-
proach differs in two points with current other proposals:

• In contrast with Description Logic Programs, DL-safe rules, and Description Logic
Rules, f-hybrid knowledge bases have, in line with traditional logic programming
paradigms, a minimal model semantics for the rule component, thus allowing for
nonmonotonic reasoning.

• To ensure effective reasoning, our approach does not rely ona (weakly) DL-safeness
condition such as (Motik et al. 2005; Rosati 2006; Rosati 2008), which restricts the
interaction of the rule component with the DL component. Instead, we rely on a
translation of the hybrid knowledge to FoLPs.

Reasoning with FoLPs and f-hybrid KBs 7

The major contributions of the paper can be summarized as follows:

• We define in Section 4 an algorithm for deciding satisfiability w.r.t. FoLPs, inspired
by tableaux-based methods from DLs. We show that this algorithm is terminating,
sound, and complete, and runs in double exponential time. The algorithm is non-
trivial from two perspectives: both the minimal model semantics of OASP, compared
to the model semantics of DLs, as well as the open domain assumption, compared to
the closed domain assumption of ASP (Gelfond and Lifschitz 1988), pose specific
challenges.
• We show in Section 5 that FoLPs are expressive enough to simulate the DLSHOQ

with fKBsas an alternative characterization for hybrid representation and (nonmono-
tonic) reasoning of knowledge, that supports a tight integration of ontologies and
rules.

The article is organized as follows. A short overview of OpenAnswer Set syntax and
semantics together with some notations are presented in Section 2. Next, Section 3 for-
mally introduces FoLPs and theforest model property. The actual tableaux algorithm for
reasoning with FoLPs is described in Section 4. A new hybrid formalism,f-hybrid KBs,
which combinesSHOQ KBs with FoLPs, is introduced in Section 5. Reasoning with the
new formalism is enabled by a concept satisfiability preserving translation fromSHOQ
KBs to FoLPs, the translation being described in the same section. A less expressive frag-
ment of FoLPs, simple Forest Logic Programs, is described inSection 6. Finally, Section
7 discusses some related work, while Section 8 draws some conclusions. Detailed proofs
can be found in the Appendix.

2 Preliminaries

We recall the open answer set semantics from (Heymans et al. 2007). A term is either
a constantor a variable3, and is denoted by a string of letters where a constant starts
with a lower-case letter and a a variable with an upper case letter. An atom is of the form
p(t1, . . . , tn), wherep is a predicate name, andt1, . . . , tn are terms. We further allow for
equality atomss = t, wheres andt are terms. Aliteral is an atomL or a negated atom
not L. An inequality literalnot (s = t) will often be denoted withs 6= t. An atom (literal)
that is not an equality atom (inequality literal) will be called aregular atom (literal). For a
regular literalL, pred(L), andargs(L) denote the predicate, and the (tuple of) arguments
of L4, respectively. For a setα of literals or (possibly negated) predicates,α+ = {l |

l ∈ α, l an atom or a predicate} andα− = {l | not l ∈ α, l an atom or a predicate}. For
example,{a, not b, c 6= d}+ = {a} and{a, not b, c 6= d}− = {b, c = d}. For a setS of
atoms,not S = {not L | L ∈ S}. For a set of (possibly negated) predicatesα, we will
often writeα(x) for {a(x) | a ∈ α} andα(x, y) for {a(x, y) | a ∈ α}.

A programis a countable set of rulesα ← β, whereα is a finite set of regular literals
andβ is a finite set of literals. The setα is theheadof the rule and represents a disjunction,

3 No function symbols are allowed.
4 If the literalL has just one argument,args(L) will return the argument itself.

8 Cristina Feier and Stijn Heymans

while β is called thebodyand represents a conjunction. Ifα = ∅, the rule is called acon-
straint. Free rulesare rulesq(t1, . . . , tn) ∨ not q(t1, . . . , tn)← for termst1, . . . , tn; they
enable a choice for the inclusion of atoms. We call a predicateq free in a program if there
is a free ruleq(X1, . . . , Xn) ∨ not q(X1, . . . , Xn)← in the program, whereX1, . . . , Xn

are variables. Atoms, literals, rules, and programs that donot contain variables areground.
For a rule or a programP , let cts(P) be the constants inP , vars(P) its variables, and
preds(P) its predicates, withupreds(P) andbpreds(P), the unary and binary predicates,
respectively. For every predicateq and programP , let Pq be the set of definite (i.e., dis-
junction free) rules ofP that haveq as a head predicate. AuniverseU for a programP is a
non-empty countable superset of the constants inP : cts(P) ⊆ U . We callPU the ground
program obtained fromP by substituting every variable inP by every possible element in
U . Letatoms(P) (lits(P)) be the set of regular atoms (literals) that can be formed from a
ground programP .

An interpretationI of a groundP is a subset ofatoms(P). We writeI |= p(t1, . . . , tn)

if p(t1, . . . , tn) ∈ I andI |= not p(t1, . . . , tn) if I 6|= p(t1, . . . , tn). Furthermore, for
ground termss andt we writeI |= s = t if s = t andI |= not s = t or I |= s 6= t if
s 6= t. For a set of ground literalsX , I |= X if I |= l for everyl ∈ X . A ground rule
r : α← β is satisfiedw.r.t. I, denotedI |= r, if I |= l for somel ∈ α wheneverI |= β. A
ground constraint← β is satisfied w.r.t.I if I 6|= β.

For a ground programP without not , an interpretationI of P is a modelof P if I
satisfies every rule inP ; it is ananswer setof P if it is a subset minimal model ofP . For
ground programsP containingnot , theGL-reduct(Gelfond and Lifschitz 1988) w.r.t.I is
defined asP I , whereP I containsα+ ← β+ for α ← β in P , I |= not β−, andI |= α−.
I is ananswer setof a groundP if I is an answer set ofP I .

In the following, a program is assumed to be a finite set of rules; infinite programs only
appear as byproducts of grounding a finite program with an infinite universe. Anopen
interpretationof a programP is a pair(U,M) whereU is a universe forP andM is an
interpretation ofPU . An open answer setof P is an open interpretation(U,M) of P with
M an answer set ofPU . An n-ary predicatep in P is satisfiable w.r.t.P if there is an open
answer set(U,M) of P and a(x1, . . . , xn) ∈ Un such thatp(x1, . . . , xn) ∈M .

We introduce some notations for trees which extend those in (Vardi 1998). Let· be a
concatenation operator between different symbols such as constants or natural numbers.
A treeT with root c (also denoted asTc), wherec is a specially designated constant, is
a set of nodes, where each node is a sequence of the formc · s, wheres is a (possibly
empty) sequence of positive integers formed with the help ofthe concatenation operator;
for x · d ∈ T , d ∈ N∗5, we must have thatx ∈ T . For example a tree with rootc and 2
successors will be denoted as{c, c · 1, c · 2} or {c, c1, c2} 6.

For a nodex ∈ T , we callsuccT (x) = {x · n ∈ T | n ∈ N∗}, successorsof x in T . As
the successorship relation is captured in the codification of the nodes, a tree is literally the
set of its nodes. Thearity of a tree is the maximum amount of successors any node has in
the tree. The setAT = {(x, y) | x, y ∈ T, ∃n ∈ N∗ : y = x · n} denotes the set of arcs of

5 N∗ is the set of positive integers
6 By abuse of notation, we consider that there are at most 9 successors for every node, so we can abbreviatea · b

with ab

Reasoning with FoLPs and f-hybrid KBs 9

a treeT . We define a partial order≤T on a treeT such that forx, y ∈ T , x ≤T y iff x is
a prefix ofy. As usual,x <T y if x ≤T y andy 6≤T x. A path fromx to y in T , where
x <T y, denoted withpathT (x, y), is a subset ofT which contains all nodes which are
at the same time greater or equal tox in T and lesser or equal toy in T according to the
partial order relation, i.e.,pathT (x, y) = {z | x ≤T z ≤T y}. A branchB in a treeTc is
a maximal path (there is no path inTc which strictly contains it). We denote thesubtreeof
T atx by T [x], i.e.,T [x] = {y ∈ T | x ≤T y}.

A forestF is a set of trees{Tc | c ∈ C}, whereC is a finite set of arbitrary constants.
The set of nodesNF of a forestF and the set of arcsAF of F are defined as follows:
NF = ∪T∈FT andAF = ∪T∈FAT . For a nodex ∈ NF , we denote withsuccF (x) =

succT (x), wherex ∈ T andT ∈ F , the set of successors ofx in F . Also, as for trees, we
define a partial order relationship≤F on the nodes of a forestF wherex ≤F y iff x ≤T y

for some treeT in F .
An extended forestEF is a tuple〈F,ES 〉 whereF = {Tc | c ∈ C} is a forest andES

is a binary relation which contains tuples of the form(x, y) wherex ∈ NF andy ∈ C, i.e.,
ES relates nodes of the forest with roots of trees in the forest.ES extends the successorship
relation:succEF (x) = {y | y ∈ succF (x) or (x, y) ∈ ES}.

Figure 1 depicts an extended forest.

EF : a b

a1 b1 b2 b3

a11 a12 b21

Fig. 1: An extended forest

The presence ofES gives rise to so-called extended trees inEF , where such a tree
(actually, a particular type of graph) is one ofTc ∈ F , extended with the arcs{(x, y) |
(x, y) ∈ ES , x ∈ Tc} and with the nodes{y | (x, y) ∈ ES , x ∈ Tc}. The extension of
Tc in EF is denoted withTEF

c . For example, the extension ofTa in EF from Figure 1
contains the extra arc(a12, b) and the extension ofTb in EF contains the extra arcs(b, a)
and (b2, a). An extended subtree with rootx of an extended treeTEF

c is denoted with
TEF
c [x]: it is defined (as a graph) as the extension ofTc[x] with the arcs{(y, z) | (y, z) ∈

ES , y ∈ Tc[x]} and with the nodes{z | (y, z) ∈ ES , y ∈ Tc[x]}. Finally, byNEF = NF

we denote the set of nodes of an extended forestEF and byAEF = AF ∪ ES the set of
arcs ofEF .

Finally, a directed graphG is defined as usual by its sets of nodesV and arcsA. We
introduce two graph-related notations:pathsG denotes the set of paths inG, where each

10 Cristina Feier and Stijn Heymans

path is a tuple of nodes fromV : pathsG = {(x1, . . . , xn) | ((xi, xi+1) ∈ A)1≤i<n},
and connG denotes the set of pairs of connected nodes fromV : connG = {(x, y) |

∃Pt = (x1, . . . , xn) ∈ pathsG : x1 = x ∧ xn = y}. As an extended forest is a par-
ticular type of graph, these notations apply also to extended forests. Additional notation
needed for the proofs is introduced in the appendix.

3 Forest Logic Programs

As mentioned in the introduction,Forest Logic Programs (FoLPs)are a fragment of OASP
which have the forest model property. In this section we formally introduce the fragment
and the notions offorest satisfiabilityandforest model property.

Definition 1

A forest logic program (FoLP)is a program with only unary and binary predicates, and
such that a rule is either:

• a free rule:

a(s) ∨ not a(s)← (1)

or,

f (s , t) ∨ not f (s , t)← (2)

wheres andt are terms;
• a unary rule:

a(s)← β(s), (γm (s , tm), δm(tm))1≤m≤k , ψ (3)

with ψ ⊆
⋃

1≤i6=j≤k{ti 6= tj} andk ∈ N, or abinary rule:

f (s , t)← β(s), γ(s , t), δ(t) (4)

wherea ∈ upreds(P) andf ∈ bpreds(P), s, t, and(tm)1≤m≤k are terms,β, δ,
(δm)1≤m≤k ⊆ upreds(P) ∪ not (upreds(P)) (sets of (possibly negated) unary
predicates),γ, (γm)1≤m≤k ⊆ bpreds(P) ∪ not (bpreds(P)) (sets of possibly
negated binary predicates), and

1. equality and inequality do not appear in anyγ: {=, 6=} ∩ γm = ∅, for 1 ≤
m ≤ k, and{=, 6=} ∩ γ = ∅;

2. there is a positive atom that connects the head terms with any successor term
which is a variable:γ+m 6= ∅, if tm is a variable, for1 ≤ m ≤ k, andγ+ 6= ∅,
if t is a variable;

• a constraint: ← a(s) or ← f (s , t), wheres andt are terms.

In every rule, all terms which are variables are distinct7.

7 This restriction precludes the presence in rules of literals of the formf(X,X) or not f(X,X) which would
break the forest model property.

Reasoning with FoLPs and f-hybrid KBs 11

Example 5
Consider again ruler5 from Example 2:r5 : happy(X) ← friend(X ,Y), friend(X ,Z),

Y 6= Z. This rule is a unary rule with head termX , andk = 2, i.e., there are two successor
terms, variablesY andZ. In this caseβ = ∅, γ1 = γ2 = {friend}, δ1 = δ2 = ∅, and
ψ = {Y 6= Z}. There is an atom which linksX with each of the successor termsY and
Z: friend(X,Y) andfriend(X,Z), respectively.

Constraints can be left out of the fragment without losing expressivity. Indeed, a con-
straint ← body can be replaced by a rule of the formconstr(x) ← not constr(x), body ,
for a new predicateconstr .

We denote withdegree(r), wherer is a unary rule as in (3), the numberk. Intuitively,k
indicates the maximum number of successor individuals needed to make the rule true. The
degree of a free rule is 0.

For a unary predicatep, degree(p) = max{degree(r) | p ∈ head(r)}. Finally, the
rank of a FoLPP is defined as:rank(P) =

∑

p∈upreds(P) degree(P).
As already mentioned FoLPs have theforest model property: if a unary predicatep is

satisfiable then there is a model which satisfiesp that can be seen as an extended forest.
The forest contains for each constant in the program a tree having the constant as root, and
possibly an additional tree with an anonymous root. The predicate checked to be satisfiable,
p, belongs to the label of one of the root nodes. While the constants appearing in the
program are mandatorily part of the universe of any model, having an anonymous root tree
is considered asp might be satisfied only in conjunction with an anonymous individual,
and not a constant.

Example 6
Consider a program with two rules:q(a) ← p(a), not q(a), andp(X) ∨ not p(X) ← .
While p is satisfiable,p(a) does not appear in any open answer set.

Definition 2
Let P be a program. A predicatep ∈ upreds(P) is forest satisfiablew.r.t.P if there is an
open answer set(U,M) of P and there is an extended forestEF ≡ ({Tε} ∪ {Ta | a ∈

cts(P)},ES), whereε is a constant, possibly one of the constants appearing8 in P , and a
labeling functionL : {Tε} ∪ {Ta | a ∈ cts(P)} ∪AEF → 2preds(P) such that

• p ∈ L(ε),
• U = NEF , and
• M = {L(x)(x) | x ∈ NEF} ∪ {L(x, y)(x, y) | (x, y) ∈ AEF}9, and
• for every(z, z · i) ∈ AEF : L(z, z · i), 6= ∅.

We call such a(U,M) a forest model10 and a programP has theforest model property
if the following property holds:

If p ∈ upreds(P) is satisfiable w.r.t.P thenp is forest satisfiable w.r.t.P .

8 Note that in this caseTε ∈ {Ta | a ∈ cts(P)}. Thus, the extended forest contains for every constant fromP
a tree which has as root that specific constant and possibly, but not necessarily, an extra tree with unidentified
root node.

9 Remember thatL(x) andL(x, y) are sets of unary and binary predicates, resp., and thus for every p ∈
upreds(P): p(x) ∈ M iff p ∈ L(x) and for everyf ∈ bpreds(P): f(x, y) ∈ M iff f ∈ L(x, y).

10 Note that technically, a forest model is a subset minimal model as it is an open answer set.

12 Cristina Feier and Stijn Heymans

Proposition 1((Heymans et al. 2007))
FoLPs have the forest model property.

Example 7
Let EF be the extended forest depicted in Example 3:EF = ({Tε, Tj}, {(y, j)}), where
ε = x. According to the notation we introduced for trees, the successor ofx in Tx, y, has
the formx · i, with i ∈ N∗. One can see thathappy, the predicate checked to be satisfiable,
is in the label ofε: happy ∈ L(x), the universeU of the open answer set is indeed equal
to NEF = {x, y, j}, and every predicate symbol corresponding to some atom inM is in
the label of the argument of the atom, e.g.:unhappy ∈ L(j). The reciprocal also holds:
every node/arc of the extended forest in conjunction with every predicate symbol in its
label forms an atom which is part of the interpretation. It also holds thatx andy = x · i are
linked by a positive binary predicate:L(x, y)+ = {sees, friend} 6= ∅.

In (Feier and Heymans 2008), we introduced the class of simple Conceptual Logic Pro-
grams. It is easy to see that every simple CoLP is an FoLP. As satisfiability checking w.r.t.
simple Conceptual Logic Programs isEXPTIME-hard, the following property follows:

Proposition 2
Satisfiability checking w.r.t. FoLPs isEXPTIME-hard.

Note that, at present, we do not have a tight complexity characterization for FoLPs: we
have a lower bound (EXPTIME) established by the inclusion of simple CoLPs in FoLPs,
while the algorithm described in this article runs in the worst case in double exponential
time, thus establishing an upper bound.

4 An Algorithm for Forest Logic Programs

In this section, we define a sound, complete, and terminatingalgorithm for satisfiability
checking w.r.t. FoLPs. In (Heymans et al. 2007) it has been shown that several restrictions
of FoLPs which have the finite model property are decidable, but there was no result so far
regarding the whole fragment. Thus, the algorithm described in this section also establishes
a decidability result for FoLPs.

The basic data structure for our algorithm is acompletion structure. A completion struc-
ture describes a forest model in construction. As such, the main components of the structure
are an extended forestEF , the forest-shaped universe of the constructed open answerset,
and a labeling functionct, which assigns to every node, resp. arc ofEF , a set of possibly
negated unary, resp. binary predicates, called acontent. The presence of such a predicate
symbol/negated predicate symbol in the content of some nodeor arc indicates the pres-
ence/absence in the forest model in construction of the atomformed with that predicate
and the current node or arc as argument. Note that unlike the labeling functionL in defini-
tion 2 which describes which atoms are in the forest model, the labeling functionct keeps
track also of which atoms are not in the forest model. This is needed as the forest model is
updated by justifying the presence or absence of a certain atom in itself.

The presence (absence) of an atom in a forest model in construction is justified by im-
posing that the body of at least one ground rule which has the respective atom in the head is

Reasoning with FoLPs and f-hybrid KBs 13

satisfied (no body of a rule which has the respective atom in the head is satisfied). In order
to keep track which (possibly negated) predicate symbols inthe content of some node or
arc have already been justified a so-called status function is introduced. The status function
st assigns the valueunexp to pairs of nodes/arcs and possibly negated unary/binary pred-
icates which have not yet been ‘expanded’, i.e. justified, and the valueexp to such pairs
which have already been considered.

Furthermore, in order to ensure that the constructed forestmodel is a well-supported
one (Fages 1991), or in other words, no atom in the model is circularly justified (does not
depend on itself) or infinitely justified (does not depend on an infinite chain of other atoms),
a graphG which keeps track of dependencies between atoms in the modelis maintained.

In the following, for a predicatep,±p denotesp ornot p, whereby multiple occurrences
of±p in the same context refer to the same symbol (eitherp ornot p). The negation of±p
(in a given context) is∓p, that is,∓p = not p if ±p = p and∓p = p if ±p = not p.

Definition 3
A completion structure for a FoLPP is a tuple〈EF , ct, st, G〉 where:

• EF = 〈F,ES 〉 is an extended forest, its set of nodes being the universe of the forest
model in construction,
• ct : NEF ∪ AEF → 2preds(P)∪not (preds(P)) is the ‘content’ function which maps

a node of the extended forest to a set of (possibly negated) unary predicates and an
arc of the extended forest to a set of (possibly negated) binary predicates such that
ct(x) ⊆ upreds(P) ∪ not(upreds(P)) if x ∈ NEF , andct(x) ⊆ bpreds(P) ∪

not(bpreds(P)) if x ∈ AEF ,
• st : {(x,±q) | ±q ∈ ct(x), x ∈ NEF ∪ AEF} → {exp, unexp} is the ‘sta-

tus’ function which indicates which predicates in the content of some node/arc are
justified, and which are not,
• G = 〈V,A〉 is a directed graph with verticesV ⊆ atoms(PNEF

) and arcsA ⊆
atoms(PNEF

)× atoms(PNEF
),

For checking satisfiability of a unary predicatepw.r.t. a FoLPP , one starts with an initial
completion structure which is defined as follows: the extended forestEF is initialized
with the set of single-node trees having as root a constant appearing inP and possibly a
new single-node tree with an anonymous root11. In case the anonymous root tree exists,
its content is initialized with{p}, the predicate checked to be satisfiable. Otherwise the
content of the root of one of the other trees is initialized with {p}. The contents of the
other nodes (roots) are initialized with∅. G is initialized to the graph with a single vertex
p(ε).

Definition 4
An initial completion structurefor checking satisfiability of a unary predicatep w.r.t. a
FoLPP is a completion structure〈EF , ct, st, G〉 with EF = 〈F,ES 〉, F = {Tε} ∪

{Ta | a ∈ cts(P)}, whereε is a constant, possibly incts(P), andTx = {x}, for every
x ∈ cts(P) ∪ {ε}, ES = ∅, G = 〈V,A〉, V = {p(ε)}, A = ∅, ct(ε) = {p}, and
st(ε, p) = unexp.

11 This is in order to comply with the generic shape of a forest model described in section 3.

14 Cristina Feier and Stijn Heymans

In the following, we show how to expand such an initial completion structure to prove
satisfiability of a unary predicatep w.r.t. a FoLPP , how to determine when no more ex-
pansion is needed, that is, either the structure representsa full open answer set or a clash
has occurred, and under what circumstances aclashoccurs. In particular,expansion rules
evolve a completion structure, starting with a guess for an initial completion structure for
checking satisfiability ofp w.r.t.P , to a complete clash-free structure that corresponds to
a finite representation of an open answer set in casep is satisfiable w.r.t.P . Applicability
rulesstate the necessary conditions such that these expansion rules can be applied.

4.1 Expansion Rules

Expansion rules update the completion structure by making explicit constraints which are
necessary to hold for a certain literal to be part of a forest model12.

An atom is part of a forest model if there is a ground rule whichhas the atom as head
and all body literals are also part of the forest model; this is taken care of by theexpand
unary/binary positiverules. New domain elements might have to be introduced by these
rules in order to obtain such a ground rule.

Conversely, an atom is not part of the forest model if all bodies of ground rules which
have as head the atom are not satisfied by the forest model. Therules which enforce this
are theexpand unary/binary negativerules. The absence of an atom in the forest model is
proved only when there is no possibility to introduce new individuals in the domain which
would lead to a ground rule having the atom in the head and a satisfiable body. As such,
there is an interaction between these rules and the rules which justify the presence of atoms
in the open answer set.

Newly introduced domain elements give rise to new ground atoms and rules and some
of these rules might render the program inconsistent. In order to be sure that the partially
constructed model is a complete one every ground atom has to be proved to be either part
or not part of the forest model. If the atom is not constrainedto be or not to be part of the
forest model, a random choice is made. Thechoose unary/binaryrules take care of this.

The expansion rules make extensive use of a sequence of operations meant to enforce the
presence of a literal±p(z) in the forest model (wherez is a term in casep ∈ upreds(P),
and a pair of terms in casep ∈ bpreds(P)) as part of justifying the presence of another
literal l. This consists in inserting±p in the content ofz and mark it as unexpanded, in
case the predicate symbol is not already there, and in case±p(z) is an atom, ensuring that
it is a node inG and if l is also an atom, creating a new arc froml to±p(z) to capture the
dependencies between the two elements of the forest model. Formally:

• let ct(z) := ct(z) ∪ {±p} andst(z,±p) := unexp,
• if ±p = p, then letV := V ∪ {±p(z)},
• if l ∈ atoms(PNEF

) and±p = p, then letA := A ∪ {(l,±p(z))}.

As a shorthand, we denote this sequence of operations asupdate(l,±p, z); more gen-
eral, update(l, β, z) for a set of (possibly negated) predicatesβ, denotes∀ ± a ∈ β,

12 A negative literal ‘is part’ of a forest model when the corresponding atom does not make part of the model.

Reasoning with FoLPs and f-hybrid KBs 15

update(l,±a, z). In the following, for a completion structure〈EF , ct, st, G〉, let x ∈
NEF and(x, y) ∈ AEF be the node, respectively arc, under consideration.

4.1.1 (i) Expand unary positive.

Consider a unary positive predicatep ∈ ct(x) such thatst(x, p) = unexp. If p is not a
free predicate symbol:

• pick a ruler ∈ Pp of the form (3) such thats (the term in the head of the rule)
matchesx. The rule will be used to justify the presence ofp(x) in the tentative open
answer set.
• for theβ in the body ofr, update(p(x), β, x),
• considerk successors forx: (ym)1≤m≤k, (by picking from the existing successors

and/or by introducing new ones), such that:

— for every1 ≤ (i, j) ≤ k such thatti 6= tj ∈ ψ: yi 6= yj;
— for every1 ≤ m ≤ k:

– ym ∈ succEF (x), or
– ym is defined as a new successor ofx in the treeTc, wherex ∈ Tc: ym :=

x · n, wheren ∈ N∗ s.t.x · n /∈ succEF (x), andTc := Tc ∪ {ym}, or
– ym is defined as a new successor ofx in EF in the form of a constant:
ym := a, wherea is a constant fromcts(P) s.t.a /∈ succEF (x). In this
case also add(x, a) toES : ES := ES ∪ {(x, a)}.

• for every1 ≤ m ≤ k: update(p(x), γm, (x, ym)) andupdate(p(x), δm, ym).
• setst(x, p) := exp.

If p is free, its status in the content ofx is simply updated to expanded:st(x, p) = exp,
as the presence ofp(x) in the forest model in construction is trivially justified bythe free
rule which definesp grounded withx.

4.1.2 (ii) Choose a unary predicate.

If there is ap ∈ upreds(P) such thatp /∈ ct(x) andnot p /∈ ct(x), and for allq ∈ ct(x),
st(x, q) = exp, and for all(x, y) ∈ AEF and±f ∈ ct(x, y) (both positive and negative
predicates)st((x, y),±f) = exp then do one of the following:

• addp to ct(x) and letst(x, p) := unexp, or
• addnot p to ct(x) and letst(x, not p) = unexp.

In other words, if there are still unary predicates which do not appear inct(x) (either in a
positive or a negated form) and all positive predicates in the content ofx have been justified,
as well as all positive or negative predicates in the contentof one of the arcs starting inx
have been justified, one has to non-deterministically pick such a unary predicate symbolp
and inject eitherp or not p in ct(x).

As mentioned in the introduction to this section, this rule is needed in order to ensure that
the partially constructed forest model is part of an actual model: as a result of introducing
new domain elements in the process of constructing a forest model, there might be ground

16 Cristina Feier and Stijn Heymans

rules whose heads are not relevant per se for the satisfiability task at hand, but which are
not satisfiable in any total extension of the partial forest model. One tries to effectively con-
struct such an extension by making a random choice for unconstrained ground atoms re-
garding their membership to the forest model. As an analogy to the DL world, tableau algo-
rithms which check concept satisfiability typically internalize the TBox, i.e. reduce reason-
ing w.r.t. a terminology to checking satisfiability of a new concept (Horrocks et al. 1999).
This new concept is constructed by taking into account all axioms in the TBox and not
only those on which the initial concept checked to be satisfiable depends.

As an example consider the program with only two rules:a(X) ∨ not a(X) ← and
b(X)← not b(X). Suppose one wants to check whethera is satisfiable: while it is trivial
to see thata is justified by the first rule, the program has no open answer set due to the
inconsistency introduced by the second rule. This will be tracked down by our algorithm
by trying to proveb(ε) andnot b(ε) (after each of them is inserted in the content ofε as a
result of applying the choose unary rule), and failing in each case.

For reasons described in the next subsection, this rule has priority over the rule which
describes the expansion of unary negative predicates.

4.1.3 (iii) Expand unary negative.

In general, for justifying that a negative unary literalnot p ∈ ct(x) (or in other words, the
absence ofp(x) in the constructed forest model), one has to refute the body of every ground
(non-free) rule with head atomp(x). Let r ∈ Pp andr′ : p(x) ← β(x), (γm(x, ym),

δm(ym))1≤m≤k, ψ, with ψ ⊆
⋃

1≤i6=j≤k{yi 6= yj}, andk ∈ N, be a ground version ofr.
The body ofr′ can be either:

• (i) ‘locally’ refuted: by refutation of a literal fromβ(x). For this, one has to enforce
that there is a±q ∈ β which does not appear inct(x), or in other words:∓q ∈
ct(x); note that this refutes all ground versions ofr where the head variable is
substituted withx.
• (ii) refuted in the ‘successor’ part of the rule: by refutation of a literal from one of
(γm(x, ym))1≤m≤k or (δm(ym)))1≤m≤k, or by impossibility to satisfyψ. In a forest
model, all groundings ofr, in which one of the successor terms has been substituted
with y, wherey is a node in the forest which is not a direct successor ofx, are
refuted: there is no arc which linksx to y, and as such there are no literals of the
form f(x, y) with f ∈ bpreds(P) in the constructed open answer set. Thus, one
has to consider only groundings in which(ym)1≤m≤k are successors ofx in EF :
(ym = x · zm)1≤m≤k, and which satisfyψ. For such ground rules, the body can be
refuted by enforcing that there is a±f ∈ δm which does not appear inct(x, x · zm)

(equivalent with:∓f ∈ ct(x, x · zm)) or that there is a±q ∈ γm which does not
appear inct(x · zm) (equivalent with:∓q ∈ ct(x · zm)), for some1 ≤ m ≤ k.

As we want to refute the bodies of all ground versions ofr, we either apply (i) once, or
apply (ii) for every assignment of successor terms inr with successors ofx in EF which
satisfiesψ. Asψ imposes a minimum bound on the number of distinct successor terms, if
the number of successors ofx inEF is smaller than this bound, there is no such assignment
which satisfiesψ. In this case, all bodies of ground versions ofr are refuted.

Reasoning with FoLPs and f-hybrid KBs 17

Formally, for a unary negative predicatenot p ∈ ct(x) for which st(x, not p) =

unexp, and for every ruler ∈ Pp of the form (3) such thatx matchess (s is the term from
the head of the rule), given thaty1, . . . , yn are the successors ofx in EF , do one of the
following:

• pick a±q ∈ β andupdate(not p(x),∓q, x), or
• for all yi1 , . . . , yik s. t.(1 ≤ ij ≤ n)1≤j≤k: if for all 1 ≤ j, l ≤ k, tj 6= tl ∈ ψ ⇒

yij 6= yil , do one of the following:

— for somem, 1 ≤ m ≤ k, pick±f ∈ δm andupdate(not p(x),∓f, (x, yim)),
or

— for somem, 1 ≤ m ≤ k, pick±q ∈ γm andupdate(not p(x),∓q, yim).

Finally, setst(x, not p) := exp.
Note that the introduction of new successors ofx gives rise to new ground unary rules

with headp(x). Such successors are introduced in the process of expandingpositive unary
predicates. In order to ensure thatp(x) is indeed refuted, this rule should be applied only
when all successors ofx have been introduced, i.e., when there is no possibility to further
expand a positive unary predicate:

• for all p ∈ upreds(P), p ∈ ct(x) or not p ∈ ct(x), and
• for all p ∈ ct(x), st(p, x) := exp

In other words, the rule is applied when neither of the expansion rules(i) Expand unary
positiveor (ii) Choose unarycan be further applied w.r.t. a certain nodex: in this case there
is and there will be no unexpanded positive predicate in the content ofx.

4.1.4 (iv) Expand binary positive.

Consider a binary positive predicate symbolf ∈ ct(x, y) such thatst((x, y), f) =

unexp. If f is not free, pick a ruler ∈ Pf of the form (4) such thatx matchess and
y matches witht (s and t are the terms from the head of the rule) to justifyf . For
β, γ, andδ corresponding tor do: update(p(x, y), β, x), update(p(x, y), γ, (x, y)), and
update(p(x, y), δ, y). Finally, letst((x, y), f) := exp (this is applied also whenf is free).

4.1.5 (v) Expand binary negative.

For a binary negative predicate symbolnot f ∈ ct(x, y) such thatst((x, y), not f) =

unexp, and for every ruler ∈ Pf of the form (4) such thatx matchess andy matchest (s
andt are the terms from the head of the rule) do one of the following:

• pick a±p from β andupdate(not f(x, y),∓p, x), or
• pick a±g from γ andupdate(not f(x, y),∓g, (x, y)), or
• pick a±q from δ andupdate(not f(x, y),∓q, y)).

Finally, letst((x, y), not f) := exp. Note that the expand binary negative rule, unlike its
unary counterpart, does not have to consider all successorsof x, justy. As such, there are
no complex interactions between this rule and the expand binary positive one.

18 Cristina Feier and Stijn Heymans

4.1.6 (vi) Choose a binary predicate.

If no (possibly negated) unary predicate±a ∈ ct(x) can be expanded according to
expansion rules (i)-(iii), and for all(x, y) ∈ AEF none of±f ∈ ct(x, y) can be ex-
panded according to rules (iv) and (v), and for somef ∈ bpreds(P): f /∈ ct(x, y) and
not f /∈ ct(x, y), then do one of the following:

• addf to ct(x, y) and letst((x, y), p) := unexp, or
• addnot f to ct(x, y) and letst((x, y), not p) := unexp.

4.2 Applicability Rules

A second set of rules is not updating the completion structure under consideration, but
restricts the use of the expansion rules. We refer to these rules as so-called applicability
rules.

4.2.1 (vii) Saturation

We call a nodex ∈ NEF saturatedif

• for all p ∈ upreds(P) we havep ∈ ct(x) or not p ∈ ct(x) and none of±q ∈
ct(x) can be expanded according to the rules (i)-(iii) ,
• for all (x, y) ∈ ATEF , T ∈ EF andp ∈ bpreds(P), p ∈ ct(x, y) or not p ∈
ct(x, y) and none of±f ∈ ct(x, y) can be expanded according to the rules (iv)-
(vi).

We impose that no expansions can be performed on a node fromNEF which does not
belong tocts(P) until its predecessors are saturated (we exclude constantsas they can
have more then one predecessor in the completion, includingthemselves).

4.2.2 (viii) Blocking

A nodex ∈ NEF is blockedif there is an ancestory of x in F , y <F x, y 6∈ cts(P),
s.t. ct(x) ⊆ ct(y) and the setconnprG(y, x) = {(p, q) | (p(y), q(x)) ∈ connG ∧

q is not free} is empty. We call(y, x) ablocking pair. No expansions can be performed on
a blocked node. Intuitively, if there is an ancestory of x which is not a constant, whose
content includes the content ofx, one can extend the interpretation such that the contents
of x and its outgoing arcs are identical to the contents ofy and its outgoing arcs. The newly
introduced atoms which havex as an argument will be justified in a similar way as their
counterpart atoms which havey as an argument. One can either:

1. reuse the successors ofy as successors ofx: this consists in the introduction of
‘backward’ arcs in the extended forest from the leaf nodex to the said successors.
The contents of these backward arcs will replicate the content of their counterpart
arcs fromy to its successors. The interpretation thus obtained is no longer a for-
est shaped one. This is the approach we consider for proving the soundness of the
algorithm and it is exemplified in Section 4.5.

Reasoning with FoLPs and f-hybrid KBs 19

2. introduce new successors forx which are similar to the successors ofy and which
at their turn will be justified similarly to the successors ofy, and so on. In this case,
one obtains an infinite forest interpretation. This approach is exemplified at the end
of Section 4.4.

However, in order for the interpretation constructed in oneof the above ways to be a forest
model, it is necessary that no atom in the interpretation is circularly or infinitely justified: a
sufficient condition to enforce this is to impose that there are no paths inG from a positive
literal p(y) to another positive literalq(x). For more insight into this please check Section
4.5 and the complete soundness proof in the appendix.

4.2.3 (ix) Redundancy

A nodex ∈ NEF is redundantif it is saturated, it is not blocked, and there arek ancestors
of x in F , (yi)1≤i≤k, wherek = 2p(2p

2

− 1) + 2, andp = |upreds(P)|, such that
ct(x) = ct(yi). In other words, a node is redundant if there are otherk nodes on the
same branch with the current node which all have content equal to the content of the current
node. The presence of a redundant node stops the expansion process.

In the completeness proof we show that any forest model of a FoLPP which satisfiesp
can be reduced to another forest model which satisfiesp and has at mostk + 1 nodes with
equal content in any branch of a tree from the forest model, and furthermore the(k + 1)st
node, in case it exists, is blocked13. One can thus search for forest models only of the latter
type. This rule exploits that result: we discard models which are not in this shrunk search
space. For more intuition regarding the reduction of a forest model to a forest model with
at mostk + 1 nodes with equal content in any branch of a tree from the forest model, we
refer the reader to the completeness proof in the appendix.

4.3 Clash-Free Complete Completion Structures

We call a completion structurecontradictoryif for somex ∈ NEF anda ∈ upreds(P),
{a, not a} ⊆ ct(x) or for some(x, y) ∈ AEF and f ∈ bpreds(P), {f, not f} ⊆
ct(x, y). A complete completion structurefor a FoLPP and ap ∈ upreds(P) is a com-
pletion structure that results from applying the expansionrules to an initial completion
structure forp andP , taking into account the applicability rules, such that no expansion
rules can be further applied. Furthermore, a complete completion structureCS = 〈EF ,

ct, st, G〉 is clash-freeif:

• (1)CS is not contradictory,
• (2)EF does not contain redundant nodes, and
• (2)G does not contain positive cycles.

13 The reduction consists in collapsing parts of the forest by replacing a subtree with rootc with another subtree
with root d, wherect(c) = ct(d), andd is a (non-constant) successor ofc in the forest. However, this
reduction can be applied only when certain conditions are met, e.g. there are no blocking nodes on the path
betweenc andd. As such, the value ofk depends on the number of possible contents for nodes,2p, but it is
greater than that, due to the fact that the reduction can be applied only in certain situations.

20 Cristina Feier and Stijn Heymans

Next section will give an example for constructing a clash-free complete completion
structure, while section 4.5 will show that a predicatep is satisfiable w.r.t. a FoLPP iff
there exists a clash-free complete completion structure ofp w.r.t.P .

4.4 Illustration of the algorithm

Consider a slightly modified version of the FoLP program described in Section 1, in which
the constraints have been replaced by unary rules as described in Section 3, and the last
rule has been removed. We will refer to this program asP .

r1 : happy(X) ←sees(X ,Y), friend(X ,Y), happy(Y)

r2 : happy(X) ←sees(X ,Y), enemy(X ,Y), unhappy(Y)

r3 : unhappy(X) ←sees(X ,Y), friend(X ,Y), not happy(Y)

r4 : unhappy(X) ←sees(X ,Y), enemy(X ,Y), happy(Y)

r5 : happy(X) ←friend(X ,Y), friend(X ,Z),Y 6= Z

r6 : sees(X ,Y) ∨ not sees(X ,Y) ←

r7 : friend(X ,Y) ∨ not friend(X ,Y) ←

r8 : enemy(X ,Y) ∨ not enemy(X ,Y)←

r9 : c(X) ←not c(X), happy(X), unhappy(X)

r10 :d(X ,Y) ←not d(X ,Y), friend(X ,Y), enemy(X ,Y)

r11 :unhappy(j) ←hungry(j)

We want to check the satisfiability of the predicatehappy w.r.t.P . For this purpose, we
first define an initial completion structure forhappy w.r.t. P : 〈EF, ct, st, G〉. There is
one constant inP , j, so there will be a tree with rootj, Tj, in EF ; further, we choose
not to include a tree with anonymous root inEF , and thus the only choice for placing the
initial constrainthappy is the content of nodej. The initial status ofhappy in this node is
unexpanded, so the status function is updated accordingly.The graphG = (V,A) which
keeps track of dependencies between atoms in the model in construction is initialized such
thatV = {happy(j)}, andA = ∅. The picture below depicts the initial completion struc-
ture forhappy w.r.t.P . Note that the fact that the status ofhappy is unexpanded is marked
by appending the superscriptu to happy.

j {happyu}

According to the expansion rule(i) Expand unary positive, the presence of the unex-
panded predicatehappy in the content of a nodej, or in other words ofhappy(j) in the
corresponding tentative open answer set, has to be justifiedby means of a unary rule with
head predicatehappy and head term which matchesj. We apply the expansion rule using
the unary rule:r1 : happy(X) ← sees(X ,Y), friend(X ,Y), happy(Y): a new succes-
sorj1 is created forj in Tj and the predicatessees andfriend are inserted in the content
of the arc(j, j1), and the predicatehappy is inserted in the content ofj1.G is also updated
by addition of the nodeshappy(j1), sees(j, j1), andfriend(j, j1) to V , and of the arcs
(happy(j), sees(j, j1)), (happy(j), friend(j, j1)), and(happy(j), happy(j1)) toA. In
other words,happy(j) is in the model in construction if there is an individualj1 such that

Reasoning with FoLPs and f-hybrid KBs 21

sees(j, j1), friend(j, j1), andhappy(j1) are all present in the same open answer set.
Next figure depicts the situation after the application of the expansion rule. The predicate
happy in the content ofj1 is marked as unexpanded. The other predicates are either ex-
panded (happy in the content ofj) or free predicates (sees andfriend in the content of
(j, j1)), and as such they are not superscripted.

j

j1

{sees, friend}

{happy}

{happyu}

Once again the only unexpanded predicate ishappy, only this time in the content ofj1.
However, we cannot proceed to its expansion sincej is not saturated: there are predicates
which do not appear either in a positive or a negative form in the contents ofj and its
outgoing arcs. Remember that according to applicability rule (vii) Saturationno expansions
can be performed on a node which is not a constant until its predecessor is saturated. We
pick the predicatehungry and apply the expansion rule(ii) Choose unaryby inserting
not hungry in the content ofj. It is not possible to apply(iii) Expand unary negative
w.r.t. not hungry in the content ofj, as one can still apply the(ii) Choose unaryrule: as
such we pick the predicatec and choose to insertnot c in the content ofj14. Once again,j
is not saturated and(ii) Choose unarycan be applied w.r.t.unhappy: we choose to insert
unhappy in the content ofj:

j

j1

{sees, friend}

{happy, not hungryu, not cu, unhappyu}

{happyu}

Among the unexpanded predicates in the content ofj we pick unhappy as the next
candidate for expansion as(i) Expand unary positivehas priority over(iii) Expand unary
negative. A rule with head predicateunhappy and head term which matchesj is picked
to justify the presence ofunhappy(j) in the model in construction:r3 : unhappy(X) ←

sees(X ,Y), friend(X ,Y), not happy(Y). Either the successor ofj, j1, is reused or a
new one is introduced to satisfy the non-local part of the rule. Suppose we pick up the
already existing successor,j1. In this casesees andfriend are inserted into the content of
the arc(j, j1) (they are already there), whilenot happy is inserted into the content ofj1:
this leads to a contradiction as now bothnot happy andhappy are in the content ofj1.

14 Note thatc (which is used to simulate a constraint) does not appear in the head or body or any other rule than
r9 and is never satisfiable: as such, an application of(ii) Choose unaryrule w.r.t.c is needed for saturating the
content of every node, and for simplification of exposition we will always choose to insertnot c in the content
of the node (as the other choice would lead to a contradiction). The same reasoning applies tod: for every arc,
there has to be an application of the(vi) Choose binaryrule w.r.t.d and the choice in each case will be to insert
not d in the content of the arc.

22 Cristina Feier and Stijn Heymans

j

j1

{sees, friend}

{happy, not hungryu, not cu, unhappyu}

{happyu, not happyu}

The algorithm backtracks and introduces a new successor forj, j2: sees andfriend are
inserted into the content of the arc(j, j2), andnot happy is inserted in the content ofj2.
Nowunhappy in the content ofj can be marked as expanded, and we proceed further with
the expansion process. Suppose we picknot c for expansion. There is a single ground rule
which definesc(j): c(j)← not c(j), happy(j), unhappy(j). According to the expansion
rule (iii) Expand unary negative, the body of this rule has to be refuted. There are three
possible choices for doing this: insertingc, not happy, or not unhappy into the content
of j. Each of the three choices leads to a contradiction. The figure below depicts the case
whennot unhappy was chosen to refute the body of the rule.

j

j1

{sees, friend}

j2

{sees, friend}

{happy, not hungryu, unhappy, not c, not unhappyu}

{happyu} {not happyu}

The algorithm backtracks to the previous choice, which was the choice of the rule to
justify unhappy in the content ofj. There are still two more rules inP whose head matches
unhappy(j): r4 andr11. However, from the previous developments one can see that even
if unhappy is satisfied in some other way, one will eventually reach a contradiction due
to the presence ofhappy, unhappy, andnot c in the content ofj. As such, we skip the
remaining two choices as concerns rules to justifyunhappy(j). Backtracking further, one
has to retractunhappy from the content ofj, and insertnot unhappy instead, and mark
it as unexpanded. Next step is to selectnot unhappy for expansion. According to the
expansion rule(iii) Expand unary negative, every ground rule which definesunhappy(j)
has to be considered and its body to be refuted. There is one instantiation for each rule
whose head matchesunhappy(j):

• r3: unhappy(j)← sees(j , j1), friend(j , j1), not happy(j1). The body of this rule
has to be refuted:sees(j, j1) and friend(j, j1) are already part of the tentative
open answer set so they cannot be refuted. The only remainingchoice is to refute
not happy(j1), thus to inserthappy into the content ofj1.
• r4: unhappy(j) ← sees(j , j1), enemy(j , j1), happy(j1). Here the only choice

which does not lead to contradiction is assertingnot enemy to the content ofj1.
The predicateenemy is a free predicate, defined only by a free rule, so it is trivially
expanded.
• r11: unhappy(j) ← hungry(j). The body of this rule is refuted by the presence of
not hungry into the content ofj.

Finally, in order to saturatej, we apply the(vi) Choose binaryrule and insertnot d in the

Reasoning with FoLPs and f-hybrid KBs 23

content of(j, j1). Then,not d is expanded using(vi) Expand binary negative: we observe
that the body of the ground ruled(j , j1) ← not d(j , j1), friend(j , j1), enemy(j , j1)

derived fromr10 is already refuted by the presence ofnot enemy in the content of(j, j1).

j

j1

{sees, friend, not enemy, not d}

{happy, not hungry, not unhappy, not c}

{happyu}

At this moment,j is saturated and by means of applicability rule(vii) Saturationwe
can proceed to its successorj1. One can see that the content ofj1 is included in the
content ofj, so according to rule(viii) Blocking, (j, j1) is a candidate blocking pair.
HoweverG contains the arc(happy(j), happy(j1)), so connprG(j, j1) 6= ∅, and the
second condition of the blocking rule is not met. Intuitively, if one would justifyj1 in
a similar manner asj, an infinite chain of the typehappy(j), happy(j1), . . . would be
present in the model in construction, each atom in the set being justified by the next
one in the set, thus there would be atoms in the model which arenot finitely justified.
Thus,j1 cannot be blocked and we proceed to expanding its content. This time we pick
rule r5 : happy(X) ← friend(X ,Y), friend(X ,Z),Y 6= Z to justify the presence of
happy(j1) in the tentative open answer set. To satisfy the body of some grounded version
of the rule, two distinct successors ofj1, j11 andj12, are created, andfriend is asserted
to the content of both(j1, j11) and(j1, j12). The arcs(happy(j1), friend(j1, j11)) and
(happy(j1), friend(j1, j12)) are added toA in G to capture the new dependencies be-
tween atoms in the tentative open answer set.

j

j1

j11

{friendu}

j12

{friendu}

{seesu, friendu, not enemy, not d}

{happy, not hungry, not unhappy, not c}

{happy}

{}{}

Now we proceed to saturatej1 by choosing to addnot c, not hungry, andnot unhappy
to the content ofj1 by repeatedly applying the expansion rule(vi) Choose unary neg-
ative. The first two additions are expanded in a similar manner as their counterparts in
the content ofj. As concernsnot unhappy, we have to consider again all three rules
which define the predicateunhappy. The justification w.r.t.r11 is similar as above, as
the rule is a local rule. There are two successors ofj1, j11 and j12, so there are two
ground versions ofr3: unhappy(j1) ← sees(j1 , j11), friend(j1 , j11), not happy(j11),
and unhappy(j1) ← sees(j1 , j12), friend(j1 , j12), not happy(j12), and two ground
versions of ruler4: unhappy(j1) ← sees(j1, j11), enemy(j1, j11), happy(j11), and
unhappy(j1)← sees(j1, j12), enemy(j1, j12), happy(j12). The bodies of all these four
ground rules have to be refuted. This is achieved by asserting happy to the content ofj11,
not sees to the content of(j1, j12), andnot enemy to both the contents of(j1, j11)

24 Cristina Feier and Stijn Heymans

and(j1, j12). Finally, we saturatej1 by completing the contents of the arcs(j1, j11) and
(j1, j12) in a similar manner as for the arc(j, j1).

j

j1

j11

{friend, not sees, not enemy, not d}

j12

{friend, sees, not enemy, not d}

{sees, friend, not enemy, not d}

{happy, not hungry, not unhappy, not c}

{happy, not unhappy, not hungry, not c}

{}{happyu}

At this moment,j1 is also saturated and we observe that the contents of both itssuc-
cessors are included in its own content. Unlike the case where ct(j1) ⊂ ct(j), but
connprG(j, j1) 6= ∅, we have that bothconnprG(j1, j11) = ∅, andconnprG(j1, j12)
= ∅, thus both(j1, j11) and(j1, j12) are blocking pairs. Thus, the completion structure
depicted in the figure above is a complete clash-free completion structure. We can derive
a forest-shaped open answer set by unraveling the structure, as explained already in the
context of rule(viii) Blocking. The contents ofj11 andj12 are made to be identical to the
content ofj1 and they are justified similarly as the content ofj1. This will give rise to two
new successors for bothj11 andj12, which again will be justified in the same manner, etc.
The obtained forest model is depicted in the figure below.

j

j1

j11

. . .

{friend}

. . .

{friend, sees}

{friend}

j12

. . .

{friend}

. . .

{friend, sees}

{friend, sees}

{friend, sees}

{happy}

{happy}

{happy}{happy}

Thus,happy is satisfiable w.r.t.P . The open answer set which satisfieshappy is (U,M),
with U = {j, j1, j11, j12, j111, j112, . . .}, andM = {happy(j)} ∪{happy(js), friend

(js, js1), friend(js, js2), sees(js, js1) |s = 1, 11, 12, 111, 112, . . .}.

4.5 Termination, Soundness, and Completeness

We show that an initial completion structure for a unary predicatep and a FoLPP can
always be expanded to a complete completion structure (termination), that, if there is a
clash-free complete completion structure,p is satisfiable w.r.t.P (soundness), and finally,

Reasoning with FoLPs and f-hybrid KBs 25

that, if p is satisfiable w.r.t.P , there is a clash-free complete completion structure (com-
pleteness).

Proposition 3(termination)

LetP be a FoLP andp ∈ upreds(P). Then, one can construct a finite complete completion
structure by a finite number of applications of the expansionrules to the initial completion
structure forp w.r.t.P , taking into account the applicability rules.

Proof sketch

Assume one cannot construct a complete completion structure by a finite number of ap-
plications of the expansion rules, taking into account the applicability rules. Clearly, if
one has a finite completion structure that is not complete, a finite application of expansion
rules would complete it unless successors are introduced. However, one cannot introduce
infinitely many successors: every infinite path in the extended forest will eventually con-
tain |k + 1| saturated nodes with equal content, wherek is as in the redundancy rule, and
thus either a blocked or a redundant node, which is not further expanded. Furthermore, the
arity of the trees in the completion structure is bound by thenumber of successor variables
in unary rules, more precisely byrank(P), whereP is the FoLP under consideration.

Proposition 4(soundness)

Let P be a FoLP andp ∈ upreds(P). If there exists a complete clash-free completion
structure forp w.r.t.P , thenp is satisfiable w.r.t.P .

Proof sketch

From a clash-free complete completion structure, one can construct an open interpretation
and show that this interpretation is an open answer set ofP that satisfiesp. One way to
construct such an open interpretation, by unraveling the completion structure to an infinite
structure (an open answer set with an infinite universe and aninfinite interpretation), has
been exemplified in the previous section. However, for simplicity of the proof we chose a
different approach: from a forest-shaped completion structure we generate a graph-shaped
open answer set by extending the content of the blocked nodesto be identical to the content
of the corresponding blocking nodes and introducing additional arcs from blocked nodes
to successors of blocking nodes which mirror the arcs from the blocking nodes them-
selves to their successors (thus, also inheriting their content). Also, at this stage all negated
predicates from the contents of nodes/arcs can be ignored. Considering our example from
section 4.4, the complete clash-free completion structuredescribed there gives rise to the
graph-shaped open answer set depicted by Figure 2.

The universe of the open interpretation is the set of nodes ofthe new graph (identical to
the set of nodes of the extended forest), while the interpretation is the set of atoms having
as arguments nodes/arcs of the graph and as predicate symbols predicates in the content of
these nodes/arcs. In the example above, the open answer set is:{happy(j), friend(j, j1),
sees(j, j1), happy(j1), friend(j1, j11), sees(j1, j11), happy(j11), friend(j11, j11),
sees(j11, j11),, friend(j11, j12), sees(j11, j12), . . .}. Intuitively, the atoms having as

26 Cristina Feier and Stijn Heymans

j {happy}

j1 {happy}

j11{happy} j12 {happy}

{friend, sees}

{friend, sees} {friend}

{friend, sees} {friend}

{friend}

{friend, sees}

Fig. 2: Graph-shaped open answer set derived from a clash-free complete completion
structure

arguments non-blocked nodes are justified by the way the completion structure was con-
structed, while atoms having a blocked node as one of the arguments are justified in a
similar way to their counterparts15.

The blocking condition which states that there should be no path from ap(x) to aq(y)
in G if (x, y) is a blocking pair, is crucial in showing that this open interpretation is mini-
mal. The intuition was given in the previous section where wediscussed how although the
content of nodej1 was included in the content of nodej at a certain point in the expansion
process they do not form a blocking pair as there is a path fromhappy(j) to happy(j1).
For more details, we refer the reader to the complete proof inappendix.

Proposition 5(completeness)
Let P be a FoLP andp ∈ upreds(P). If p is satisfiable w.r.t.P , then there exists a clash-
free complete completion structure forp w.r.t.P .

Proof sketch
If p is satisfiable w.r.t.P thenp is forest-satisfiable w.r.t.P . We construct a clash-free com-
plete completion structure forpw.r.t.P , by guiding the non-deterministic application of the
expansion rules with the help of a forest model ofP which satisfiesp and by taking into ac-
count the constraints imposed by the saturation, blocking,and redundancy rules. The proof
is inspired by completeness proofs in DL for tableau, for example in (Horrocks et al. 1999),
but requires additional mechanisms to eliminate redundantparts from Open Answer Sets.

There are two main stages in the proof: in the first stage, a so-calledcomplete clash-free

15 The counterpart atom of an atomp(x)/f(x, y), wherex is a blocked node is the atomp(z)/f(z, y), where
(z, x) is a blocking pair.

Reasoning with FoLPs and f-hybrid KBs 27

relaxed completion structureis constructed with the help of a forest model ofP which sat-
isfiesp. Such a structure is defined/constructed similarly as a classical completion structure
apart from the fact that the redundancy rule is not employed.Accordingly, for a relaxed
completion structure to be clash-free the condition regarding the absence of redundant
nodes is not relevant.

The second stage consists in transforming such a complete clash-free relaxed completion
structure into a clash-free complete completion structure. The transformation consists in
several successive steps, each step ‘shrinking’ the structure, by cutting some parts of it, in
such a way that the new structure is still a complete clash-free relaxed completion structure.
It is shown that the result of this transformation is a structure for which every branch of the
tree has at mostk nodes with equal content, withk as defined in the redundancy rule, and
thus, it is a complete clash-free completion structure. Formore details, we refer the reader
to the appendix.

Proposition 6
The algorithm runs in the worst case in double exponential time in the size of the program.

Proof sketch
That the algorithm takes in the worst case at least double exponential time can be seen from
the fact that an extended forest in a completion structure has in the worst case a double
exponential number of nodes in the size of the program: thereare maximumk + 1 nodes
with equal content on any branch of a tree in the completion, wherek = 2n(2n

2

− 1) + 2,
andn = |upreds(P)|, there are2n different possible configurations for the content of a
unary node, the number of trees in the extended forest is bounded by|cts(P)|+1, and the
arity of any such tree is bounded byr = rank(P); thus the bound on the number of nodes

is b = (c+ 1)r2
2n+n2

−22n+2n+1

, which is double exponential in the size ofP .
We consider the transformation of the algorithm to a deterministic procedure. One can

see the deterministic procedure as constructing an AND/OR extended forest with depth
double in the size of the largest depth encountered when running the nondeterministic
algorithm. At odd levels, there are OR nodes with unexpandedcontent (they contain just
the constraints imposed by their predecessor or the predicate checked to be satisfiable in
case of one root node and an empty set for the other root nodes), while at even levels, there
are AND saturated nodes which are ‘realizations’ of their predecessor, i.e., they (together
with their outgoing arcs and direct successors) describe a possible way to saturate the
predecessor node. For every OR node, each of its ‘realizations’ spawns a new copy of the
graphG. A leaf of the AND/OR extended forest is labeled withfalse if it is a redundant
node and withtrue otherwise. A predicatep is satisfiable in such a structure if the root
node of every tree in the structure evaluates totrue.

First of all, we notice that it takes polynomial time to justify the presence of a unary
predicate in the content of a node and the presence of a (possibly negated) binary predi-
cate in the content of an arc. Justifying the presence of a negated unary predicate in the
content of a node takes exponential time (all groundings of certain unary rules have to be
considered, and, in general, there is an exponential numberof such groundings). As such,
justifying the content of a node takes exponential time, while justifying the content of an
arc takes polynomial time.

28 Cristina Feier and Stijn Heymans

We count how many ways there are to saturate the content of a node: in the worst case
there is an exponential number of choices for justifying thepresence of a (possibly negated)
unary predicate in the content of a node, a polynomial numberof choices to justify the pres-
ence of a (possibly negated) binary predicate in the contentof a node, and an exponential
number of choices regarding the possible content of a node/arc. As such, in the worst case
there is an exponential number of choices to saturate a node,thus an exponential number
of successors to an OR node, and the maximum branching factorof the AND/OR extended
forest is exponential in the size ofP . The maximum depth is also exponential in the size
of P as it is double of the maximum depth of a complete completion structure which is
22n(2n

2

− 1) + 2n+1, wheren is as above. Thus, the AND/OR extended forest has in the
worst case a double exponential number of nodes and arcs and justifying the content of
each of these nodes and arcs can be done in exponential time.

There will also be a double exponential number of dependencygraphs generated (as an
exponential number of them is spawned at each OR node), and each of them has double
exponential size (the number of atoms in an open answer set isbounded by(b− 1)m+ bn,
wherem = |bpreds(P)|, andb andn are as above. Checking for the existence of certain
paths in such a graph (necessarily for the blocking condition) can be done again in double
exponential time. As such the construction of the AND/OR extended forest and of the
dependency graphs can be done in double exponential time. The evaluation of the AND/OR
extended forest can be done in double exponential time in thesize ofP , and thus the
deterministic procedure, and implicitly our algorithm, runs in the worst case in double
exponential time.

Note that such a high complexity is expected when dealing with tableau-like algo-
rithms. For example in Description Logics, although satisfiability checking inSHIQ is
EXPTIME-complete, practical algorithms run in non-deterministicdouble exponential time
(Tobies 2001).

Proposition 7
FoLPs have the bounded finite model property: if there is an open answer set, there is an
open answer set with a universe that is bounded by a number of elements which can be
specified in function of the program at hand.

Proof sketch
The property follows as a corollary of the soundness and completeness results. The com-
pleteness proof shows that from an open answer set one can construct a clash-free complete
completion structure with maximumb nodes, whereb is defined as in the proof for the com-
plexity result. At the same time, the soundness result showsthat any clash-free complete
structure gives rise to an open answer set whose universe is exactly the set of nodes of
the completion. Thus, any open answer set can be reduced to anopen answer set with a
bounded-size universe.

Note that the bounded finite model property opens the way alsofor standard Answer Set
Programming reasoning. LetP be a FoLP. We define the programPk to be a new program
obtained fromP by addition of a constraint

← not p(x1), . . . , not p(xk), not p(c1), . . . , p(cm) ,

Reasoning with FoLPs and f-hybrid KBs 29

wherek is a natural number,1 ≤ k ≤ b− |cts(P)|, x1, . . ., xk are some newly introduced
individuals, andcts(P) = {c1, . . . , cm}. To check whetherp is satisfiable w.r.t.P one
can simply check answer set existence for the programsP , P1, . . . , Pb−|cts(P)|. Once an
answer set is found for one of these programs it can be concluded thatp is satisfiable and
the procedure is curtailed. If no answer set is found, thenp is not satisfiable. Asb is double
exponential in the size ofP , b− |cts(P)| is also double exponential in the size ofP . It
follows that constructing the programsP1, . . . , Pb−|cts(P)| starting fromP is also double
exponential in the size ofP (one has to add toP in each case a new rule with1, 2, . . ., b−
|cts(P)| atoms). Checking the existence of answer sets ofP ,P1, . . . Pb−|cts(P)|, involves a
double exponential number of calls to an oracle which checksthe existence of answer sets
for a non-ground program with bounded predicate arities. According to (Eiter et al. 2007)
checking answer set existence for a non-ground program withbounded predicate arities
is in NPNP(= Σp

2). Thus, such an algorithm runs in the worst case in double exponential
time with an oracle inΣp

2. As this is worse than the run-time of our algorithm (double
exponential time, Proposition 6), we indeed have an indication that our tableaux algorithm
is more efficient than naively using the bounded finite model property and finite Answer
Set Programming.

5 F-hybrid Knowledge Bases

In this section, we introducef-hybrid knowledge bases, a formalism that combines knowl-
edge bases expressed in the Description LogicSHOQ with forest logic programs.

Description logics (DLs)are a family of logical formalisms based on frame-based sys-
tems (Minsky 1985) and useful for knowledge representation. Its basic language features
include the notions ofconceptsandroles which are used to define the relevant concepts
and relations in some (application) domain. Different DLs can then be identified, among
others, by the set of constructors that are allowed to form complex concepts or roles; see,
for example, the 2 left-most columns of Table 1, that define the constructs inSHOQ
(Horrocks and Sattler 2001).

The semantics of DLs is given by interpretationsI = (∆I , ·I) where∆I is a non-empty
domain and·I is an interpretation function. We summarize the constructsof SHOQ with
their interpretation in Table 1.

A SHOQ knowledge baseis a set ofterminological axiomsC ⊑ D with C andD
SHOQ-concept expressions,role axiomsR ⊑ S with R andS roles, andtransitivity
axiomsTrans(R) for a role nameR. If the knowledge base contains an axiomTrans(R),
we callR transitive. For the role axioms in a knowledge base, we define⊑∗ as the transitive
closure of⊑. A simple roleR in a knowledge base is a role that is not transitive nor does it
have any transitive subroles (w.r.t. to reflexive transitive closure⊑∗ of ⊑). Terminological
and role axioms express a subset relation: an interpretation I satisfiesan axiomC1 ⊑ C2

(R1 ⊑ R2) if CI
1 ⊆ CI

2 (RI
1 ⊆ RI

2). An interpretation satisfies a transitivity axiom
Trans(R) if RI is a transitive relation. An interpretation is amodelof a knowledge base
Σ if it satisfies every axiom inΣ. A conceptC is satisfiablew.r.t.Σ if there is a modelI
of Σ such thatCI 6= ∅. In order to avoid undecidability of satisfiability checking, number
restrictions(at most and at least) are always such that the roleR in, e.g.,≥ nR.C, is (see,
e.g., (Horrocks et al. 1999)).

30 Cristina Feier and Stijn Heymans

Table 1: Syntax and Semantics ofSHOQ Constructs

construct name syntax semantics

atomic conceptC A AI ⊆ ∆I

role R RI ⊆ ∆I ×∆I

nominalsI {o} {oI} ⊆ ∆I ,

concept conj. C ⊓D (C ⊓D)I = CI ∩DI

concept disj. C ⊔D (C ⊔D)I = CI ∪DI

negation ¬C (¬C)I = ∆I \ CI

exists restriction ∃R.C (∃R.C)I = {x | ∃y : (x, y) ∈ RI andy ∈ CI}
value restriction ∀R.C (∀R.C)I = {x | ∀y : (x, y) ∈ RI ⇒ y ∈ CI}

atleast restriction ≥ nS.C (≥ nS.C)I = {x | #{y | (x, y) ∈ SI andy ∈ CI} ≥ n}
atmost restriction ≤ nS.C (≤ nS.C)I = {x | #{y | (x, y) ∈ SI andy ∈ CI} ≤ n}

We will assume theunique name assumptionby imposing thatoI = o for individuals
o ∈ I. Note that individuals are thus assumed to be part of any domain ∆I . Note that
OWL does not have the unique name assumption (Smith et al. 2004), and thus different
individuals can point to the same resource. However, the open answer set semantics gives
a Herbrand interpretation to constants, i.e., constants are interpreted as themselves, and for
consistency we assume that also DL nominals are interpretedthis way.

Example 8
Consider the followingSHOQ knowledge baseΣ:

Father ⊑ ∃child .Human ⊓ ¬Female

{john} ⊑ (≤ 2child .Human)

Intuitively, the first terminological axiom says that fathers have a human child and are not
female. The second axiom says thatjohn has less than 2 human children.

Definition 5
An f-hybrid knowledge baseis a pair〈Σ, P 〉 whereΣ is aSHOQ knowledge base andP
is a FoLP.

Atoms and literals inP might have as the underlying predicate an atomic concept or
role name fromΣ, in which case they are calledDL atomsandDL literals respectively.
Additionally, there might be other predicate symbols available, but without loss of gen-
erality we assume they cannot coincide with complex conceptor role descriptions. Note
that we do not impose Datalog safeness or(weakly) DL safeness(Motik and Rosati 2010;
Rosati 2005; Rosati 2008; Rosati 2006) for the rule component. Intuitively, the restricted
shape of FoLPs suffices to guarantee decidability; FoLPs arein general neither Datalog
safe nor weakly DL-safe; we will discuss the relation with weakly DL-safeness in detail in
Section 7.

Reasoning with FoLPs and f-hybrid KBs 31

Example 9
An f-hybrid knowledge base〈Σ, P 〉, with Σ as in Example 8 andP , the FoLP,

unhappy(X) ← not Father(X)

indicates that persons that are not fathers are unhappy, whereFather(X) is a DL literal.

Similarly as in (Heymans et al. 2008), we define, given a DL interpretationI = (∆I , ·I)

and a ground programP , theprojectionΠ(P, I) of P with respect toI, as follows: for
every ruler in P ,

• if there exists a DL literal in the head of the form

— A(t1, . . . , tn) with (t1, . . . , tn) ∈ AI , or
— not A(t1, . . . , tn) with (t1, . . . , tn) 6∈ AI ,

then deleter,
• if there exists a DL literal in the body of the form

— A(t1, . . . , tn) with (t1, . . . , tn) 6∈ AI , or
— not A(t1, . . . , tn) with (t1, . . . , tn) ∈ AI ,

then deleter,
• otherwise, delete all DL literals fromr.

Intuitively, the projection “evaluates” the program with respect toI by removing (evaluat-
ing) rules and DL literals consistently withI; conceptually this is similar to the GL-reduct,
which removes rules and negative literals consistently with an interpretation of the pro-
gram.

Definition 6
Let 〈Σ, P 〉 be an f-hybrid knowledge base. Aninterpretationof 〈Σ, P 〉 is a tuple(U, I,M)

such that

• U is a universe forP ,
• I = (U, ·I) is an interpretation ofΣ, and
• M is an interpretation ofΠ(PU , I).

Then,(U, I,M) is amodelof an f-hybrid knowledge base〈Σ, P 〉 if I is a model ofΣ and
M is an answer set ofΠ(PU , I).

The semantics of an f-hybrid knowledge base〈Σ, P 〉 is such that ifΣ = ∅, a model
of 〈Σ, P 〉 corresponds to an open answer set ofP , and if P = ∅, a model of〈Σ, P 〉
corresponds to a DL model ofΣ. In this way, the semantics of f-hybrid knowledge bases is
nicely layered on top of both the DL semantics and the open answer set semantics.

Example 10
For the f-hybrid knowledge base〈Σ, P 〉 in Example 9, take a universeU = {john, x} and
·I defined such thatFatherI = {x}, childI = {(x, john)}, FemaleI = ∅, HumanI =

U , andjohnI = john . It is easy to see thatI = (U, ·I) is indeed a model ofΣ.
We project the programP taking into accountI, such thatPU is the program

unhappy(x) ← not Father(x)

unhappy(john) ← not Father(john)

32 Cristina Feier and Stijn Heymans

and sincex ∈ FatherI andjohn 6∈ FatherI , we have thatΠ(PU , I) is

unhappy(john) ←

such thatM = {unhappy(john)} is an answer set ofΠ(PU , I), and(U, I,M) is a model
of 〈Σ, P 〉.

For p a concept expression fromΣ or a predicate fromP , we say thatp is satisfiable
w.r.t.(Σ, P) if there is a model(U, I,M) such thatpI 6= ∅ orp(x1, . . . , xn) ∈M for some
x1, . . . , xn in U , respectively. Note that Definition 6 is in general applicable to other DLs
thanSHOQ as well as to other programs than FoLPs. Indeed, in (Heymans et al. 2008), a
similar definition was used forDLRO−{≤} andguarded programs.

We can reduce satisfiability checking w.r.t. f-hybrid knowledge bases to satisfiability
checking of FoLPs only. Roughly, for each concept expression one introduces a new pred-
icate together with rules that define the semantics of the corresponding DL construct. Con-
straints then encode the axioms, and the first-order interpretation of DL concept expres-
sions is simulated using free rules.

Taking the knowledge baseΣ of Example 9,Father ⊑ ∃child.Human ⊓ ¬Female
can be translated to the constraint← Father(X), not (∃child .Human ⊓ ¬Female)(X),
where(∃child .Human ⊓ ¬Female) is a predicate defined by the rules

(∃child .Human ⊓ ¬Female)(X)← (∃child .Human)(X), (¬Female)(X)

i.e., a DL conjunction translates to a set of literals in the body. Further, we define an exists
restriction and negation as follows:

∃child .Human(X) ← child(X ,Y),Human(Y)

¬Female(X) ← not Female(X)

Finally, the first-order semantics of concepts and roles is obtained as follows:

Father(X) ∨ not Father(X) ←

Female(X) ∨ not Female(X) ←

Human(X) ∨ not Human(X) ←

child(X ,Y) ∨ not child(X ,Y) ←

Similarly, the axiom{john} ⊑ (≤ 2child .Human) is translated as the constraint

← {john}(X), not (≤ 2child .Human)(X)

and rules

{john}(john) ←

(≤ 2child .Human)(X) ← not (≥ 3child .Human)(X)

(≥ 3child .Human)(X) ← child(X ,Y1), child(X ,Y2), child(X ,Y3),

Human(Y1),Human(Y2),Human(Y3),

Y1 6= Y2 ,Y1 6= Y3 ,Y2 6= Y3

Before proceeding with the formal translation, we define theclosureof aSHOQ knowl-
edge baseΣ, clos(Σ), as the smallest set satisfying the following conditions:

• for eachC ⊑ D an axiom inΣ (role or terminological),{C,D} ⊆ clos(Σ),

Reasoning with FoLPs and f-hybrid KBs 33

• for eachTrans(R) in Σ, {R} ⊆ clos(Σ),
• for everyD in clos(Σ), we have

— if D = ¬D1, then{D1} ⊆ clos(Σ),
— if D = D1 ⊔D2, then{D1, D2} ⊆ clos(Σ),
— if D = D1 ⊓D2, then{D1, D2} ⊆ clos(Σ),
— if D = ∃R.D1, then{R,D1} ∪ {∃S.D1 | S⊑∗R,S 6= R,Trans(S) ∈ Σ} ⊆

clos(Σ),
— if D = ∀R.D1, then{∃R.¬D1} ⊆ clos(Σ),
— if D = (≤ n Q.D1), then{(≥ n+ 1 Q.D1)} ⊆ clos(Σ),
— if D = (≥ n Q.D1), then{Q,D1} ⊆ clos(Σ).

Concerning the addition of the extra∃S.D1 for ∃R.D1 in the closure, note thatx ∈
(∃R.D1)

I holds if there is some(x, y) ∈ RI with y ∈ DI
1 , and, in particular,S⊑∗R with

S transitive such that(x, u0) ∈ SI , . . . , (un, y) ∈ SI with y ∈ DI
1 . The latter amounts to

x ∈ (∃S.D1)
I . Thus, in the open answer set setting, we have that∃R.D1(x) is in the open

answer set ifR(x, y) andD1(y) hold or∃S.D1(x) holds for some transitive subroleS of
R. The predicate∃S.D1 will be defined by adding recursive rules, hence the inclusion of
such predicates in the closure.

Furthermore, for a(≤ n Q.D1) in the closure, we add{(≥ n+1Q.D1)}, since we will
base our definition of the former predicate on the DL equivalence(≤ n Q.D1) ≡ ¬(≥

n+ 1 Q.D1).
Formally, we defineΦ(Σ) to be the following FoLP, obtained from theSHOQ knowl-

edge baseΣ:

• For each terminological axiomC ⊑ D ∈ Σ, add the constraint

← C (X), not D(X) (5)

• For each role axiomR ⊑ S ∈ Σ, add the constraint

← R(X ,Y), not S (X ,Y) (6)

• Next, we distinguish between types of concept expressions that appear inclos(Σ).
For eachD ∈ clos(Σ):

— if D is a concept name, add

D(X) ∨ not D(X)← (7)

— if D is a role name, add

D(X ,Y) ∨ not D(X ,Y)← (8)

— if D = {o}, add

D(o)← (9)

— if D = ¬E, add

D(X)← not E (X) (10)

— if D = E ⊓ F , add

D(X)← E (X),F (X) (11)

34 Cristina Feier and Stijn Heymans

— if D = E ⊔ F , add

D(X) ← E (X)

D(X) ← F (X)
(12)

— if D = ∃Q.E, add

D(X)← Q(X ,Y),E (Y) (13)

and for allS⊑∗Q, S 6= Q, with Trans(S) ∈ Σ, add rules

D(X)← (∃S .E)(X) (14)

If Trans(Q) ∈ Σ, we further add the rule

D(X)← Q(X ,Y),D(Y) (15)

— if D = ∀R.E, add

D(X)← not (∃R.¬E)(X) (16)

— if D = (≤ n Q.E), add

D(X)← not (≥ n + 1 Q .E)(X) (17)

— if D = (≥ n Q.E), add

D(X)←Q(X ,Y1), . . . ,Q(X ,Yn),E (Y1), . . . ,E (Yn), (Yi 6= Yj)1≤i 6=j≤n

(18)

Rule (13) is what one would intuitively expect for the exists restriction. However, in
caseQ is transitive this rule is not enough. Indeed, ifQ(x, y), Q(y, z), E(z) are in an
open answer set, one expects(∃Q.E)(x) to be in it as well ifQ is transitive. However,
we have no rules enforcingQ(x, z) to be in the open answer set without violating the
FoLP restrictions. We can solve this by adding to(13) the rule(15), such that such a chain
Q(x, y),Q(y, z), withE(z) in the open answer set correctly deducesD(x).

It may still be that there are transitive subroles ofQ that need the same recursive treat-
ment as above. To this end, we introduce rule(14).

We do not need such a trick with the number restrictions sincethe rolesQ in a number
restriction are required to be simple, i.e., without transitive subroles.

Proposition 8
Let 〈Σ, P 〉 be aSHOQ knowledge base. Then,Φ(Σ) ∪ P is a FoLP, and has a size that is
polynomial in the size ofΣ.

Proof
Observing the rules inΦ(Σ), it is clear that this program is a FoLP.

The size of the elements inclos(Σ) is linear and the size ofclos(Σ) itself is polynomial
in Σ. The size of the FoLPΦ(Σ) is polynomial in the size ofclos(Σ). The only non-trivial
case in showing the latter arises by the addition of rule(18) which introducesn(n−1)

2

inequalities for a number restriction(≥ n Q.E). We assume, as is not uncommon in DLs
(see, e.g., (Tobies 2001)), that the numbern is represented in unary notation

11 . . . 1
︸ ︷︷ ︸

n

Reasoning with FoLPs and f-hybrid KBs 35

such that the number of introduced inequalities is quadratic in the size of the number re-
striction.

Proposition 9

Let 〈Σ, P 〉 be an f-hybrid knowledge base. Then, a predicatep is satisfiable w.r.t.(Σ, P)
iff p is satisfiable w.r.t.Φ(Σ) ∪ P .

Proof

The proof goes along the lines of the proof in (Heymans et al. 2008, Theorem 1).
(⇒). Assumep is satisfiable w.r.t.(Σ, P), i.e., there exists a model(U, I,M) of (Σ, P) in
which p has a non-empty extension. Now, we construct the open interpretation(U,N) of
Φ(Σ) ∪ P as follows:

N =M ∪ {C(x) | x ∈ CI , C ∈ clos(Σ)} ∪ {R(x1, x2) | (x1, x2) ∈ R
I , R ∈ clos(Σ)}

with C andR concept expressions and role names respectively.
It is easy to verify that(U,N) is an open answer set ofΦ(Σ)∪P and that(U,N) satisfies

p.
(⇐). Assume(U,N) is an open answer set ofΦ(Σ)∪ P such thatp is satisfied. We define
the interpretation(U, I,M) of (Σ, P) as follows:

• I = (U, ·I) is defined such thatAI = {x | A(x) ∈ N} for concept namesA, P I =

{(x1, x2) | P (x1, x2) ∈ N} for role namesP andoI = o, for o a constant symbol inΣ. I
is then an interpretation ofΣ.

• M = N \{p(x1, . . . , xn) | p ∈ clos(Σ)}, such thatM is an interpretation ofΠ(PU , I).

As a consequence,(U, I,M) is an interpretation of〈Σ, P 〉 and it is easy to verify that
(U, I,M) is a model of(Σ, P) which satisfiesp.

Note that Proposition 9 also holds for satisfiability checking of concept expressionsC:
introduce a rulep(X)← C(X) in P and check satisfiability ofp.

Using the translation from f-hybrid knowledge bases to forest logic programs in Propo-
sition 9 and the polynomiality of this translation (Proposition 8), together with the com-
plexity of the terminating, sound, and complete algorithm for satisfiability checking w.r.t.
FoLPs, we have the following result:

Proposition 10

Satisfiability checking w.r.t. f-hybrid knowledge bases isin 2-NEXPTIME in the size of the
f-hybrid knowledge base.

As satisfiability checking ofALC concepts w.r.t. anALC TBox (note thatALC is a
fragment ofSHOQ) is EXPTIME-complete (Baader et al. 2003, Chapter 3), we have that
satisfiability checking w.r.t. f-hybrid knowledge bases isEXPTIME-hard.

Proposition 11

Satisfiability checking w.r.t. f-hybrid knowledge bases isEXPTIME-hard.

36 Cristina Feier and Stijn Heymans

6 Simple Forest Logic Programs

Simple Conceptual Logic Programs (CoLPs), were defined in (Feier and Heymans 2008)
as a fragment ofConceptual Logic Programs (CoLPs)(Heymans et al. 2006). As men-
tioned in the introduction, simple Conceptual Logic Programs simplify Conceptual Logic
Programs by introducing a restriction on predicate recursion in programs. Here we adopt
a similar restriction on Forest Logic Programs, and we obtain a fragment which we call
simple Forest Logic Programs (simple FoLPs). As we will see,our algorithm can be eas-
ily adapted such that it checks satisfiability w.r.t. simpleFoLPs in exponential time, one
exponential level lower than the time needed for FoLPs.

Some preliminaries are needed for introducing this fragment. For such a FoLPP , let
D(P) be themarked positive predicate dependency graph: D(P) is a directed graph that
has as vertices the non-free predicates fromP and as arcs tuples(p, q) if there is either
a rule of the form (3) or a rule of the form (4) with a head literal l1 and a positive body
literal l2 such thatpred(l1) = p, andpred(l2) = q. An edge(p, q) is calledmarked, if q
is a predicate in someδm for rules (3), respectivelyδ for rules (4). In order forP to be a
simple FoLP,D(P) must not contain any cycle that has a marked edge.

The restriction onD(P) ensures that there is no path from some atomp(x) to some
atomp(y) in the atom dependency graph ofPU which does not contain some atomq(z),
such thatq is free, wherep ∈ upreds(P), q ∈ preds(P), U is some arbitrary universe,
andx, y ∈ U , x 6= y. Consider the programP :

r1 : p(X) ← q(X), f (X ,Y), not p(Y)

r2 : q(X) ← p(X)

r3 : f (X ,Y) ← g(X ,Y), q(Y)

The marked positive dependency graph is depicted in Figure 3. While (p, q, p) is an
unmarked cycle,(q, p, f, q) is a marked cycle, and thusP is not a simple FoLP. However,
if the last rule ofP is dropped, it becomes a simple FoLP.

p q

f g

∗

Fig. 3: Marked Dependency GraphD(P)

6.1 Reasoning with Simple FoLPs

Similarly as for FoLPs we define an initial completion structure for checking the satisfia-
bility of a unary predicatep w.r.t. a FoLPP . The completion is expanded via expansion
rules, whose application is governed by applicability rules. All expansion rules for FoLPs

Reasoning with FoLPs and f-hybrid KBs 37

(rules (i)-(vi)) are employed also in this case. As concernsthe applicability rules, rule(vii)
Saturationstays the same, rule(viii) Blocking is modified such that instead of the com-
plex condition for FoLPs an anywhere subset blocking technique is applied, and rule(ix)
Redundancyis dropped. We give below the formal definition for the new blocking rule:

6.1.1 (viii’) Blocking

A nodex ∈ NEF is blockedif there is a saturated nodey ∈ NEF , with y 6∈ cts(P), such
thatct(x) ⊆ ct(y). Like for FoLPs, we call(y, x) ablocking pair. No expansions can be
performed on a blocked node.

Intuitively, if there is a saturated nodey in EF which is not a constant, whose content
includes the content ofx, as there are no paths from anyp(x) to someq(y) (due to the
restriction that there is no cycle in the marked positive dependency graph ofP), one can
reuse the justification fory when dealing withx. Note thaty andx do not have to be on
the same path in a tree inEF . Such a blocking technique is called “anywhere blocking”.

The notions ofcontradictory, clash-free, completecompletion structure are defined anal-
ogously as for FoLPs.

Proposition 12(termination)
Let P be a simple FoLP andp ∈ upreds(P). Then, one can construct a finite complete
completion structure by a finite number of applications of the expansion rules (i)-(vi) to the
initial completion structure forp w.r.t. P , taking into account the applicability rules (vii)
and (viii’).

Proof sketch
Clearly, if one has a finite completion structure that is not complete, a finite application
of expansion rules would complete it unless successors are introduced. One cannot intro-
duce successors indefinitely as given the finite number of possible contents of a node, the
blocking condition will eventually be met.

Proposition 13(soundness)
Let P be a simple FoLP andp ∈ upreds(P). If there exists a complete clash-free com-
pletion structure forp w.r.t. P (expanded according to rule (i)-(vii) and (viii’)), thenp is
satisfiable w.r.t.P .

Proof sketch
Similarly to the case for FoLPs, from a clash-free complete completion structure, one can
construct an open interpretation and show that this interpretation is an open answer set of
P that satisfiesp. Here, due to the restrictions on the the predicate dependency graph of
the program, the subset blocking condition is enough to ensure minimality of such an open
interpretation. There are no infinite dependency chains which are not cycles in the atom
dependency graph of the grounded program.

Proposition 14(completeness)
Let P be a simple FoLP andp ∈ upreds(P). If p is satisfiable w.r.t.P , then there exists a
clash-free complete completion structure forp w.r.t.P .

38 Cristina Feier and Stijn Heymans

Proof sketch

If p is satisfiable w.r.t.P thenp is forest-satisfiable w.r.t.P . We construct a clash-free
complete completion structure forp w.r.t.P , by guiding the non-deterministic application
of the expansion rules with the help of a forest model ofP which satisfiesp and by taking
into account the constraints imposed by the saturation and the new blocking rule.

Proposition 15

The algorithm runs in the worst case in exponential time in the size of the program.

Proof sketch

The size of a completion structure is bounded by the following factors: if we leave all the
leaves of the trees in the completion apart, there are at most2p + c nodes, wherep =

|upreds(P)|, andc = |cts(P)|, as there are at most2p different possible configurations
for the content of a unary node, and all the nodes which are notleaves or constants have to
have different content (otherwise they would form blockingpairs and at least one of them
would be a leaf). The maximum number of leaves isr(2p + c− 1), wherer = rank(P) is
the maximum arity of any of the trees in the extended forest. So, the completion has in the
worst case an exponential number of nodes in the size of the program:b = (2p+c)(r+1)−

r. As was the case for FoLPs, the nondeterministic algorithm can be determinized using
an AND/OR extended forest. The new deterministic version will still run in the worst case
in exponential time, and thus we can conclude that the algorithm runs in exponential time.

Note that the complexity of simple FoLPs is one level lower than the complexity of full
FoLPs, the decrease in complexity being achieved by employing the anywhere blocking
technique. This, at its turn, has been made possible throughthe restriction imposed on the
shape of simple FoLPs. By allowing anywhere blocking for full FoLPs we would lose the
soundness of the algorithm (in particular the interpretation constructed as described in the
soundness proof would not always be minimal).

Proposition 16

Simple FoLPs have the bounded finite model property: if thereis an open answer set, there
is an open answer set with a universe that is bounded by a number of elements which can
be specified in function of the program at hand.

Proof sketch

The property follows as a corollary of the soundness and completeness results. The com-
pleteness proof shows that from an open answer set one can construct a clash-free com-
plete completion structure with maximumb nodes, whereb is as defined above. At the
same time, the soundness result shows that any clash-free complete structure gives rise to
an open answer set whose universe is exactly the set of nodes of the completion. Thus, any
open answer set can be reduced to an open answer set with a bounded-size universe.

Reasoning with FoLPs and f-hybrid KBs 39

6.2 Simple F-hybrid Knowledge Bases

Similar with defining f-hybrid knowledge bases one can definesimple f-hybrid knowledge
bases which are combinations ofALCHOQ knowledge bases with simple FoLPs. An
ALCHOQ knowledge base can be seen as aSHOQ knowledge base where no transitive
roles are allowed.

Definition 7
A simple f-hybrid knowledge baseis a pair〈Σ, P 〉 whereΣ is anALCHOQ knowledge
base andP is a simple FoLP.

Note that the f-hybrid KB in example 9 is a simple f-hybrid KB.
The semantics of simple f-hybrid knowledge bases is defined similarly as the semantics

of f-hybrid knowledge bases. We employ the same strategy forreasoning with simple f-
hybrid knowledge bases as the one used for reasoning with f-hybrid knowledge bases:
translating satisfiability checking in the DL part of the knowledge base, theALCHOQ
knowledge base, into satisfiability checking in the LP part of the hybrid formalism, FoLPs.
In order to do this we define theclosureclos(Σ) of anALCHOQ knowledge baseΣ and
the transformationΦ(Σ) from anALCHOQ knowledge base to a FoLP in a similar way
as their homonym transformation in Section 5: we simply dropthe axioms which deal with
transitivity in the general case. In particular, by dropping axiom 15, the obtained FoLP
becomes a simple FoLP:

Proposition 17
Let 〈Σ, P 〉 be anALCHOQ knowledge base. Then,Φ(Σ) ∪ P is a simple FoLP, and has
a size that is polynomial in the size ofΣ.

Proof sketch
ThatΦ(Σ) ∪ P is a FoLP which has a size that is polynomial in the size ofΣ follows
from proposition 8 and the fact that anyALCHOQ is aSHOQ knowledge base. That the
resulted FoLP is a simple FoLP can be seen by analysis of the shape of axioms used for
definingΦ introduced in Section 5: the only axiom which introduces predicate recursion is
axiom 15 which has been eliminated in this version of the translation.

Proposition 18
Let 〈Σ, P 〉 be a simple f-hybrid knowledge base. Then,p is satisfiable w.r.t.(Σ, P) iff p is
satisfiable w.r.t.Φ(Σ) ∪ P .

The proof for the above proposition is similar with the prooffor 9. That there exists
such a polynomial translation from simple f-hybrid knowledge bases to forest logic pro-
grams, together with the complexity of the terminating, sound, and complete algorithm for
satisfiability checking w.r.t. simple FoLPs, we have the following result:

Proposition 19
Satisfiability checking w.r.t. simple f-hybrid knowledge bases is inEXPTIME.

As satisfiability checking ofALC concepts w.r.t. anALC TBox (note thatALC is a frag-
ment ofALCHOQ) is EXPTIME-complete (Baader et al. 2003, Chapter 3), we have that
satisfiability checking w.r.t. simple f-hybrid knowledge bases isEXPTIME-hard, and com-
bined with the result above, that satisfiability checking w.r.t. simple f-hybrid knowledge
bases isEXPTIME-complete.

40 Cristina Feier and Stijn Heymans

Proposition 20
Satisfiability checking w.r.t. simple f-hybrid knowledge bases isEXPTIME-complete.

7 Discussion and Related Work

We compare f-hybrid knowledge bases to r-hybrid knowledge bases from (Rosati 2008),
which extendDL+log from (Rosati 2006) with inequalities and negated DL atoms.

In (Rosati 2008), an r-hybrid knowledge base consists of a DLknowledge base (the
specific DL is a parameter) and a disjunctive Datalog programwhere each rule isweakly
DL-safe:

• every variable in the rule appears in a positive atom in the body of the rule (Datalog
safeness), and
• every variable either occurs in a positive non-DL atom in thebody of the rule, or it

only occurs in positive DL atoms in the body of the rule.

The semantics of r-hybrid and f-hybrid knowledge bases overlap to a large extent. The
main difference is that f-hybrid knowledge bases do not makethestandard names assump-
tion, in which basically the domain of every interpretation is the same infinitely countable
set of constants.

Some key differences to note are the following:

• We do not require Datalog safeness neither do we require weakly DL-safeness. In-
deed, f-hybrid knowledge bases may have a rule component (i.e., the program part)
that is not weakly DL-safe. Take the f-hybrid knowledge base〈Σ, P 〉 from Example
9 with P :

unhappy(X) ← not Father(X)

The atomFather(X) is a DL-atom such that the rule is neither Datalog safe nor
weakly DL-safe. Modifying the program to

unhappy(X) ← Human(X), not Father(X)

leads to a Datalog safe program (X appears in a positive atomHuman(X) in the
body of the rule), however, it is still not weakly DL-safe asX is not appearing only
in positive DL-atoms.
On the other hand, both the above rules are FoLPs and thus constitute a valid com-
ponent of an f-hybrid knowledge base.
• In the case of r-hybrid knowledge bases, due to the safeness conditions, it suffices

for satisfiability checking to ground the rule component with the constants appearing
explicitly in the knowledge base.16 One does not have such a property for f-hybrid
knowledge bases. Consider the f-hybrid knowledge base〈Σ, P 〉 with Σ = ∅ and the
programP

a(X) ← not b(X)

b(0) ←

16 (Rosati 2008; Rosati 2006) considers checking satisfiability of knowledge bases rather than satisfiability of
predicates. However, the former can easily be reduced to thelatter.

Reasoning with FoLPs and f-hybrid KBs 41

This program is a FoLP, but it is not Datalog safe nor is it weakly DL-safe. Ground-
ing only with the constants in the program yields the projection

a(0) ← not b(0)

b(0) ←

such thata is not satisfiable. However, grounding with, e.g.,{0, x}, one gets

a(0) ← not b(0)

a(x) ← not b(x)

b(0) ←

such thata is indeed satisfiable, in correspondence with one would expect.
• Decidability for satisfiability checking of r-hybrid knowledge bases is guaranteed

if decidability of the conjunctive query containment/union of conjunctive queries
containment problems is guaranteed for the DL at hand. In contrast, we relied on
a translation of DLs to FoLPs for establishing decidability, and not all DLs can be
translated this way; we illustrated the translation forSHOQ.

Conceptual modeling using FoLPs is not restricted to simulating DL KBs: one can also
translateobject-role modeling (ORM)models as sets of FoLP rules. In (Heymans 2006)p.96
a translation of a particular ORM model to a CoLP (thus, also aFoLP) is provided. While
a formal translation from ORM models to CoLPs/FoLPs is not provided there, the example
translation shows how one can use CoLP satisfiability checking to verify that the various
ORM object types can be populated, that some derived properties do (not) hold, etc.

MKNF+ knowledge bases (Motik and Rosati 2010), consist of a DL component and a
component of so-called MKNF+ rules. Such MKNF+ rules allow for modal operators
K andnot in front of atoms, but also for non-modal atoms, unlike theirpredecessor,
hybrid MKNF knowledge bases (Motik and Rosati 2006; Motik etal. 2006); non-modal
atoms can be eliminated by a transformation leading to MKNF knowledge bases. Also,
unlike the rules in hybrid MKNF knowledge bases, atoms in MKNF+ rules are ‘gener-
alized’, in the sense that they can be arbitrary first-order formulae. This allows the ap-
proach to capture languages likeEQL-Lite(Q) (Calvanese et al. 2007), dl-programs by
(Eiter et al. 2008) and disjunctive dl-programs by (Lukasiewicz 2004). Other approaches
to integrating ontologies and rules which are generalized by MKNF+ knowledge bases are:
(Levy and Rousset 1996),AL-log (Donini et al. 1998), DL-safe rules (Motik et al. 2005),
the Semantic Web Rule Language (SWRL) (Horrocks and Patel-Schneider 2004), and r-
hybrid knowledge bases (Rosati 2008).

MKNF knowledge bases are in the general case undecidable. Inorder to regain de-
cidability aDL-Safetycondition is imposed, together with a notion of admissibility which
concerns decidability for the DL inference. As with r-hybrid knowledge bases, our f-hybrid
knowledge bases do not have such a restriction of the interaction between the structural
DL component and the rule component, but rely instead on the existence of an integrating
framework (FoLPs under an open answer set semantics) for which we provided reasoning
support in this article.

Description Logic Programs(Grosof et al. 2003) represent the common subset of OWL-

42 Cristina Feier and Stijn Heymans

DL ontologies and Horn logic programs (programs without negation as failure or disjunc-
tion). As such, reasoning can be reduced to normal LP reasoning. In (Motik et al. 2005),
a clever translation ofSHIQ(D) (SHIQ with data types) combined withDL-safe rules
to disjunctive Datalog is provided. The translation relieson a translation to clauses and
subsequently applying techniques from basic superposition theory. Reasoning inDL+log

(Rosati 2006) and r-hybrid knowledge bases (see above) doesnot use a translation to
other approaches, but defines a specific algorithm based on a partial grounding of the pro-
gram and a test for containment of conjunctive queries over the DL knowledge bases.
dl-programs(Eiter et al. 2008) have a more loosely coupled take on integrating DL knowl-
edge bases and logic programs by allowing the program to query the DL knowledge base
while as well having the possibility to send (controlled) input to the DL knowledge base.
Reasoning is done via a stable model computation of the logicprogram, interwoven with
queries that are oracles to the DL part.

Description Logic Rules (DL rules)(Krötzsch et al. 2008a) are defined as decidable frag-
ments of SWRL. Rules have a tree-like structure similar to the structure of FoLPs. They
are positive rules with only unary and binary atoms, corresponding to concept expressions
and role names in a specific DL, where some relations between the terms appearing in the
atoms in a rule have to be fulfilled: (i) every term can be reached by maximum one path
from another term (a term reaches another if it is the first argument of the first atom in a
chain of binary atoms where the last argument of the last atomis the term reached), (ii) the
first term in the head is an ‘initial’ term, i.e., it is not reached from any other term, (iii) each
non-initial node is reached from exactly one initial node. Thus, a syntactical comparison
between FoLP rules and DL rules yields the following:

• FoLPs allow for a negation as failure operator, while DL rules do not support any
type of negation
• FoLPs allow for binary atoms conjunctions, i.e. the presence of binary atoms having

identical arguments in the body of a rule, while DL rules disallow this (the presence
of such atoms would imply the presence of two paths between the two terms which
compose the arguments of these atoms)
• DL rules allow for term tree depths higher than 1, i.e., for constructions likef(X,Y),

g(Y, Z), . . . in the body of a rule. FoLPs allow only term trees of depth 1, but such
constructions can be seen as syntactic sugar in our languageas one can always sim-
ulate a rule with term tree depth ofn via n FoLP rules with term tree depth of 1.
• DL rules allow for unsafe rules likef(X,Y) ← C(X), or f(X,Y) ← g(Z, T),

while FoLP rules do not allow for such constructions.

Although Description Logic Rules have tree-shaped bodies and are from this perspec-
tive similar to FoLPs, their semantics is not a minimal modelsemantics. Like Description
Logics, their semantics is first-order based. Depending on the underlying DL, one can dis-
tinguish betweenSROIQ rules,EL++ rules, Description Logic Program rules, and ELP
rules (Krötzsch et al. 2008b).

The most expressive fragment,SROIQ rules, does not actually extendSROIQ, as the
rules can be mapped toSROIQ. In order to ensure that such a translation is possible some
more restrictions are imposed on the rule component. One of these restrictions concerns
the fact that simple roles are defined also with respect to thedefinition of their counterpart

Reasoning with FoLPs and f-hybrid KBs 43

binary atoms in the rule KB: any binary atom which is defined via a rule with more than one
atom in the body corresponds to a non-simple role, and thus cannot appear in a qualified
number restriction, a role disjunction axiom or a role reflexivity axiom. Obviously, there
is no such restriction on FoLPs as the translation is performed in the other direction, from
the DL KB to the rule KB, and thus there is no need to have such a simplicity assumption
in the rule KB.

In the case ofEL++ rules, the DL rules are the core expressive mechanism to which the
EL++ KBs are reduced. No simplicity or regularity constraints are imposed on the rule
KB.

Description Logic Program rules have as an underlying formalism the DLP fragment
described above. So-called DL2 KBs are defined as combinations of DLP rules KBs with
DLP KBs, which additionally might contain role disjunctionaxioms and/or role asymmetry
axioms. No simplicity or regularity condition is imposed. Such a KB can be transformed
into a set of function-free first-order Horn rules.

The last type of DL rules, ELP rules, can be seen as an extension of bothEL++ rules
and Description Logic Program rules, hence their name. In (Krötzsch et al. 2008b) a new
type of DL rules, so-called extended DL rules, is introduced. This extended type of rules
allows for ‘role conjunctions’ in rule bodies, i.e., constructions likef(X,Y), g(X,Y) as
long as bothf andg are simple roles, or the presence of binary atomsf(X,X) in the rule
bodies as long asf is simple. Also, a relaxed restriction on simple roles17 is introduced:
only certain role chains are omitted from DL rules with simple roles in the head, rules like
f(X,Y) ← a(X) ∧ b(Y) andf(X,Y) ← g(X,Y) ∧ D(Y) not precludingf to be a
simple role. Note that rules of the first type are not allowed by FoLPs.

The focus in DL rules is on extending DLs with rule bases whichare as expressive as
possible while at the same time preserving the computational properties of the initial DL.
This leads sometimes to rather intricate syntactical characterizations of different fragments.
Syntactically, some of these fragments allow for more complex rule shapes than FoLP
rules, but FoLPs distinguish themselves through the fact that they have anegation as failure
operator and adopt a minimal model semantics, thus adding a different type of expressivity
to such combinations of rules and ontologies, which is not specific to the DL world. This
seems to come at the price of reasoning complexity (note thatwe do not have a tight
characterization of FoLPs).

There are several extensions of DL which adopt a minimal-style semantics like autoepis-
temic (Donini et al. 2002), default (Baader and Hollunder 1995) and circumscriptive DL
(Bonatti et al. 2006; Grimm and Hitzler 2008; Grimm and Hitzler 2009). The first two are
restricted to reasoning with explicitly named individuals, while (Grimm and Hitzler 2008;
Grimm and Hitzler 2009) allow for defeats to be based on the existence of unknown indi-
viduals. A tableau-based method for reasoning with the DLALCO in the circumscriptive
case has been introduced in (Grimm and Hitzler 2007). A special preference clash condi-
tion is introduced there to distinguish between minimal andnon-minimal models which is
based on constructing a new classical DL knowledge base and checking its satisfiability.

Datalog± (Calı̀ et al. 2009a; Calı̀ et al. 2009b) is an extension of Datalog which can sim-

17 The restriction is relaxed as compared to the restriction onSROIQ rules; there is no such restriction for
general DL rules.

44 Cristina Feier and Stijn Heymans

ulate some DLs from the DL-Lite family (Calvanese et al. 2007). The extension consists
in allowing a special type of rules with existentially quantified variables in the head, called
tuple generating dependencies (TGDs). Note that our free rules are different from TGDs,
as they allow for universally quantified variables which do not appear in the body of the
rule to appear in the head.

The formalism is undecidable in the general case. Like in thecase of OASP, several
syntactical restrictions have been imposed on the shape of TGDs in order to regain de-
cidability. Two such restrictions are: (1) every rule should have a guard, an atom which
contains all variables in the rule body, giving rise toguarded Datalog±, and (2) every rule
should have a singleton body atom, giving rise tolinear Datalog±. The guardedness con-
dition has been relaxed toweakly-guardedness, where the weak guard has to contain only
the variables in the body that appear in so-called affected positions, positions where newly
invented values can appear during reasoning (Calı̀ et al. 2008). Reasoning relies on a proof
technique from database theory, the chase algorithm, whichrepairs databases according to
the set of dependencies.

Some further generalizations to the guarded fragment of Datalog± are so-calledsticky
setsof TGDs (Calı̀ et al. 2010a),weakly-stickysets of TGDS, andsticky-joinsets of TGDs
(Calı̀ et al. 2010b) which generalize both sticky sets and linear TGDs. All these fragments
are defined by imposing restrictions on multiple occurrences of variables in rule bodies.
The syntactical restrictions on rules bodies are orthogonal to the ones we imposed for
achieving decidability on FoLPs: neither Datalog± rules are enforced to have a tree-shape
like FoLPs, nor variables in FoLP rules have to fulfill the conditions required for the dif-
ferent sets of TGDs to belong to one of the previously mentioned decidable fragments
of Datalog±. TGDs do not contain negation. However, so-called stratified normal TGDs
have been introduced, which are TGDs whose body atoms can appear in a negated form
together with a semantics in terms of canonical models. FoLPs support full negation as
failure (under the stable models semantics).

In the area of proof systems for Answer Set Programming, (Linand You 2002) describes
a goal rewrite system for brave reasoning under the stable model semantics which is sound
and complete only for partial stable models. If the program has no odd loops (cycles in
the predicate dependency graph of the program), its partialstable models and its stable
models coincide. Note that such programs cannot have constraints as they are represented
using rules in which a predicate depends negatively on itself. The problem with such rules
is that they can render the program inconsistent, and thus, the rewriting, even if it is suc-
cessful, is no longer valid. In our approach, we overcome this problem by going beyond
the dependencies generated by the predicate checked to be satisfiable: we construct a com-
plete answer set by taking care that the content of every nodein the completion structure
is saturated. As concerns termination, (Lin and You 2002) distinguishes between positive,
negative, odd, and even loops and deal with them accordingly. In terms of our approach,
this amounts to checking for cycles in the dependency graphG and identifying inconsis-
tencies. However, for achieving termination, (Lin and You 2002) proposes to consider only
“domain restricted programs”, which can be instantiated only on domain predicates over
variables which do not appear in the head. In our case, we do not have such a restriction:
there are FoLPs (actually CoLPs) in which no constant appears and which still have infinite

Reasoning with FoLPs and f-hybrid KBs 45

groundings. As such, we need the more complicated blocking mechanism for ensuring that
there are no atoms with infinite justifications in the open answer set.

A resolution-based calculus for credulous reasoning in ASPwhich is sound for ground
order-consistent programs and complete for ground finite recursive programs is introduced
in (Bonatti et al. 2008). The calculus is extended to the nonground case, where it is proved
to be sound for programs whose ground versions are order consistent, and complete for
finitely recursive, odd-cycle free programs. In particular, the calculus is not sound for pro-
grams which have odd cycles, which are needed for simulatingconstraints. An extension
for ground programs with constraints is provided, but no general solution is provided for
the non-ground case. As already mentioned we have no problems in dealing with such
constraints. Also the calculus is not complete for programswhich are not finitely recur-
sive, i.e., for programs for which there is at least a ground atom which depends on an
infinite number of other ground atoms (w.r.t. the atom dependency graph of the grounded
program). Our approach deals with programs which may not be finitely recursive: con-
sider a FoLP which contains the rulea(X) ← f (X ,Y), a(Y); grounding the program
with an infinite universe leads to an infinite path in its atom dependency graph of the form
a(x1), a(x2),

A formalism related to FoLPs isFDNC (Šimkus and Eiter 2007).FDNC is an extension
of ASP with function symbols where rules are syntactically restricted in order to maintain
decidability. While the syntactical restriction is similar to the one imposed on FoLP rules,
predicates having arity maximum two, and the terms in a binary literal can be seen as arcs
in a forest (imposing the Forest Model Property), the direction of deduction is different:
while for FoLPs, all binary literals in a rule body have an identical first term which is also
the term which appears in the head, forFDNC (with the exception of one rule type) the
second term is the one which also appears in the head.FDNC rules are required to be safe
unlike FoLP ones. The complexity for standard reasoning tasks for FDNC is EXPTIME-
complete and worst-case optimal algorithms are provided.

(Gebser and Schaub 2006) introduces a system based on tableau methods for Answer
Set Programming (ASP). Unlike in our case, where a clash-free complete completion struc-
ture represents an open answer set which satisfies a certain predicate, a branch in a tableau
as described in (Gebser and Schaub 2006) corresponds to a successful/unsuccessful com-
putation of an answer set and an entire tableau represents a traversal of the search space.
Note that in the case of FoLPs a computation of all models is not feasible as their number
may be infinite. Also, the tableau calculi in (Gebser and Schaub 2006) addresses only the
propositional ASP case, as any ASP program can be grounded using only the constants
present in the program, while in our case grounding is performed dynamically, introducing
new individuals when needed.

(Lierler 2008) describes an extension of an abstract framework for executing DPLL
which computes supported models and stable models of a ground logical program. The
framework employs a graph structure for encoding the different computation paths. Mod-
els are constructed in a bottom-up fashion: transition rules prescribe how new atoms are
derived as being part/not being part of the model based on existing support/counter-support
for such atoms. As such, there are similarities between these transition rules and our ex-
pansion rules which justify the presence/absence of unary/binary atoms in an open answer
set. However, our expansion rules also have to introduce newelements in the domain and

46 Cristina Feier and Stijn Heymans

to perform grounding, and thus, they become much more complex. The abstract DPLL
framework has also a nondeterministic choice rule which assigns the value true to a certain
literal which is otherwise not constrained. This rule is similar in a sense with our Choose
unary/binary expansion rules: while our approach is a top-down approach, and we are not
interested in constructing models per se, it turned out to benecessary to construct a whole
model for ensuring soundness of the approach.

8 Conclusions and Outlook

We introduced FoLPs, a logic programming paradigm suitablefor integrating ontologies
and rules, and provided a sound, complete, and terminating algorithm for satisfiability
checking that runs in double exponential time. We showed howto use FoLPs as the under-
lying integration vehicle for reasoning with f-hybrid knowledge bases, a non-monotonic
framework that integratesSHOQ with FoLPs, without having to resort to (weakly) DL-
safeness. We also introduced a restricted variant of FoLPs,simple FoLPs, which allow
integration ofALCHOQ knowledge bases with themselves and provided a sound, com-
plete, and terminating algorithm for satisfiability checking that runs in exponential time.

From a theoretical perspective, the combination of stable model semantics and open
domains posed specific challenges for our tableau-based algorithm: among these, were en-
suring that every atom in the constructed model is finitely justified, and that the constructed
model is part of an actual open answer set. In dealing with this, our approach differentiates
from other existing approaches in the literature.

We are currently looking into extensions of FoLPs (and of thetableau algorithm) which
would allow one to simulate DLs richer thanSHOQ, in the direction ofSROIQ(D), the
DL underlying OWL-DL18 in OWL 2.

References

BAADER, F., CALVANESE, D., MCGUINNESS, D. L., NARDI , D., AND PATEL -SCHNEIDER, P. F.,
Eds. 2003.The DL Handbook: Theory, Implementation, and Applications. Cambridge University
Press.

BAADER, F. AND HOLLUNDER, B. 1995. Embedding Defaults into Terminological Representation
Systems.Journal of Automated Reasoning 14,2, 149–180.

BONATTI , P., LUTZ, C., AND WOLTER, F. 2006. Expressive Non-monotonic Description Logics
Based on Circumscription. InProceedings of the 10th International Conference on Principles of
Knowledge Representation and Reasoning (KR’06). 400–410.

BONATTI , P., PONTELLI , E., AND SON, T. C. 2008. Credulous Resolution for Answer Set Pro-
gramming. InProceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008).
AAAI, 418–423.

CAL Ì , A., GOTTLOB, G.,AND K IFER, M. 2008. Taming the Infinite Chase: Query Answering under
Expressive Relational Constraints. InDescription Logics’08, F. Baader, C. Lutz, and B. Motik,
Eds. Vol. 353. CEUR-WS.org.

CAL Ì , A., GOTTLOB, G.,AND LUKASIEWICZ, T. 2009a. A General Datalog-Based Framework for
Tractable Query Answering over Ontologies. InIn Proc. PODS-2009. ACM Press, 77–86.

18 http://www.w3.org/2007/OWL

http://www.w3.org/2007/OWL

Reasoning with FoLPs and f-hybrid KBs 47

CAL Ì , A., GOTTLOB, G., AND LUKASIEWICZ, T. 2009b. Datalog : A Unified Approach to On-
tologies and Integrity Constraints.Proc. International Conference on Database Theory ICDT 9,
14–30.

CAL Ì , A., GOTTLOB, G., AND PIERIS, A. 2010a. Advanced Processing for Ontological Queries.
Proceedings of the VLDB Endowment 3,1, 554–565.

CAL Ì , A., GOTTLOB, G., AND PIERIS, A. 2010b. Query Answering under Non-Guarded Rules in
Datalog. InProceedings of the 4th International Conference on Web Reasoning and Rule Systems
(RR 2010). 1–17.

CALVANESE, D., DE GIACOMO, G., LEMBO, D., LENZERINI, M., AND ROSATI, R. 2007.
Tractable reasoning and efficient query answering in description logics: The DL-Lite family.
JAR 39,3, 385–429.

CALVANESE, D., GIACOMO, G. D., LEMBO, D., LENZERINI, M., AND ROSATI, R. 2007. Eql-Lite:
Effective First-order Query Processing in Description Logics. InProceedings of IJCAI’2007. 274–
279.

DONINI , F., LENZERINI, M., NARDI , D., AND SCHAERF, A. 1998. AL-log: Integrating Datalog
and Description Logics.Journal of Intelligent and Cooperative Information Systems 10, 227–252.

DONINI , F. M., NARDIA , D., AND R.ROSATI. 2002. Description Logics of Minimal Knowledge
and Negation as Failure.ACM Transactions on Computational Logic 3,2, 177–225.

EITER, T., FABER, W., FINK , M., AND WOLTRAN, S. 2007. Complexity Results for Answer Set
Programming with Bounded Predicate Arities and Implications source.Annals of Mathematics
and Artificial Intelligence 51,1-2, 123–165.

EITER, T., IANNI , G., LUKASIEWICZ, T., SCHINDLAUER, R., AND TOMPITS, H. 2008. Combin-
ing Answer Set Programming with Description Logics for the Semantic Web.Artificial Intelli-
gence 172,12-13, 1495–1539.

FAGES, F. 1991. A new fix point semantics for generalized logic programs compared with the
wellfounded and the stable model semantics.New Generation Computing 9,4.

FEIER, C. AND HEYMANS, S. 2008. A Sound and Complete Algorithm for Simple Conceptual
Logic Programs. InProceedings of ALPSWS 2008.

FEIER, C. AND HEYMANS, S. 2009. Hybrid Reasoning with Forest Logic Programs. InProceedings
of 6th Annual European Semantic Web Conference (ESWC 2009). Vol. 5554. Springer, 338–352.

GEBSER, M. AND SCHAUB, T. 2006. Tableau Calculi for Answer Set Programming. InProc. of
22nd Int. Conf. on Logic Programming (ICLP). LNCS, vol. 4079. Springer, 11–25.

GELFOND, M. AND L IFSCHITZ, V. 1988. The Stable Model Semantics for Logic Programming.In
Proc. of ICLP’88. 1070–1080.

GRIMM , S. AND HITZLER, P. 2007. Reasoning in CircumscriptiveALCO. Technical report, FZI
at University of Karlsruhe, Germany. September.

GRIMM , S. AND HITZLER, P. 2008. Defeasible Inference with Circumscriptive OWL Ontologies.
In Workshop on Advancing Reasoning on the Web: Scalability andCommonsense. No. 350 in
CEUR-WS (http://ceur-ws.org/).

GRIMM , S. AND HITZLER, P. 2009. A Preferential Tableaux Calculus for Circumscriptive ALCO.
In Proceedings of the 3rd International Conference on Web Reasoning and Rule Systems (RR
2009), A. Polleres and T. Swift, Eds. Vol. 5837. Springer, 40–54.

GROSOF, B. N., HORROCKS, I., VOLZ, R., AND DECKER, S. 2003. Description Logic Programs:
Combining Logic Programs with Description Logic. InProc. of the World Wide Web Conference
(WWW). ACM, 48–57.

HEYMANS, S. 2006. Decidable Open Answer Set Programming. Ph.D. thesis, Theoretical Computer
Science Lab (TINF), Department of Computer Science, Vrije Universiteit Brussel.

HEYMANS, S., DE BRUIJN, J., PREDOIU, L., FEIER, C., AND VAN NIEUWENBORGH, D. 2008.
Guarded Hybrid Knowledge Bases.TPLP 8,3, 411–429.

48 Cristina Feier and Stijn Heymans

HEYMANS, S., VAN NIEUWENBORGH, D., AND VERMEIR, D. 2006. Conceptual Logic Pro-
grams.Annals of Mathematics and Artificial Intelligence (SpecialIssue on Answer Set Program-
ming) 47,1–2, 103–137.

HEYMANS, S., VAN NIEUWENBORGH, D., AND VERMEIR, D. 2007. Open Answer Set Program-
ming for the Semantic Web.Journal of Applied Logic 5,1, 144–169.

HEYMANS, S., VAN NIEUWENBORGH, D., AND VERMEIR, D. 2008. Open answer set program-
ming with guarded programs.ACM Transactions on Computational Logic 9,4 (August), 1–53.

HORROCKS, I. AND PATEL -SCHNEIDER, P. F. 2004. A Proposal for an OWL Rules Language. In
Proc. of the World Wide Web Conference (WWW). ACM, 723–731.

HORROCKS, I. AND SATTLER, U. 2001. Ontology Reasoning in the SHOQ(D) Description Logic.
In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence. Morgan Kaufmann, 199–204.

HORROCKS, I., SATTLER, U., AND TOBIES, S. 1999. Practical Reasoning for Expressive Descrip-
tion Logics. InProc. of the 6th Int. Conf. on Logic for Programming and Automated Reasoning
(LPAR’99). Number 1705 in LNCS. Springer, 161–180.

KRÖTZSCH, M., RUDOLPH, S.,AND HITZLER, P. 2008a. Description Logic Rules. InProceedings
of the 18th European Conference on Artificial Intelligence (ECAI-08). IOS Press, 80–84.

KRÖTZSCH, M., RUDOLPH, S., AND HITZLER, P. 2008b. ELP: Tractable Rules for OWL 2. In
Proc. 7th Int. Semantic Web Conf. (ISWC-08). Springer, 649–664.

LEVY, A. Y. AND ROUSSET, M. 1996. CARIN: A Representation Language Combining Horn Rules
and Description Logics. InProc. of ECAI’96. 323–327.

L IERLER, Y. 2008. Abstract Answer Set Solvers. InProc. of the 26th Int. Conf. on Logic Program-
ming (ICLP). 377–391.

L IN , F. AND YOU, J. 2002. Abduction in Logic Programming: A New Definition and an Abductive
Procedure Based on Rewriting.Artificial Intelligence 140, 175–205.

LUKASIEWICZ, T. 2004. A Novel Combination of Answer Set Programming withDescription Log-
ics for the Semantic Web. InIn Proceedings of KR-2004. AAAI Press, 141–151.

M INSKY, M. 1985. A Framework for Representing Knowledge. InReadings in Knowledge Repre-
sentation, R. J. Brachman and H. J. Levesque, Eds. Kaufmann, Los Altos,CA, 245–262.

MOTIK , B., HORROCKS, I., ROSATI, R., AND SATTLER, U. 2006. Can OWL and Logic Program-
ming Live Together Happily Ever After? InProc. of the Int. Semantic Web Conf. (ISWC). LNCS,
vol. 4273. Springer, 501–514.

MOTIK , B. AND ROSATI, R. 2006. Closing Semantic Web Ontologies. Tech. rep.

MOTIK , B. AND ROSATI, R. 2010. Reconciling Description Logics and Rules.Journal of the
ACM 57,5, 30:1–30:62.

MOTIK , B., SATTLER, U., AND STUDER, R. 2005. Query Answering for OWL-DL with Rules.
Journal of Web Semantics 3,1, 41–60.

ROSATI, R. 2005. On the Decidability and Complexity of IntegratingOntologies and Rules.Web
Semantics 3,1, 41–60.

ROSATI, R. 2006. DL+log: Tight Integration of Description Logics and Disjunctive Datalog. In
Proc. of the Int. Conf. on Principles of Knowledge Representation and Reasoning (KR). 68–78.

ROSATI, R. 2008. On Combining Description Logic Ontologies and Nonrecursive Datalog Rules.
In Proc. of the 2nd Int. Conf. on Web Reasoning and Rule Systems (RR 2008). 13 – 27.

SMITH , M., WELTY, C., AND MCGUINNESS, D. 2004. OWL Web Ontology Language Guide.
http://www.w3.org/TR/owl-guide/.

TOBIES, S. 2001. Complexity Results and Practical Algorithms for Logics in Knowledge Represen-
tation. Ph.D. thesis, RWTH-Aachen.

VARDI , M. Y. 1998. Reasoning about the Past with Two-way Automata.In Proc. 25th Int. Collo-
quium on Automata, Languages and Programming. Springer, 628–641.

Reasoning with FoLPs and f-hybrid KBs 49

ŠIMKUS , M. AND EITER, T. 2007.FDNC: Decidable Non-monotonic Disjunctive Logic Programs
with Function Symbols. InProc. 14th Int. Conf. on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR 2007). LNCS. 514–530.

50 Cristina Feier and Stijn Heymans

APPENDIX

Appendix A Additional Preliminaries

A labeled treeis a pair(T, t) whereT is a tree andt : T → Σ is a labeling function;
sometimes we will identify the tree(T, t) with t. For a labeled treet : T → Σ, the subtree
of t atx ∈ T is t[x] : T [x]→ Σ such thatt[x](y) = t(y) for y ∈ T [x].

A labeled forest is a tuple(F, f) whereF is a forest andf : NF → Σ is a labeling
function; sometimes we will identify the forest(F, f) with f . A labeled forest(F, f), with
F = {Tc | c ∈ C}, induces a set of labeled trees{(Tc, tc) | c ∈ C}, with tc : Tc → Σ

defined as follows:tc(x) = f(x), for anyx ∈ Tc. Figure A 1 depicts a labeled forest which
contains two labeled treesta andtb (their roots area andb, respectively).

ta : a{x} tb : b{z}

f : a1{y} b1{z} b2{x} b3{x}

a11{x} a12{z} b21{z}

Fig. A 1: A Simple Labeled Forest

A labeled extended forest is a tuple〈EF , ef 〉 whereEF is an extended forest andef :

NEF → Σ is a labeling function; sometimes we will identify the extended forest〈EF , ef 〉
with ef . A labeled extended forest can be seen as a set of labeled extended trees, where a
labeled extended tree is a tuple(T ef , tef), whereT ef is an extended tree andtef : T ef →

Σ is a labeling function defined such thattef (x) = ef (x), for x ∈ T ef . For a labeled
extended treetef : T ef → Σ, the subtree oftef atx ∈ T is tef [x] : T ef [x] → Σ such that
tef [x](y) = tef (y) for y ∈ T ef [x].

Figure A 2 depicts an extended labeled forest (a labeled version of the extended forest
from Figure 1).

We introduce the operation of replacing in a labeled extended forestef an extended
subtreetef [x] with another extended subtreetef [y], where bothx andy are fromNEF ,
and denote this operation withreplaceef (x, y). Figure A 3 describes the result of applying
the replace operation on the extended forest from Figure 1 with two different sets of op-
erators. In the first case,tefb [b2] is replaced withtefa [a1], while in the second casetefa [a1]

Reasoning with FoLPs and f-hybrid KBs 51

ef : a{x} b{z}

a1{y} b1{z} b2{x} b3{x}

a11{x} a12{z} b21{z}

Fig. A 2: A labeled extended forest

is replaced withtefa [a12]. Note that the names of nodes of the subtree which is replaced
are not changed with the names of the nodes from the replacingsubtree, but new names
are generated for the new nodes in concordance with the naming scheme for nodes of that
tree. Also, observe how in the first replacement one of the ’extra’ arcs oftb, (b2, a), is
dropped (it was part of the replaced extended subtree) and a new ’extra’ arc is introduced,
(b22, b), which mirrors the arc(a12, b) from the replacing extending subtree. Similarly, in
the second transformation,(a12, b) is dropped and(a1, b) is introduced.

replaceef (b2, a1) : a{x} b{z}

a1{y} b1{z} b2{y} b3{x}

a11{x} a12{z} b21{x} b22{z}

replaceef (a1, a12) : a{x} b{z}

a1{z} b1{z} b2{x} b3{x}

b21{z}

Fig. A 3: Two applications of the replace operator onef

52 Cristina Feier and Stijn Heymans

Appendix B Proofs

B.1 Soundness Proof

Proof
From a clash-free complete completion structure forp w.r.t.P , we construct an open inter-
pretation, and show that this interpretation is an open answer set ofP that satisfiesp. Let
〈EF , ct, st, G〉 be such a clash-free complete completion structure withEF = 〈F,ES 〉

the extended forest andG = (V,A) the corresponding dependency graph and letbl be the
set of blocking nodes corresponding to the completion.

1. Construction of open interpretation.
We construct a new graphGext = (Vext , Aext) by extendingG in the following way: first,
we setVext = V andAext = A, and then for every pair(x, y) ∈ bl do the following:

• (a) for everyp such thatp(x) ∈ V , addp(y) to Vext : Vext = Vext ∪ {p(y)};
• (b) for everyf andz such thatf(x, z) ∈ V , addf(y, z) to Vext : Vext = Vext ∪

{f(y, z)};
• (c) for everyp, q such that(p(x), q(x)) ∈ Aext , add(p(y), q(y)) to Aext : Aext =

Aext ∪ {(p(y), q(y))};
• (d) for everyp, q, z such that(p(x), q(z)) ∈ Aext , andz 6= x add(p(y), q(z)) to
Aext : Aext = Aext ∪ {(p(y), q(z))};
• (e) for everyp, f , z such that(p(x), f(x, z)) ∈ Aext , add(p(y), f(y, z)) to Aext :
Aext = Aext ∪ {(p(y), f(y, z))};
• (f) for everyf , q, z such that(f(x, z), q(x)) ∈ Aext , add(f(y, z), q(y)) to Aext :
Aext = Aext ∪ {(f(y, z), q(y))};
• (g) for everyf , q, z such that(f(x, z), q(z)) ∈ Aext , add(f(y, z), q(z)) to Aext :
Aext = Aext ∪ {(f(y, z), q(z))};
• (h) for everyf , g, z such that(f(x, z), g(x, z)) ∈ Aext , add(f(y, z), g(y, z)) to
Aext : : Aext = Aext ∪ {(f(y, z), g(y, z))};

Basically, this amounts to copying the content of the blocking node into the content of
the blocked node, and also all the connections from/within the blocking node as connec-
tions from/within the blocked node (or, in other words, the content of the blocked node is
identical with the content of the blocking node and it is justified in a similar way).
Let there be an open interpretation(U,M), with U = NEF , i.e., the universe is the set of
nodes in the extended forest, andM = Vext , i.e., the interpretation corresponds to the set
of nodes in the extended graph.

2. M is a model ofPM
U . All free rules are trivially satisfied.

Take a ground unary rule:r′ : a(x) ← β+(x), (γ+m(x , ym), δ+m(ym))1≤m≤k from PM
U

originating fromr : a(s) ← β(s), (γm(s, tm), δm(tm))1≤m≤k, ψ, with β−(x) * M ,
for all 1 ≤ m ≤ k: γm−(x, ym) * M andδm

−(ym) * M , and for allti 6= tj ∈ ψ:
yi 6= yj . Assume thatM |= β+(x) ∪

⋃

1≤m≤k γ
+
m(x, ym) ∪

⋃

1≤m≤k δ
+
m(ym) (together

with the assumptions about the negative part of the rule, this amounts toM |= β(x) ∪
⋃

1≤m<≤k γm(x, ym) ∪
⋃

1≤m≤k δm(ym) ∪ ψ) anda(x) /∈M (the rule is not satisfied).
Depending onx there are two cases:

Reasoning with FoLPs and f-hybrid KBs 53

• x is not a blocked node. Thennot a ∈ ct(x), x is saturated, and no expansion rules
can be further applied tonot a. This means that for every ground rule derived from
a ruler ∈ Pa with heada(x), theexpand unary negativerule has been applied. Such
a rule isr′. The application of theexpand unary negativerule tonot a ∈ ct(x) and
r′ leads to one of the following situations:

— there is a unary predicate symbol±q ∈ β, such that∓q ∈ ct(x) (the result of
update(not a(x),∓q, x)), or in other words,∓q(x) ∈M . This contradicts with
M |= β(x).

— there are two successors ofx, yi andyj such thatyi = yj andti 6= tj ∈ ψ. This
contradicts the assumption that for allti 6= tj ∈ ψ: yi 6= yj .

— for some1 ≤ m ≤ k, there is a binary/unary predicate symbol±f ∈ γm/±q ∈
δm such that∓f ∈ ct(x, ym)/∓q ∈ ct(ym) (the result ofupdate(not a(x),
∓f, (x, ym)) / update(not a(x),∓q, ym)), or in other words,∓f(x, ym) ∈M/

∓q (ym) ∈M . This contradicts withM |= γm(x, ym)/M |= δm(ym).

• x is a blocked node. Lety be such that(y, x) ∈ bl: by replacingx with y in r′,
one obtains a ground ruler

′′

which again should not be satisfied because due to the
construction ofM , M |= β(x) ∪

⋃

1≤m<≤k γm(x, ym) ∪
⋃

1≤m≤k δm(ym) ∪ ψ

impliesM |= β(y)∪
⋃

1≤m<≤k γm(y, ym) ∪
⋃

1≤m≤k δm(ym) ∪ ψ anda(x) /∈M
impliesa(y) /∈M . Thus, this case is reduced to the previous one.

Both cases lead to a contradiction, thus the original assumption that ruler′ is not satisfied
byM was false. Thus, every unary rule is satisfied byM .
The proof for the satisfiability of binary rules is similar.

3. M is a minimal model ofPM
U . Before proceeding with the actual proof we introduce a

notation and a lemma which will prove useful in the following. Let EF
′

be the directed
graph(NEF , A

′

) which has as nodes all the nodes fromEF and as arcs all the arcs of
EF plus some ’extra’ arcs which point from blocked nodes to successors of corresponding
blocking nodesA

′

= AEF ∪ {(y, z) | ∃x s. t.(x, y) ∈ bl ∧ z ∈ succEF (x)}. The new
graph captures in a more accurate way the structure ofM : blocked nodes are connected to
successors of the corresponding blocking nodes, as their contents is justified similarly to
the content of the blocking nodes. Figure B 1 exemplifies the construction ofEF

′

from an
extended forestEF by addition of extra arcs:(x, y) is a blocking pair,z1, . . . , zn, andb are
the successors ofx, so extra arcs fromy to each of these successors are added (the dotted
arrows). Among the successors ofx the one which is on the same path withy is singled
out and denoted withz.

Lemma 1

For everyx, y ∈ NEF , if there is a pathPt1 = (p(x), . . . , l1) ∈ pathsG/pathsGext
, with

l1 = q(y) for someq ∈ upreds(P) or l1 = g(y, z) for someg ∈ bpreds(P), andx 6= y,
then there is a pathPt2 = (x, . . . , y) ∈ pathsEF/pathsEF

′ such that for everyz ∈ Pt2
there is a unary atoml2 ∈ Pt1 with args(l2) = z.

54 Cristina Feier and Stijn Heymans

a b

x

z1 . . . z . . . zn

y

Fig. B 1: ConstructingEF
′

: (x, y) is a blocking pair

Proof
Let S = (x1 = x, x2, . . . , xn) be a tuple of nodes fromEF/EF

′

constructed in the
following way: consider each elementl of Pt1 at a time: ifargs(l) = y andy is not
already part of the tuple, addy to the tuple. We show thatS ∈ pathsEF/pathsEF

′ and
furthermore thatxn = y.
For every two consecutive elements ofS, xi andxi+1, with 1 ≤ i < n, there must be two
unary atomsl′ andl′′ in Pt, with args(l′) = xi andargs(l′′) = xi+1, respectively, such
that there is no other unary atoml in the sub-path ofPt1: (l′, . . . , l′′). It is easy to see that
such a sub-path has the form:(l′ = r(xi), f1(xi, xi+1), . . . , fm(xi, xi+1), l

′′ = s(xi+1)),
with r, s ∈ upreds(()P), andf1, . . . fm ∈ bpreds(()P), and thus(xi, xi+1) ∈ A/A

′

for
every1 ≤ i < n: (x1, . . . , xn) is a path inEF/EF

′

.
To see thatxn = y, consider the opposite:xn 6= y. Then there must be a unary atom
l = r(xn) in Pt1 with args(l) = xn such that there is no other unary atom in the
sub-path ofPt1: (r(xn), . . . , g(y, z)). This would imply that the sub-path has the form
r(xn), f1(xn, t), . . . , fm(xn, t), g(y, z), wheret is some successor ofxn in EF/EF

′

:
(xn, t) ∈ A/A

′

. But there is no arc of the form(fm(xn, t), g(y, z)) in A/A
′

with xn 6= y,
so we obtain a contradiction.

Now we can proceed to the actual proof of statement. Assume there is a modelM ′ ⊂ M

of Q = PM
U . Then∃l1 ∈M : l1 /∈ M ′. Take a ruler1 ∈ Q of the forml1 ← β1 with

M |= β1; note that such a rule always exists by construction ofM and expansion rule
(i) . If M ′ |= β1, thenM ′ |= l1 (asM ′ is a model), a contradiction. Thus,M ′ 6|= β1
such that∃l2 ∈ β1 : l2 /∈ M ′. Continuing with the same line of reasoning, one obtains
an infinite sequence{l1, l2, . . .} with (li ∈ M)1≤i and (li /∈ M ′)1≤i. M is finite (the
complete clash-free completion structure has been constructed in a finite number of steps,
and when constructingM (Vext) we added only a finite number of atoms to the ones already

Reasoning with FoLPs and f-hybrid KBs 55

existing inV), thus there must be1 ≤ (i, j), i 6= j, such thatli = lj . We observe that
(li, li+1)1≤i ∈ Eext by construction ofEext and expansion rule (i), so our assumption
leads to the existence of a cycle inGext .

Claim 1
LetC = (l1, l2, . . . , ln = l1) be a cycle inGext . If one of the following holds:

• (i) there is no unary atom inC and for everyli = fi(xi, yi), 1 ≤ i ≤ n, xi is not
blocked
• (ii) there is at least one unary atom inC and for every unary atom inC: lj with
args(lj) = yj , yj is not a blocked node inCS, 1 ≤ j ≤ n.

thenC is a cycle inG.

Proof
From the construction ofGext one can see that any arc which is added toG is of the form
(p(x), l) or (f(x, y), l), wherep is some unary predicate,f is some binary predicate, and
x is a blocked node. It is clear that when condition (i) or condition (ii) holds there is no
arc of the first form inC. As concerns arcs of the latter type, it is again obvious thatthere
are no such arcs if condition (i) is fulfilled. In case condition (ii) holds, assume there is
an arc(f(x, y), l) wherex is a blocking node. We know that there must be at least one
unary atom in the cycle. Let this bep(z). In this case there is a path inG (and also inGext)
from p(z) to f(x, y) andz is different fromx by virtue of (ii). According to lemma 1 this
path contains a unary atom with argumentx (as any path inEF from z to x containsx).
However this contradicts with condition (ii) which says that there is no such atom inC.

Claim 2
LetC = (l1, l2, . . . , ln = l1) be a cycle inGext . If one of the following holds:

• (i) there is no unary atom inC and for someli = fi(xi, yi), 1 ≤ i ≤ n, xi is blocked
• (ii) there is at least one unary atom inC and all unary atoms have the same argument
y which is a blocked node

thenG contains a cycle.

Proof
We will treat the two cases separately:
(i) First, notice that in this case (when there is no unary atom in the cycle),args(l1) =

args(l2) = . . . = args(ln) = (x, y) as there is no arc inAext from a binary atom
f(x, y) to another binary atomg(z, t), with x 6= z or y 6= t (by construction ofGext).
So the cycle can be written asC = (f1(x, y), f2(x, y), . . . , fn(x, y) = f1(x, y)), where
(fi ∈ bpreds(P))1≤i≤n. Let z be the blocking node corresponding tox: (z, x) ∈ bl. As
((fi(x, y), fi+1(x, y)) ∈ Aext)1≤i<n, it follows that ((fi(z, y), fi+1(z, y)) ∈ A)1≤i<n,
soC′ = (f1(z, y), f2(z, y), . . . , fn(z, y) = f1(z, y)) is a cycle inG.
(ii) Let p1(y), p2(y), . . . , pn(y) be the unary atoms inC with y being a blocked node. With-
out loss of generality we considerpn = p1. Then the cycle can be written as:C = (p1(y),

f11(y, z1), . . . , f1m1
(y, z1), p2(y), f21 (y, z2), . . . , f2m2

(y, z2)), . . . pn(y) = p1(y)where

56 Cristina Feier and Stijn Heymans

(fij ∈ bpreds(P))1≤i<n,1≤j≤mi
, ((y, zi) ∈ A

′

)1≤i<n (as the only binary atoms reach-
able fromp(y) are of the formf(y, z), where(y, z) ∈ A

′

). Similar with the previ-
ous case one can show thatC′ = (p1(x), f11(x, z1), . . . , f1m1

(x, z1), p2(x), f21(x, z2),

. . . , f2m2
(x, z2)), . . . pn(x) = p1(x), wherex is the corresponding blocking node fory:

(x, y) ∈ bl is a cycle inG.

Claim 3
Let C = (l1, l2, . . . , ln = l1) be a cycle inGext . If there are at least two unary atoms in
C with different arguments and at least one unary atom has as argument a blocked nodey
then there is a path inG from an atoml1 to an atoml2 whereargs(l1) = x, args(l2) = y,
andx is the corresponding blocking node fory: (x, y) ∈ bl.

Proof
Let t be the argument of a unary atom in the cycle different fromy. As there is a path
in Gext from somep(t) to someq(y) and also viceversa from someq(y) to somep(t)
according to lemma 1 there must also be a path inEF

′

from t to y and a path fromy to
t. In other words there exists a cycle inEF

′

which involves bothy andt. Furthermore for
every element of the cycle inEF

′

, there is a unary atom inC which has this element as
an argument. From the wayEF

′

was constructed (see also Figure B 1), one can see that
any cycle inEF

′

which involves a blocked nodey which makes part from a treeT in the
corresponding simple forest contains the path inT from z to y, wherez is the node which
is a successor ofx in T , and is on the same path inT asx andy, x being the corresponding
blocking node fory: formally, (x, y) ∈ bl, z ∈ succT (x), z ∈ pathT (x, y). There are two
kinds of cycles inEF

′

:

• cycles which containx, z, andy (these cycles will contain also elements from other
trees thanT): in this case there is a unary atoml1 with argumentx in C and there is
as well a unary atoml2 with argumenty in C (from the condition of the claim) - so
the claim is satisfied
• cycles which containz, andy, but do not containx (actually, this is a unique such cy-

cle which has all elements frompathT (z, y)): in this case there are two unary atoms
l2, andl3 inC, with argumentsy, andz respectively, such that there is no other unary
atom on the path induced byC in Gext from l2 to l3. In this case this path has the
form: p(y), f1(y, z), . . . , fn(y, z), q(z). Due to the construction ofGext , the exis-
tence of the path(p(y), f1(y, z), . . . , fn(y, z), q(z)) inGext implies the existence of
the path(p(x), f1(x, z), . . . , fn(x, z), q(z)) in G. At the same time note that there is
a path inG from q(z) to p(y). So,(p(x), q(z)) ∈ connG and(q(z), p(y)) ∈ connG,
thus(p(x), p(y)) ∈ connG and the claim is satisfied.

One can see that the hypotheses of the three claims cover all possible types of cyclesC in
Gext and that the consequences of having such a cycle are contradicting in each case with
the fact that〈EF , ct, st, G, bl〉 is a complete clash-free completion structure (in the case
of the first two claims, one obtains that there must be a cycle inG, while the conclusion of
the third claim contradicts with the blocking condition fora pair of blocking nodes from
bl). Thus, there cannot be such a cycleC in Gext andM is minimal.

Reasoning with FoLPs and f-hybrid KBs 57

B.2 Completeness Proof

Proof

If p is satisfiable w.r.t.P thenp is forest-satisfiable w.r.t.P (Proposition 1). We construct
a clash-free complete completion structure forp w.r.t.P , by guiding the non-deterministic
application of the expansion rules with the help of a forest model of P which satisfies
p and by taking into account the constraints imposed by the saturation, blocking, redun-
dancy, and clash rules. The proof is inspired by completeness proofs in Description Logics
for tableau, for example in (Horrocks et al. 1999), but requires additional mechanisms to
eliminate redundant parts from Open Answer Sets.

In order to proceed we need to introduce the notion ofrelaxed completion structure
which is a tuple〈EF , ct, st, G, bl〉, whereEF is an extended forest, andG, ct, st, bl
represent the same kind of entities as their homonym counterparts in the definition of a
completion structure. Aninitial relaxed completion structure for checking satisfiability of
a unary predicatep w.r.t. a FoLPP is defined similarly as an initial completion structure
for checking satisfiability ofp w.r.t. P . A relaxed completion structure is evolved using
the expansion rules (i)-(vi) and the applicability rules (vii)-(viii). Note that theredundancy
rule is left out. A complete clash-free relaxed completion structure is a relaxed completion
structure evolved from an initial relaxed completion structure for p andP , such that no
expansion rules can be further applied, which is not contradictory and for whichG does
not contain positive cycles.

The first step of the proof consists in constructing a complete clash-free relaxed com-
pletion structure starting from a forest model of a FoLPP which satisfiesp. Note that in
the general case, constructing a complete clash-free relaxed completion structure might
be a non-terminating process (the termination for the construction of complete clash-free
completion structures was based on the application of the redundancy rule), but as we will
see in the following, the process does terminate when a forest model is used as a guidance.

So, let(U,M) be an open answer set of a FoLPP which satisfiesp which at the same
time is a forest model ofP . Then there exists an extended forestEF = 〈{Tε} ∪ {Ta | a ∈

cts(P)},ES〉, whereε is a constant, possibly one of the constants appearing inP , and a
labeling functionL : {Tε} ∪ {Ta | a ∈ cts(P)} ∪ AEF → 2preds(P) which fulfill the
conditions from definition 2.

We define an initial relaxed completion structureCS 0 = 〈EF ′, ct, st, G, bl〉 for p and
P such thatEF ′ = 〈F ′,ES ′〉, F ′ = {T ′

ε} ∪ {T
′
a | a ∈ cts(P)}, whereε is the sameε

used to defineEF , andTx = {x}, for everyx ∈ cts(P)∪ {ε}, andES ′ = ∅,G = 〈V,A〉,
V = {p(ε)}, A = ∅, andct(ε) = {p}, st(ε, p) = unexp, bl = ∅. We will evolve this
completion structure using rules (i)-(viii). To this purpose we inductively define a function
π : NEF ′ → U that relates nodes in the relaxed completion structure to nodes in the forest
model satisfying the following properties:

‡

{

{q | q ∈ ct(z)} ⊆ L(π(z)), for all z ∈ NEF ′

{q | not q ∈ ct(z)} ∩ L(π(z)) = ∅, for all z ∈ NEF ′

Intuitively, the positive content of a node/edge in the completion structure is contained in
the label of the corresponding forest model node, and the negative content of a node/edge

58 Cristina Feier and Stijn Heymans

in the completion structure cannot occur in the label of the corresponding forest model
node.

Claim 4
LetCS be a relaxed completion structure derived fromCS 0 andπ a function that satisfies
(‡). If an expansion rule is applicable toCS then the rule can be applied such that the
resulting relaxed completion structureCS ′ and an extensionπ′ of π still satisfies (‡).

We start by settingπ(x) = x, for everyx ∈ cts(P) ∪ {ε} (the roots of the trees in the
relaxed completion structure correspond to the roots of thetrees in the forest model). It is
clear that (‡) is satisfied forCS 0. By induction letCS be a relaxed completion structure
derived fromCS 0 andπ a function that satisfies (‡). We consider the expansion rules and
the applicability rules saturation and blocking:

1. Expand unary positive. As q ∈ ct(x), we have, by the induction hypothesis, thatq ∈

L(π(x)). SinceM is a minimal model there is anr ∈ Pq of the form (3) and a ground
versionr′ : q(π(x)) ← β+(π(x)), (γ+m(π(x), zm))1≤m≤k, (δ

+
m(zm))1≤m≤k ∈ (Pq)

M
U

such thatM |= β+(π(x)) ∪ (γ+m(π(x), zm))1≤m≤k ∪ (δ+m(zm))1≤m≤k. Setrl(q, x) = r

andupdate(q(x), β, x). Next, for each1 ≤ m ≤ k:

• If zm = π(z) for somez already inEF ′, takeym = z; also, if z ∈ cts(P) and
(x, z) /∈ ES′ thenES′ = ES′ ∪ {(x, z)},
• if zm = π(x) ·s andzm is not yet the image ofπ of some node inEF ′, then addx ·s

as a new successor ofx in F ′: T ′
c = T ′

c∪{x ·s}, wherex ∈ T ′
c, setπ(x ·s) = π(x) ·s

andπ(x, x · s) = (π(x), π(x) · s).
• update(q(x), γm, (x, ym)),
• update(q(x), δm, ym).

In other words we removed the nondeterminism from theexpand unary positive rule, by
choosing the ruler and the successors corresponding to the open answer set(U,M). One
can verify that (‡) still holds forπ.

2. One can deal with the rules (ii-vi) in a similar way, makingthe non-deterministic choices
in accordance with(U,M).

3. Saturation. No expansion rule can be applied on a node fromEF ′ which is not a constant
until its predecessor is saturated. This rule is independent of the particular open answer set
which guides the construction, so it is applied as usually.

4. Blocking. Consider a nodex ∈ NEF ′ which is selected for expansion. If there is a saturated
nodey ∈ NEF ′ which is not a constant,y <Tc

x, whereTc ∈ F ′, ct(x) ⊆ ct(y), and
connprG(y, x) = ∅ thenx is blocked and(y, x) is added to the set of blocking pairs:
bl = bl ∪ {(y, x)}. Furthermore, we impose that if there are more nodesy which satisfy
the condition we will consider as the blocking node forx the one which is closest to the
root of the treeTc (the tree from whichx makes part), so the nodey for which there is
no nodez such thatz <Tc

y, ct(x) ⊆ ct(z), andconnprG(z, y) = ∅. This choice over
possible blocking nodes is relevant for the next stage of theproof, where a complete clash-
free relaxed completion structure is transformed into a complete clash-free completion
structure. The condition (‡) still holds forπ as we have not modified the content of nodes,
but just removed some unexpanded nodes.

Reasoning with FoLPs and f-hybrid KBs 59

So, (‡) holds forCS′ which was evolved fromCS, no matter which expansion rule
or applicability rule was used. It is easy to see, that if (‡) holds for a particular relaxed
completion structureCS then this fact together with the fact that(U,M) is an open answer
set ofP guarantees thatCS is clash-free. So, in order to obtain a complete clash-free
relaxed completion structure one has just to apply rules (i-viii) in the manner described
above. To see that the process terminates, assume it does not. Then, for everyx, y ∈ NEF ′

such thatx <′
F y andct(x) = ct(y), the blocking rule cannot be applied, so there

is a path from ap(x) to someq(y). This suggests the existence of an infinite path inG

(as on any infinite branch in a tree fromF ′ there would be an infinite number of nodes
with equal content - there is a finite amount of values for the content of a node), which
contradicts with the fact that any atom in an open answer set is justified in a finite number
of steps(Heymans et al. 2006, Theorem 2).

At this point we have constructed a complete clash-free relaxed completion structure
CS for p w.r.tP starting from a forest open answer set forP which satisfiesp.

The preference relation over different blocking nodes choices in the construction above
has several consequences described by the following results:

Lemma 2
Let CS = 〈EF , ct, st, G bl〉 be a complete clash-free relaxed completion structure
constructed in the manner described above (EF = 〈F ,ES 〉). Then, for everyx such that
there exists ay so that(x, y) ∈ bl (x is a blocking node inCS), there is no nodez <Tc

x,
Tc ∈ F such thatct(z) = ct(x).

Proof
Assume by contradiction thatx is a blocking node inCS, so, there is ay such that(x, y) ∈
bl, and that there exists alsoz <Tc

x, Tc ∈ F such thatct(z) = ct(x). Observe that
connG(z, y) = {(p(z), q(y)) | p ∈ ct(z) ∧ q ∈ ct(y) ∧ (∃r ∈ ct(x) s. t.(p(z), r(x)) ∈
connG(z, x) ∧ (r(x), q(y)) ∈ connprG(x, y))} (according to lemma 1 the existence of a
path from ap(z) to aq(y) in G implies the existence of a path fromz to y in EF ; all paths
from z to y in EF include the path fromz to y in Tc and converselyx, and then according
to the same lemma there must be a atom in the initial path inG with argumentx: r(x) in
this case). ButconnprG(x, y) = ∅ as(x, y) ∈ bl, soconnprG(z, y) = ∅. Additionally,
ct(z) = ct(x) ⊇ ct(y), so the existence ofz is in contradiction with the preference
condition over potentially blocking nodes. Thus, the lemmaholds.

Corollary 1
Let CS = 〈EF , ct, st, G, bl〉 be a complete clash-free relaxed completion structure
constructed in the manner described above (EF = 〈E,ES 〉) andIB a branch of a treeTc
fromF . Then there are at most2p distinct blocking nodes inIB wherep = |upreds(P)|.

Proof
The result follows from the fact that there cannot be two blocking nodes with equal content
on the same path in a tree according to the previous lemma and the finite number of values
for the content of a node which is given by the cardinality of the power set ofupreds(P).

60 Cristina Feier and Stijn Heymans

The next step is to transform a relaxed clash-free complete completion structureCS =

〈EF , ct, st, G, bl〉, whereEF = 〈F ,ES 〉, into a complete clash-free completion struc-
ture, that is, a complete clash-free relaxed completion structure which has no redundant
nodes. This is done by applying a series of successive transformations on the relaxed com-
pletion structure - each transformation “shrinks” the completion structure in the sense that
the newer returned relaxed completion structure has a lesser number of nodes than the orig-
inal one and is still complete and clash-free. The result of applying the transformation is
a relaxed clash-free complete completion structure which has a bound on the number of
nodes on any branch which matches the boundk from the redundancy condition, which is
thus a clash-free complete completion structure.

A way to shrink a (relaxed) completion structure is that whenever two nodesu andv in
a treeTc from F are on the same path,u <Tc

v, and they have equal content,ct(u) =

ct(v), the subtreeTc[u] is replaced with the subtreeTc[v]. We call such a transforma-
tion collapseCS(u, v) and its results is a new relaxed completion structureCS′ = 〈EF ′,

ct
′, st′, G′, bl′〉, where the elements of this new completion structure are defined in the

following.

Let ef : NEF → C be a labeled extended forest which associates to every node of EF
a label from a set of distinguished constantsC such thatef (x) 6= ef (y) for everyx and
y in NEF such thatx 6= y. Let ef ′ = replaceef (u, v) be a new labeled extended forest
andEF ′ be the corresponding unlabeled extended forest. For everyx ∈ EF ′ let x be the
counterpart ofx in EF in the sense that:ef ′(x) = ef (x). Note that for everyx ∈ EF ′

there is a unique such counterpart inEF . For simplicity we also introduce the notation
S to refer to the counterpart tuple (the tuple of counterpart nodes) corresponding to the
tuple of nodes fromS from T ′ . Formally,(x1, . . . , xn) = (x1, . . . , xn). With the help of
this notion of counterpart node we will define also the other components of the resulted
completion structure (EF ′ has already been defined):

• G′ = (V ′, A′). The set of nodesV ′ of the new graphG′ contains all atomsl for which there
is a atom inV formed with the same predicate symbol asl and having as arguments the
counterpart of the arguments ofl. Additionally,V ′ contains binary atoms which connect
the predecessor ofu (it is the same both inEF andEF ′) with the new nodeu which were
also present inV - this is necessarily asu = v, so otherwise these connections would be
lost:

V ′ ={l1 | ∃l2 ∈ V s. t.pred(l1) = pred(l2) ∧ args(l1) = args(l2)}∪

{f(z, u) | z ∈ T ′ ∧ f(z, u) ∈ V }.

The set of arcsA′ of the new graphG′ contains all pair of atoms(l1, l2) for which there is
a corresponding pair inE, (l3, l4), such thatl3 andl4 have the same predicate symbols as
l1 andl2, respectively, and their argument tuples are the counterpart of the argument tuples
of l1, and l2, respectively. Additionally,A′ contains arcs fromA which connect atoms
whose arguments include the predecessor ofu (it is the same both inT andT ′) with atoms
whose arguments include the new nodeu - this is necessarily asu = v, so otherwise these

Reasoning with FoLPs and f-hybrid KBs 61

connections would be lost:

A′ ={(l1, l2) | ∃(l3, l4) ∈ A s. t.pred(l1) = pred(l3) ∧ pred(l2) = pred(l4)

∧ args(l1) = args(l3) ∧ args(l2) = args(l4)}∪

{(l1, l2) | (l1, l2) ∈ E ∧ u ∈ arg(l2) ∧ z ∈ arg(l1) ∧ z < u}.

• ct
′(x) = ct(x), for everyx ∈ ef

′;
• st

′(x) = st(x), for everyx ∈ ef ′;
• bl′ = {(x, y) | (x, y) ∈ bl ∧ connprG′(x, y) = ∅}. We maintain those blocking pairs

whose counterparts inEF formed a blocking pair, and which further more still fulfill the
blocking condition.

Note that the result of applying the transformation on a complete clash-free relaxed
completion structure might be an incomplete clash-free relaxed completion structure. If
completeness of the original structure was achieved by applying among others the blocking
rule, the transformation might leave some branches “unfinished” in case the blocking node
is eliminated or simply because two nodes who formed a blocking pair are still found in
the new structure, but they do not longer fulfill the blockingcondition. We will describe
two cases in which the transformation can be applied withoutlosing the completeness of
the resulted structure by means of two lemmas. Before that, however, we need to state
a general result which will prove useful in the demonstration of the two lemmas. The
result states that if as a result of applying thecollapse transformation on a complete clash-
free relaxed completion structure one obtains a completionstructure in which the path
between a blocking pair of nodes remains untouched (every node in the original path is the
counterpart of some node in the new structure), then the nodes which have as counterparts
the nodes of the blocking pair form a blocking pair in the new completion structure.

Lemma 3
LetCS = 〈EF , ct, st, G, bl〉, EF = 〈F ,ES 〉 be a complete clash-free relaxed comple-
tion structure andCS′ = 〈EF ′, ct′, st′, G′, bl′〉 the result returned bycollapseCS(u, v),
whereu andv are two nodes fromEF which fulfill the usual conditions necessary for
the application ofcollapse. Then, for every(x, y) ∈ bl: if for every z ∈ pathTc

(x, y)

(x, y ∈ Tc), existsz′ ∈ EF ′ such thatz′ = z, then(x′, y′) ∈ bl′, wherex′, y′ ∈ EF ′,
x′ = x andy′ = y.

Proof
Let EF , EF ′, x, y, x′, andy′ be as defined in the lemma. The conditions for the two
nodesx′ andy′ from EF ′ to form a blocking pair:(x′, y′) ∈ bl′, are that(x, y) ∈ bl and
connprG′(x′, y′) = ∅. The first condition is part of the prerequisites of the lemma, so it
remains to be proved thatconnprG′(x′, y′) = ∅. Assume by contradiction that there exists
a path inG′ from ap(x′) to aq(y′). Then according to lemma 1 there is a pathPt in EF ′

from x′ to y′ such that for everyz ∈ P there exists a unary atom with argumentz in the
path inG′ from p(x′) to q(y′). Any path inEF ′ from x′ to y′ includes the path inT ′

c (the
tree from which bothx′ to y′ make part) fromx′ to y′. AssumepathT ′

c
(x′, y′) = (x1

′ =

x′, x2
′, . . . , xn

′ = y′): thenPt contains the unary atomsl1′, l2′, . . . , ln′ with args(li′) =
x′i, for 1 ≤ i ≤ n such that(li′, l′i+1) ∈ connprG′ , for every1 ≤ i < n. Let x′i = xi. As

62 Cristina Feier and Stijn Heymans

every node on the pathpathTc
(x, y) is the counterpart of some node inpathT ′

c
(x′, y′) and

every node inpathT ′

c
(x′, y′) has the some counterpart inpathTc

(x, y), one can conclude
thatpathTc

(x, y) = (x1, x2, . . . , xn). Also, from the definition ofcollapse one can see
that the presence of unary atomsli′ with args(li

′) = x′i in Pt/G′ implies the presence
of atomsli with args(li) = xi andpred(li) = pred(li

′) in G, for every1 ≤ i ≤ n.
Furthermore(li′, l′i+1) ∈ connprG′ implies (li, li+1) ∈ connprG, for every1 ≤ i < n.
The latter results leads to:(l1, ln) ∈ connprG with args(l1) = x1 = x1

′ = x and
args(ln) = xn = xn

′ = y, or in other words to(pred(l1), pred(ln)) ∈ connprG(x, y).
This contradicts with the fact that(x, y) ∈ bl, and thusconnprG(x, y) = ∅.

Lemma 4
Let CS = 〈EF , ct, st, G, bl〉, EF = 〈F ,ES 〉 be a complete clash-free relaxed com-
pletion structure. If there are two nodesu andv in a treeTc in F such thatu <Tc

v,
ct(u) = ct(v), and there is no blocking nodex′, x′ <Tc

v, collapseCS(u, v) returns a
complete clash-free relaxed completion structure.

Proof
We have to show thatCS′ = collapseCS(u, v) is complete, that is, no expansion rule
further applies to this completion structure. We will consider every leaf nodex of EF ′ and
show that no rule can be applied to further expand such a node.There are three possible
cases as concerns the counterpart ofx in EF , x (which at its turn is a leaf node inEF):

• x is a blocked node inCS, which does not make part from the treeTc from whichu andv
make part. LetTd be the tree from whichx makes part: then there is a nodey′ ∈ Td such
that(y′, x) ∈ bl. No node was eliminated fromTd as a result of the transformation so for
everyz ∈ pathTc

(x, y′), existsz′ ∈ EF ′ such thatz′ = z. Thus lemma 3 can be applied:
(x, y) ∈ bl′, wherey is the node inEF ′ for whichy = y′. Sox is a blocked node inCS.

• x is a blocked node inCS which makes part from the same treeTc from whichu andv also
make part: then there is a nodey′ ∈ Tc such that(y′, x) ∈ bl. Depending on the location
of y′ in Tc one can distinguish between the following situations :

— y′ 6>Tc
u (Figure B 2 a)): in this casey′ is on a branch which does not containu andv

(as it is also the case thaty′ 6< u due to the fact that there is no blocking nodex′ such
thatε ≤ x′ < v) and it is not eliminated as a result of applying the transformation,
so the path fromx to y′ in Tc is preserved as a result of the transformation. Lemma 3
can be applied with the result that(x, y) ∈ bl wherey is the node inEF ′ for which
y = y′

— y′ ≥Tc
u andy′ 6≥ v (Figure B 2 b)): in this casey′ is eliminated as a result of apply-

ing the transformation, butx is also eliminated which contradicts with the existence
of x in CS′. To see whyx is also eliminated notice thaty′ 6≤ v (as again this would
contradict with the fact that there is no blocking nodex′ such thatε ≤ x′ < v) and
x > y′. This implies thatx > u andx 6≤ v which suggests thatx is one of the
eliminated nodes, too.

— y′ ≥ v (Figure B 2 c)): in this casey′ is not eliminated as a result of applying
the transformation, so the path fromx to y′ in Tc is preserved as a result of the
transformation. Lemma 3 can be applied with the result that(x, y) ∈ bl wherey is
the node inEF ′ for whichy = y′

Reasoning with FoLPs and f-hybrid KBs 63

c

u y′

v x

a)

c

u

v y′

x

b)

c

u

v

y′

x

c)

Fig. B 2: Shrinking a completion structure by eliminating a subtree with a root above any
blocking node (the eliminated part is highlighted with continuous line; the part

highlighted with dashed line is still kept in)

So the conclusion of the analysis above is the existence of a nodey ∈ T ′ such that(y, x) ∈
bl. As connprG(y, x) = ∅, connprG′(y, x) = ∅ as the subtreeT [y] can be found inT ′

intact in the form of the subtreeT ′[y]: the eliminated nodes were not part of this subtree
as, again, there is no blocking nodex′ in T , such thatε ≤ x′ < v.

• x is not a blocked node inCS; asCS is complete, no expansion rule can be applied tox in
CS and, by transfer neither tox in CS′ (as they are two nodes which have equal contents
which are justified in a similar way).

Lemma 5
Let CS = 〈EF, ct, st, G, bl〉 be a complete clash-free relaxed completion structure. If
there are three nodesz, u, andv in T such thatz < u < v and there is no blocking node
x′ such thatz < x′ < v, andconnprG(z, u) ⊆ connprG(z, v), collapseCS(u, v) returns
a complete clash-free relaxed completion structure.

Proof
Like for the lemma above we show that any leaf node in the completion structureCS′ =

collapseCS(u, v) (or more precisely in the corresponding treeT ′) cannot be further ex-
panded. Again we consider every such leafx and we distinguish between three cases as
concerns its counterpart inT , x:

• x is a blocked node inCS, which does not make part from the treeTc from whichu andv
make part.This case is similar with the first case in the previous lemma.

• x is a blocked node inCS which makes part from the same treeTc from whichu andv
make part: then there is a nodey′ ∈ Tc such that(x, y′) ∈ bl. Using a similar argument

64 Cristina Feier and Stijn Heymans

as for the previous lemma one concludes that there is a nodey ∈ T ′ such thaty′ = y, or
in other wordsy′ has not been eliminated as a result of applying the transformation. In the
following we will show that(y, x) ∈ bl′ andx is not further expanded. We will do this on
a case-basis considering different locations ofy andx in Tc w.r.t. the nodesz, u, anv (we
consider only those cases in which after the transformationbothy andx are maintained in
the structure):

— y ≤Tc
z and there is a nodez′ such thatz′ <Tc

u, z′ ≥Tc
y, andx >Tc

z′ (Figure
B 3 a)): in this case the transformation does not remove any node frompathTc

(y, x)

so lemma 3 can be applied with the result that(y, x) ∈ bl′.
— y >Tc

v (Figure B 3 b)): in this case no nodes from the subtreeTc[y] are re-
moved during the transformation so using the same argument as above we obtain
that(y, x) ∈ bl′.

— y 6>Tc
z andy 6≤Tc

z (Figure B 3 c)): in this casey is not on the same path asz, u,
andv and again the subtreeTc[y] is copied intact intoT ′

c, so(y, x) ∈ bl′.
— y ≤Tc

z andx ≥Tc
v: in this casey, z, u, v andx are all on the same path inTc.

Assume by contradiction thatconnprG′(y, x) 6= ∅, or in other words there is a path
in G′ from ap(y) to someq(x). By lemma 1 one obtains that there must be a path
Pt betweeny andx in EF ′: note that every such path containspathT ′

c
(y, x). From

the same lemma and the previous observation one obtains thatthere exists a set of
unary atomsl1, l2, . . . , ln inG′ with argumentsx1, x2, . . . xn, wherepathT ′

c
(y, x) =

(x1 = y, x2, . . . xn = y) such that(li, li+1) ∈ connprG′ , for 1 ≤ i < n. Note
that (li, li+1) ∈ connprG′ , for 1 ≤ i < n implies that(li, lj) ∈ connprG′ , for
1 ≤ i < j ≤ n.
Observe that the counterpart ofz from Tc in T ′

c is still z and the counterpart ofv
fromTc in T ′

c isu, or in other wordsz = z andu = v. So,z, u ∈ pathT ′

c
(x, y), or in

other words exists1 ≤ j < k ≤ n such thatxj = z andxk = u. As (l1, lj), (lj , lk),
(lk, ln) ∈ connprG′ : (pred(l1), pred(lj)) ∈ connprG′(y, z), (pred(lj), pred(lk)) ∈
connprG′(z, u), and(pred(lk), pred(ln)) ∈ connprG′(u, x).
By definition of collapse: connprG′(y, u) = connprG(y, u), connprG′(z, u) =

connprG(z, u) andconnprG′(u, y) = connprG(v, x), so: (pred(l1), pred(lj)) ∈
connprG(y, z), (pred(lj), pred(lk)) ∈ connpr(z, u), and(pred(lk), pred(ln)) ∈
connprG′(v, x). From the lemma conditionconnpr(z, u) ⊆ connpr(z, v), thus
(pred(lj), pred(lk)) ∈ connprG′(z, v).
Finally, (pred(l1), pred(lj)) ∈ connprG(y, z), (pred(lj), pred(lk)) ∈ connprG
(z, v), and(pred(lk), pred(ln)) ∈ connprG′(v, x) implies(pred(l1), pred(ln)) ∈
connprG(y, x), which is a contradiction with the fact thatconnprG(y, x) = ∅ as
(y, x) ∈ bl. Thus, our assumption is false:connprG′ (y, x) = ∅, and(y, x) ∈ bl′.

• x is not a blocked node inCS (Figure B 3 d)); using a similar argument as for the previous
lemma one can show that no expansion rule applies tox in CS′.

Now, we will describe a sequence of transformations on a relaxed clash-free complete

Reasoning with FoLPs and f-hybrid KBs 65

c

y

z

z′

u x

v

a)

c

z

u

v

y

x

b)

ε

z y

u x

v

c)

c

y

z

u

v

x

d)

Fig. B 3: Shrinking a completion structure by eliminating a subtree with a root below a
blocking node (the eliminated part is highlighted)

completion structureCS = 〈EF , ct, st, G, bl 〉, EF = 〈F ,ES 〉, which returns a com-
plete clash-free completion structure. The transformations which have to be applied toCS
are the following (the order in which they are applied is irrelevant):

• for every two nodesu andv in a treeTc ∈ F such thatc <Tc
u <Tc

v, ct(u) = ct(v),
and there is no blocking nodex, c ≤Tc

x <Tc
v, collapseCS(u, v) (we will call such a

transformation a transformation of type 1) ;
• for every two nodesu, andv in a treeTc ∈ F for which there exists a nodez in Tc such

that z <Tc
u <Tc

v and there is no blocking nodex such thatz <Tc
x <Tc

v, and
connprG(z, u) ⊆ connpr(z, v), collapseCS(u, v) (we will call such a transformation a
transformation of type 2).

That the resulted completion structure is complete followsdirectly from Lemma 4 and
Lemma 5. We still have to prove the following claim:

Claim 5
Let CS = 〈EF , ct, st, G, bl〉 be a complete relaxed completion structure to which no
transformation of the form described above can be further applied. Then every branch of
CS has at mostk = 2p(2p

2

− 1) + 3 nodes withp = |upreds(P)|.

We will analyze every branch of every treeTc at a time. Consider the current branch is
IB and that it contains the blocking nodesx1, x2, . . . xn. From Corollary 1 we know that
n ≤ 2p, wherep = |upreds(P)|. The last node of the branch will be denoted withend
(Figure B 4). We split the branchIB in n + 1 paths and count the maximum number of
nodes with a certain content in each of these paths. In order to do this need an additional
lemma which is defined next.

66 Cristina Feier and Stijn Heymans

Lemma 6
Let IB be a branch in a treeTc as depicted in Figure B 4. For a givens ∈ 2upreds(P):

• for any1 ≤ i < n, there can be at most2p
2

nodes inpathTc
(xi, xi+1) with content

equal tos, in case there is no nodex ∈ Tc such thatc <Tc
x ≤Tc

xi andct(x) = s

• for any1 ≤ i < n, there can be at most2p
2

− 1 nodes inpathTc
(xi, xi+1) with

content equal tos, except forxi, in case there is a nodex ∈ Tc such thatc <Tc

x ≤Tc
xi andct(x) = s

• there can be at most2p
2

nodes inpathTc
(xn, end) with content equal tos, except

for xn.

Proof
We will prove that for any1 ≤ i < n, there can be at most2p

2

nodes inpathTc
(xi, xi+1)

with content equal tos in case there is no nodex ∈ Tc such thatc <Tc
x ≤Tc

xi and
ct(x) = s. Assume by contradiction that there are at least2p

2

+1 nodes inpathTc
(xi, xi+1)

with content equal tos. Let’s call these nodey1, y2, . . . , ym, wherem > 2p
2

. It is neces-
sary thatconnprG(y1, yi) ⊃ connprG(y1, yi+1) for every1 < i < m, otherwise a trans-
formation of type 2 could be further applied toCS. As connprG(x, y) ⊆ upreds(P) ×

upreds(P) and |2upreds(P)×upreds(P)| = 2p
2

, and there at least2p
2

distinct values for
connprG(y1, yi), when1 < i < m, there must be an1 < i < m such thatconnprG(y1, yi)
= ∅. But in this case(y1, yi) ∈ bl (as the two nodes also have equal content) which con-
tradicts with the fact thatyi 6= end. The other cases are proved similarly.

Now we will proceed to the actual counting. Lets ∈ 2upreds(P) be a possible content
value for any node inIB. We will count the maximum number of nodes with contents in
IB - in order to do this we have to distinguish between three different cases as regardss:

c

x1

x2

. . .

xn

end

Fig. B 4: A random branchIB in the resulted complete clash-free relaxed completion
structure:x1, . . . ,xn are blocking nodes

Reasoning with FoLPs and f-hybrid KBs 67

• there is no nodex ∈ Tc with c <Tc
x <Tc

x1 such thatct(x) = s, and there is no
1 ≤ i ≤ n such thatct(xi) = s. In this case there is maximum 1 node with content
equal tos in pathTc

(c, x1) (the root), maximum2p
2

nodes in eachpathTc
(xi, xi + 1) and

maximum2p
2

nodes inpathTc
(xn, end) (according to lemma 6); for the last path there

cannot be2p
2

+1 nodes as that would mean thatend is a blocked node with content equal
to s, so there would be a blocking node with content equal tos, which contradicts with
the fact the hypothesis there is no blocking node with content equal tos). Also there are at
most2p − 1 blocking nodes (if there would be2p such nodes, the maximum indicated by
corollary 1 there would remain no valid value fors). Summing all up, in this case there are
at most2p

2

(2p − 1) + 1 nodes with content equal tos.
• there is no nodex such thatc <Tc

x <Tc
x1 such thatct(x) = s but there is a node

xi, 1 ≤ i ≤ n such thatct(xi) = s. In this case there is no nodex such thatc <Tc

x <Tc
xi which has content equal tos (lemma 2), and thuspathTc

(c, x1) maximum 1
node with content equal tos (the root).pathTc

(xi, xi+1) has maximum2p
2

nodes, every
path(xj , xj+1), wherei < j < n has maximum2p

2

− 1 nodes, and the path(xn, end)
has maximum2p

2

nodes (according to lemma 6). Summing all up, in this case there are at
most(2p

2

− 1)(n − i + 1) + 3 nodes with content equal tos, wheren is the number of
blocking nodes. There are at most2p blocking nodes (corollary 1), so the maximum of the
expression is met wheni = 1 andn = 2p and is2p(2p

2

− 1) + 3.
• there is a nodex such thatc <Tc

x <Tc
x1 andct(x) = s. In this casect(xi) 6= s, for

every1 ≤ i ≤ n (lemma 2). The counting is as follows:pathTc
(c, x1) has maximum 1

node with content equal tos (x), otherwise a transformation of type 1 could be applied,
pathTc

(xi, xi+1) has maximum2p
2

− 1 nodes,1 ≤ i < n and the path(xn, end) has
maximum2p

2

nodes (according to lemma 6). Also there are at most2p− 1 blocking nodes
(if there would be2p such nodes, the maximum indicated by corollary 1 there wouldremain
no valid value fors). Summing all up, in this case there are at most(2p

2

− 1)(2p − 1) + 1

nodes with content equal tos.

From the three cases the maximum of number of nodes with content equal to a givens
in any branchIB of a treeTc ∈ F is 2p(2p

2

− 1) + 3, which is exactlyk.
At this point we have a complete relaxed clash-free completion structure with at mostk

nodes on any branch, thus a complete clash-free completion structure forp w.r.t.P .

	1 Introduction
	2 Preliminaries
	3 Forest Logic Programs
	4 An Algorithm for Forest Logic Programs
	4.1 Expansion Rules
	4.2 Applicability Rules
	4.3 Clash-Free Complete Completion Structures
	4.4 Illustration of the algorithm
	4.5 Termination, Soundness, and Completeness

	5 F-hybrid Knowledge Bases
	6 Simple Forest Logic Programs
	6.1 Reasoning with Simple FoLPs
	6.2 Simple F-hybrid Knowledge Bases

	7 Discussion and Related Work
	8 Conclusions and Outlook
	References
	Appendix A Additional Preliminaries
	Appendix B Proofs
	B.1 Soundness Proof
	B.2 Completeness Proof

