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Abstract. The Evidential Tool Bus (ETB) is a distributed framework
for tool integration for the purpose of building and maintaining assur-
ance cases. ETB employs Datalog as a metalanguage both for defining
workflows and representing arguments. The application of Datalog in
ETB differs in some significant ways from its use as a database query
language. For example, in ETB Datalog predicates can be tied to exter-
nal tool invocations. The operational treatment of such external calls is
more expressive than the use of built-in predicates in Datalog. We out-
line the semantic characteristics of the variant of Datalog used in ETB
and describe an abstract machine for evaluating Datalog queries.

1 Introduction

Software is an important component of many modern safety-critical systems, and
its reliability must therefore be certified to very high levels of assurance. It is
quite common for an assurance case for software to be developed using workflows
that integrate multiple formal, semi-formal, and informal tools. The capabilities
offered by these tools span the software lifecycle from requirements capture and
validation, to design and verification, and eventually system integration and
testing. At SRI, we have been developing a framework for software assurance
called the Evidential Tool Bus (ETB) [5]. The ETB middleware can be used
to integrate external tools through tool wrappers, to define workflows, and to
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collect claims and evidence in support of a well-defined argument. The Datalog
fragment of Horn clause programming is at the core of ETB. Datalog is used as
the metalanguage, both for scripting workflows that incorporate multiple tools,
and for representing assurance arguments. ETB differs from other application
of Datalog in some subtle but significant ways. Since we are using Datalog for
developing assurance cases, it is important to capture the semantic details of the
language in a rigorous manner. We outline the semantic peculiarities of ETB
Datalog and define an abstract machine for the evaluation of Datalog programs
in the context of a distributed computation.

Workflows for software assurance involve semi-formal steps for validation,
testing, and hazard analysis; formal steps for verification, synthesis, and test
generation; and informal steps such as checklists and human inputs. From the
viewpoint of assurance, the end result of such a workflow must be a certifiable
assurance case consisting of claims supported by arguments and evidence. Many
verification workflows involve multiple tools: type checkers, static analyzers, SAT
and SMT solvers, interactive and automated theorem provers, and symbolic
and explicit-state model checkers. The tools and inference rules used in the
argument must be expressly qualified for use in the assurance case. Each of the
different tools might work only with certain languages and representations, so
that translations between different representations will also be a key part of the
workflow. An assurance case constructed from the workflow is a collection of
artifacts (files, properties, metrics, etc.) along with claims about these artifacts,
and arguments in support of these claims. For the purpose of certification, it
is desirable that arguments representing the assurance case be replayable. It
should also be possible to maintain the argument against changes to inputs
(e.g., requirements) as well as modifications to the tools.

The Evidential Tool Bus framework has been outlined in an earlier paper [5].
We summarize the key points below. ETB is a distributed framework for tool
integration. An ETB installation is a network of ETB servers as shown in Fig-
ure 1, where each server can offer specific services. ETB uses Datalog as the
scripting language for defining workflows as well as the metalanguage for build-
ing arguments. Services are packaged as Datalog predicates. Each ETB server
runs a Datalog engine that can be used to implement workflows integrating dif-
ferent services. The claims are maintained together with their proofs. A service
is associated with a Datalog predicate by means of a wrapper. For example,
the Yices SMT solver can be offered as a service through the Datalog predicate
yices(F, S,M), where the variable4 F represents a file containing a formula in
the Yices input language, S is the result, sat or unsat, of the satisfiability check,
and M is the model when S is sat. If a.ys is a Yices file containing a formula,
then the query yices(a.ys, S,M) invokes the Yices solver to bind the variables
S and M .

A workflow is defined as a Datalog program consisting of Horn clauses. For
example, a workflow that generates a test input from a formula in a file F and
executes it on a program P can be defined by the Horn clause below, where

4 As is conventional in logic programming, identifiers starting with uppercase letters
are variables.
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A :− B,C,D represents the clause (B ∧ C ∧D) =⇒ A.

gentest(F, P,Result) :− yices(F, S,M), equal(S, sat), test(P,M,Result)

If a.ys is a file defining a Yices formula and b is a file containing a program, then
gentest(a.ys, b, Result) executes the workflow on these files and binds the test
results to the variable Result. A query is invoked by a client and is evaluated
by a Datalog engine at a server in the ETB network. The server can invoke
services that are available at other nodes in the network. The gentest query
above is evaluated at a specific server, but might use the yices service at a
remote server by copying the input files to the remote server and copying back
any files representing the results.

Clients
Clients

Git Server Git Server

Git Server
Git Server

Link

Clients
Clients

Server Server

Server Server

Fig. 1. The ETB Client-Server Architecture

The Datalog variant used in ETB serves as an integration language for a
distributed network of services. It is also used as a representation language for
assurance arguments that build in calls to certain trusted services. External
services are invoked through queries with external predicates such as the yices
predicate. Such invocations are operationally quite similar to the evaluation of
internal predicates, e.g., gentest, in the sense that the evaluation step returns a
(possibly empty) set of clauses whose head atoms are instances of the query atom.
This leads to a richer notion of external predicates than the traditional built-
in predicates in Datalog. Furthermore, the similarity between the evaluation of
internal and external predicates yields a somewhat uniform denotational and
operational semantics for the Datalog variant used in ETB.
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There is a large volume of work on Datalog related to its use in Databases.
This work has its origins in a workshop on Logic and Data Bases organized by
Gallaire and Minker [6]. Details of the use and implementation of Datalog as
a programming language are covered in the book Foundations of Databases by
Abiteboul, Hull, and Vianu [1], and in several survey articles [3,7,8]. Our focus
here is on Datalog extended with a specific mechanism for service invocation that
is richer than the interpretation of built-in predicates. We present the semantics
of this version of Datalog that is suitable for use in the ETB framework. The
abstract machine we present employs tabling to memoize the computation of
repeated subgoals, and the presentation here is somewhat related to the abstract
machine for tabled Datalog defined by Sagonas and Swift [10].

We describe the peculiarities of ETB Datalog in Section 3. We then present
the semantics of ETB Datalog in Section 4. Concluding observations and future
work are presented in Section 6.

2 A Brief Overview of Datalog

Though Datalog was first introduced as a deductive language for defining database
queries, it has found applications in a number of other areas such as declarative
networking [9], static analysis [12], distributed computing[2], and parallel pro-
gramming [4]. The core of Datalog is a Horn clause programming language where
the terms are either variables or constants. Typical applications of Datalog em-
ploy a fragment that includes a notion of negation, but we restrict ourselves to
the positive fragment.

The Datalog language is specified relative to a set of constants C, a set of
variables V , and a set of predicates Σ, where each predicate has an arity. An
atom is of the form p(a1, . . . , an), where p is an n-ary predicate in Σ, and each
ai is a term, i.e., either a variable in V or a constant in C. A ground atom is an
atom that contains no variables. A rule is of the form A :− Q, where A is the
head atom of the rule, and the body Q is a (possibly empty) sequence of atoms
A1, . . . , An. The set of variables occurring in the head A must be a subset of
those occurring in the body Q. A program R is a set of rules. A predicate p is
defined in R by the set of rules in R of the form p(a1, . . . , an) :− Q.

For example, the program below defines a sibling relation given the father
and mother relations. The parent relation is defined as the union of the father
and mother relations.

sibling(X,Y ) :− parent(Z,X), parent(Z, Y )

parent(X,Y ) :− father(X,Y )

parent(X,Y ) :− mother(X,Y )
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A Datalog program will contain both rules, such as the definitions shown
above, as well as facts which are just ground atoms such as

father(joe, bill)
mother(mary, joe)
father(jim,mary)
father(jim, bob)

Informally, a Datalog program R consisting of rules and facts entails a set
of ground atoms H, i.e., every atom in H holds in every model of R. A query
is a negated atom of the form ¬p(a1, . . . , an). The answers to such a query
are the ground instances of p(a1, . . . , an) in H, namely, the refutations of the
query. For example, if the query is ¬sibling(mary, x), then the answers are
sibling(mary,mary) (which is counterintuitive, but what the definition implies)
and sibling(mary, bob).

The definition of the sibling relation can already be formulated in first-order
logic, but Datalog can also capture recursive definitions that are not expressible
in first-order logic. The ancestor relation can be given the recursive Horn clause
definition shown below.

ancestor(X,Y ) :− parent(X,Y )

ancestor(X,Y ) :− parent(Z, Y ), ancestor(X,Z)

For example, the query ¬ancestor(X, bill) yields the answers

1. ancestor(joe, bill)
2. ancestor(mary, bill)
3. ancestor(jim, bill)

3 Datalog as used in ETB

As a metalanguage for ETB, Datalog offers a simple semantic framework for
expressing claims, composing arguments, and defining workflows that direct the
flow of information and work to and from the external tools. For example, the
following ETB Datalog program generates all the satisfying assignments for a
Boolean formula.

sat(F,M) :− yices(F, S,M), equal(S, sat)

unsat(F ) :− yices(F, S,M), equal(S, unsat)

allsat(F,Answers) :− sat(F,M),
negateModel(F,M,NewF ),
allsat(NewF, T ),
cons(M,T,Answers)

allsat(F,Answers) :− unsat(F ), nil(Answers)

The query ¬yices(f, S,M) triggers the invocation of the Yices SMT solver
on the Yices formula in the file corresponding to the file handle f to return the
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result sat or unsat binding S. In the latter case, the model M is irrelevant and is
bound to the Yices formula false. In the former case, the variable M is bound to
the model which is given as a Yices formula that is a conjunction of literals. The
program for the predicate allsat invokes the Yices solver to compute a model M
for the formula in the file f . Its negation is conjoined with the formula in F and
placed in a new file with the handle NewF . The allsat procedure is repeated on
NewF until the formula becomes unsatisfiable. The list of all the assignments is
bound to the variables Answers. Note that even the list operations of binding
Answers to nil and the pairing operation cons(M,T,Answers) are implemented
as external calls.

Let f be the file handle for the file containing the input Yices formula. A goal
query, e.g., ¬allsat(f,Answers) is evaluated with respect to a set of rules by
means of backward chaining. The goal is resolved with all the program clauses
where allsat is the head predicate, i.e., the predicate of the head atom. There
are two such clauses. In both cases, unification binds the variable F with the file
handle f . The leading atoms of the body, namely, sat(f,M) and unsat(f), then
become new goals. Backward chaining on these goals leads to the evaluation of
yices(f, S,M). Although the subgoal yices(f, S,M) occurs twice in the evalu-
ation, it is only evaluated once. If Yices finds the formula in the file (handle)
f to be satisfiable, then it binds S to sat and M to the resulting model which
we can label as m1. Since the evaluation of unsat(F ) returns no bindings, we
can terminate the evaluation of the second clause in the definition of allsat.
The evaluation of the body of the first clause continues with the evaluation of
negateModel(F,M,NewF ). This creates a new file where the contents of the file
handle f have been augmented with the assertion of the negation of the formula
corresponding to model m1. The allsat program is now evaluated recursively
on this new file. The answer m1 is added to the list of assignments m2, . . . ,mn

returned by the recursive evaluation.

The bulk of the computation is carried out by these external tools. Predicates,
like yices, that invoke external tools are called interpreted or external predicates.
They are similar to built-in predicates in Datalog. However, built-in predicates
are usually invoked on ground arguments whereas the invocation in ETB of an
interpreted predicate will involve binding the variables to zero or more bindings.
The typical evaluation of a query involving an interpreted predicate, such as yices
will return at most one binding, but there are predicates that can return multiple
bindings. Another difference with built-in predicates is that the evaluation of an
interpreted predicate can generate further queries. For example, an interpreted
query for computing a definite integral of a function over an interval using Risch’s
algorithm might return a result with the qualification that the function must
be defined and continuous over the interval. Queries returned by the external
procedure can be used to guard the answers with side conditions or reflect the
case analysis in the computation.

We employ standard mathematical notation in presenting the details of ETB
Datalog. The metavariables a and b range over Datalog terms, i.e., variables and
constants. The metavariable p ranges over Datalog predicates, the metavariable
A ranges over atoms, and Q ranges over conjunctions of atoms. In running text,
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a clause is bracketed for ease of reading and is represented as A :− Q, with head
A and body Q.

The Datalog variant used in ETB has several distinctive features:

1. The basic evaluation scheme is backward chaining on rules through resolution
with queries. The body literals in the rule are evaluated through backward
chaining, left-to-right order. This order of evaluation is significant. Backward
chaining is needed to ensure that only the relevant external predicate calls
are evaluated. The left-to-right order of evaluation on the body of a rule
ensures that external predicates are not evaluated until their preconditions
have been verified. For example, it does not make sense to invoke the PVS
prover on a formula that has not yet been typechecked.

2. As in tabled evaluation [10], the searches are memoized to avoid repeated
computation.

3. An external predicate corresponds to a service that might be available only
from specific servers. In order to provide this service, the corresponding
server has one or more wrappers associated with the predicate. Each wrapper
covers a specific mode for the predicate. The modes specify the arguments to
the predicate that are provided as inputs, and some subset of the remaining
arguments might be computed through the evaluation of the wrappers. For
example, the invocation of the yices predicate has the mode 〈+,−,−〉 in the
allsat program.

4. Though the external calls can return multiple bindings (i.e., substitutions)
for the outputs, most wrappers are expected to return at most one bind-
ing. This means that we can adopt a Prolog-style, tuple-at-a-time mode of
evaluation rather than computing with sets of tuples.

5. External calls can generate further queries. This means that the evalua-
tion of an external call, e.g., p(a1, . . . , an) can return clauses of the form
p(b1, . . . , bn) :− Q. Most implementations of Datalog restrict external calls
to ground atoms, i.e., atoms of the form p(b1, . . . , bn) for ground terms
b1, . . . , bn.

6. The evaluation of Datalog queries relative to a program returns a set of
claims. Each claim is supported by a derivation or a proof. The derivation
should be replayable, and it should be possible to identify the evidence arti-
facts such as files (and file contents) that are used in the derivation.

7. For the purpose of developing an assurance argument, we can restrict the
external predicates and Datalog rules that are sanctioned for use in the
construction of a derivation.

8. Query evaluation is distributed in the sense that the evaluation of external
calls can take place at a remote ETB server. This means that the evaluation
must be asynchronous — at any given point in the computation, a server
can be awaiting results from multiple external calls. In some cases, a service
might fail during evaluation or might only become available after a delay.

The above features of ETB Datalog require special treatment that are not
offered by existing implementations of Datalog. We present the semantics of
ETB Datalog and describe an abstract machine that captures the evaluation of
Datalog queries in this framework.
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4 Semantics of ETB Datalog

The semantics of the Datalog language can be given by a traditional first-order
structure M that maps each element c of C to an element c in the domain |M |,
and each n-ary predicate to a subset of the set |M |n of the n-tuples from |M |.
The meaning of a rule set R can be given by a set H of ground atoms such that
for any model M of R: M |= A for A ∈ H. In this case, we say R |= A. Given a
goal query ¬p(a1, . . . , an) and a rule set R, a Datalog computation should return
the set of valid ground instances of the goal query, i.e., those atoms A that are
instances of p(a1, . . . , an) such that R |= A.

One way to check R |= A is by computing the minimal Herbrand model
for R. This is done starting with H0 as the empty set. Each successive Hi+1 is
computed by closing under the application of rules from R so that

Hi+1 = {B̂|B̂ = σ(B) for ground B̂, σ(Q) ⊆ Hi, B :− Q ∈ R}.

Then H = Hi for the least i such that Hi = Hi+1. It can be checked that R |= A
iff A ∈ H. Note also that for a given R, the set H is finite, even if the set of
constants C is infinite.

An operational way to compute the valid ground instances of the goal query is
through depth-first backward search. We introduce the operations of substitution
and unification as a prelude to the operational semantics. A substitution σ is a
partial map from variables in V to terms, e.g., [v1 7→ a1, v2 7→ a2]. For such a
partial map, σ(x) = a if σ maps x to a, and σ(x) = x, otherwise. A substitution
σ can be applied to an atom A as σ(A), a rule body Q as σ(Q), or a rule K as
σ(K). In each case, the result is obtained by substituting σ(x) for each occurrence
of a variable x. A substitution σ is at least as general as another substitution
σ′ if σ(x) = σ′(x) whenever σ(x) is defined. An atom A is an instance of an
atom B if there is a substitution σ such that σ(B) = A. Conversely, B is said
to be a generalization of A. A substitution σ is at least as general as another
substitution σ′ if σ(A) is at least as general than σ′(A), for any atom A. A
substitution σ is a unifier of two atoms A and B if σ(B), i.e., the unification,
is an instance of A. We have given an asymmetric definition of unification so
that we can avoid renaming the variables in A and B apart. A substitution σ
is the most general unifier of two atoms A and B if it yields a unification σ(B)
that is at least as general as the unification resulting from another unifier. The
operation mgu(A,B) is the most general unifier of A and B when it exists, and
is ⊥, otherwise.

Unification is used to compute DR(A), the valid ground instances of A given
the rule set R. It is defined mutually recursively with the operation DR(Q) that
computes the valid ground instances of a sequence of atoms Q. We define DR(Q)
as

DR(A,Q) = {A′, Q′|A′ ∈ DR(A), σ(A) = A′, Q′ ∈ DR(σ(Q))},

and DR(ε) = ε, where ε is the empty sequence. Let R(A) be the set of clauses
{σ(B :− Q)|B :− Q ∈ R, σ = mgu(A,B) 6= ⊥}. We can complete the mutual
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recursion by defining DR(A) as

{B′|B :− Q ∈ R(A), Q′ ∈ DR(Q), σ(Q) = Q′, B′ = σ(B)}.

The sets DR(A) and DR(Q) are finite and contain all and only the ground
instances of A and Q, respectively, that are valid in R.

In ETB, we also include an external oracle E that interprets the external
predicates, which we take as any predicate that is not defined in R.5 With exter-
nal predicates, we give up the property that there is a finite Herbrand model. For
example, if we have an external predicate successor such that successor(0, Y )
returns the binding of 1 to Y , and successor(K,Y ) is the successor of the nu-
meral K, then we can write a Datalog program that computes all of the natural
numbers:

nat(0)

nat(X) :− nat(Y ), successor(Y,X)

We can in fact recover the full power of Prolog through external oracles that
perform unification.

Examples of atoms in external predicates can range from simple built-in
operations such as less(x, y) and subrange(low , high, i) to wrapper calls such as
yices(f, S,M). The interpretation E(p(a1, . . . , an)) for an atom is performed by
a wrapper. For example, the evaluation of the external predicate

yices(filename.ys, s,m)

invokes a wrapper that executes the Yices SMT solver on the input from the file
filename.ys, and binds the result, sat or unsat, to the variable s, and a model,
if one exists to the variable m. In general, the interpretation E(p(a1, . . . , an))
returns a (possibly empty) list of clauses where each clause has the form

p(b1, . . . , bn) :− Q.

The head atom p(b1, . . . , bn) must be an instance of the query atom p(a1, . . . , an),
and the variables in the head must also occur in the body. Most Datalog variants
admit only a limited interpretation of external predicates where the queries must
be fully grounded, whereas in ETB, we allow a more liberal and expressive
interpretation of external predicates that allows further queries to be spawned.
This interpretation also makes the behavior of E and R similar with respect to
the operational semantics.

Each external predicate can be evaluated under one or more modes. An n-
ary mode for an n-ary predicate is a sequence of symbols length n, where each
symbol is either + or −. The positions marked by + are the input arguments for
the predicate, and these have to be grounded in the query, whereas the positions
marked − are the outputs that are bound during the evaluation of the query. For

5 We disallow the possibility of a predicate being defined both in R and E since in
our semantics, the same effect can be achieved solely through external oracles.
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an atom p(a1, . . . , an), mode(p(a1, . . . , an)) is the sequence m1, . . . ,mn, where
each mi is either + or −, and ai is a variable exactly when mi is −. An external
predicate might have wrappers associated only with specific modes. For example,
the query subrange(0,High, 3) is not sensible since the set of bindings for High
is infinite. Similarly, yices(F, unsat,M) should not have a wrapper associated
with it since it requires finding a file containing an unsatisfiable formula, and
there could be unboundedly many such files.

There is a partial ordering on the modes of an external predicate so that one
mode is narrower than another if the set of input arguments of the first mode
is a superset of the set of input arguments of the second mode. If a mode is
interpretable for an external predicate, then any narrowing of this mode obtained
by turning outputs arguments into input arguments must also be interpretable.
This can be satisfied by interpreting p with a more general mode, i.e., one where
some of the input arguments are outputs, and filtering the results relative to the
additional input arguments. For example, to compute E(p(c1, . . . , cn)), we can
instead compute E(p(a1, . . . , an)), where each ai is either ci or a fresh variable
vi. The resulting clauses can then instantiated and filtered so that the head atom
is always an instance of p(c1, . . . , cn). This ensures, for example, that it is always
possible to invoke an external call on a fully grounded atom.

The wrappers for the different modes of an external predicate have to be
compatible, so that even if there are multiple wrappers for p that can be used to
compute E(p(a1, . . . , an)), the set of clauses returned is the same. In ETB, we
do not check the compatibility of the wrappers for a given external predicate.
Instead, we assume that every external predicate has a wrapper for the fully
grounded mode, i.e., one where all the arguments are inputs. This is the only
wrapper that needs to be trusted since it will be used to check the arguments
associated with the final set of claims.

Herbrand models do not make sense for external oracles since new constants
can be generated when an oracle is invoked. We can instead construct a relatively
closed Herbrand model where an oracle generates a set of ground external atoms
Ω and E[Ω] is

⋃
{E(A)|A ∈ Ω}. Then, a ground atom A is a consequence of

R and E (relative to the oracle Ω) if R ∪ E[Ω] |= A. The minimal Herbrand

model can be constructed by defining H0 as the empty set and Hi+1 = {B̂|B̂ =

σ(B) for ground B̂, σ(Q) ⊆ Hi, B :− Q ∈ R ∪ E[Ω]}. We can then say that the
ground atom A is a consequence of R and E if for some set of ground external
atoms Ω, A is a consequence of R ∪ E[Ω]. The abstract machine in Section 5
defines a specific set Ω from which Herbrand models can be constructed.

The model-theoretic semantics and the minimal Herbrand model do not yield
effective operational methods for computing the set of answers to a query relative
to a rule set R and an external oracle E. In the next section, we present an
abstract machine for answering Datalog queries.

5 An Abstract Machine for ETB Datalog

We define an abstract machine for the ETB Datalog engine and argue for its
correctness relative to the semantics given in the previous section. The engine
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evaluates a goal query of the form ¬p(a1, . . . , an) against a set of rules R and
external oracle E. The goal is to return all and only those ground instances of
p(a1, . . . , an) that are entailed by the rules R together with the external oracle
E.

In order to easily check for equality, all the expressions are maintained in nor-
malized form so that variables are ordered by occurrence so that vi names the i’th
distinct variable occurring in the expression. For example, the atom p(X, c1, Y ) is
normalized as p(v1, c1, v2). Similarly, a clause p(X, c1, Y ) :− p(X, c2, Z), p(Z, c3, Y )
is represented as p(v1, c1, v2) :− p(v1, c2, v3), p(v3, c3, v2).

5.1 An Abstract Inference System

We can first capture the Datalog computation as an abstract inference sys-
tem [11]. For this we define a logical state is a pair 〈G, J〉, where

1. The set G consists of goals so that G is {¬A1, . . . ,¬An}
2. The set J consists of clauses of the form B :− Q or of the form B, where
Q is a nonempty list of atoms. A claim is a clause of the form B in J . It
must be ground because of the condition that any variables in the head must
occur in the body, and the body here is empty.

In each inference step, we perform one of the following steps:

1. Backchain: For a clause of the form B :− A1, . . . , An in J , we add the goal
¬A1 to G if it is not already in G.

2. Resolve: For a goal ¬A in G and clause B :− Q in R, we add a new clause
K to J , where σ = mgu(A,B) 6= ⊥ and K = σ(B :− Q).

3. External: For a goal ¬A in G where A is an external atom and a clause K
in E(A), we add a new clause K to J .

4. Propagate: For a clause in J of the form B :− A,Q and another clause
in J of the form A′, with σ such that σ(A) = A′, we add the new clause
σ(B :− Q) to J .

The initial logic state consists of G = {¬A} where ¬A is the initial goal. The
inference procedure terminates when no further inference steps can be applied,
i.e., when the logic state is irreducible. The result of the computation is the set
{B ∈ J |σ(A) = B}.

The abstract inference system described here is sound and complete with
respect to the semantics given above. Given an irreducible state 〈G, J〉, the set
Ω is the set of all claims of the form {B ∈ J |B is an external atom}. Then, each
claim in J is a consequence of R ∪ E[Ω]. Additionally, for an initial goal ¬A,
expanding Ω does not add any new claims of the form B to J where B is an
instance of A.

5.2 An Abstract Machine

The abstract inference system above captures the basic idea of using resolution
to compute with Datalog programs, but it has a major source of inefficiency.
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The logic state is not suitably indexed so that the number of steps for finding an
applicable inference step can be quadratic in the number of formulas in the state.
The number of formulas can itself be exponential in the size of the universe. We
can improve the performance of the abstract machine through better indexing
and structuring.

Another problem with the abstract inference system is that our Datalog
engine works in a distributed setting where new queries can be added from
other nodes in the network. In this case, we might be done processing one goal
query but the state might not be irreducible because other goals are still being
processed. A termination check is needed to determine if a goal has been fully
processed and all of the associated claims have been generated.

We modify the inference system to address these drawbacks. In the extended
system, the state now consists of goal nodes G, clause nodes J , and an index
T . The goal and clause nodes are enriched with annotations. Each entry g in G
now consists of

1. Literal: The actual goal literal.
2. Parents: A set of the clauses in J from which the goal originated. This entry

can be empty if the goal was introduced at the top level. Note that a goal
can have multiple parents.

3. Index: The index that uniquely identifies a goal node. The Index slot is used
in timestamps for checking termination.

4. Claims: A sequence of claims, i.e., clause nodes j where j.Clause is of the
form B, instantiating the goal.

5. Children: The set of clause nodes obtained by applying R or E to the Atom.
6. Status: Open, Resolved, Closed, or Completed.6

Each entry j in J consists of

1. Clause: The actual clause corresponding to the entry.
2. Goal: The parent goal in G from which the clause node originates.
3. Subgoal: A pointer to the subgoal in G generated from the clause. This slot

could be empty. If j.Clause is of the formB :− A,Q, then the j.Subgoal.Literal
is ¬A. Furthermore, j.Subgoal.Parents contains j.

4. Subclause: A set of clause nodes that are derived by propagating from j.
5. SubgoalIndex: The number of claims corresponding to the subgoal that have

already been propagated. It is initially zero when node j is created and is
bumped up by one for each claim that is propagated from the subgoal.

We say that one goal h is an immediate subgoal of another goal g if there is
some j such that j.Goal = g and j.Subgoal = h. The inference steps can now be
rewritten to operate on the annotated logic state.

1. Backchain: For a clause node j in J with j.Clause of the form B :−
A1, . . . , An, where j.Subgoal is empty,

6 In the implementation, a goal may also be Stuck if there is neither a rule nor a
wrapper associated with it. This can happen, for example, if the server providing
the wrapper is temporarily unavailable.
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(a) If there is already a goal node g in G with g.Atom slot of the form ¬A1,
we add j to g.Parents and set j.Subgoal to g and j.SubgoalIndex to 0.

(b) Otherwise, if there is no goal node g in G with g.Atom of the form ¬A1,
we create a new goal node g′ so that

i. g′.Literal is ¬A1,
ii. g′.Parents is {j},

iii. g′.Index is T + 1,
iv. g′.Claims is the empty sequence,
v. g′.Status is Open.

All the other fields of g are left empty, and the global time parameter T
in the state is incremented by one.

2. Resolve: For a goal node g in G with g.Status = Open, and g.Literal = ¬A,
and each clause B :− Q in R, we add a new clause node j to J , where
j.Clause = K = σ(B :− Q) with σ = mgu(A,B) 6= ⊥, j.Goal = g, and
j.SubgoalIndex = 0, with all the other fields empty. We also set g.Status to
Resolved.

3. External: For a goal node g in G with g.Status = Open, and g.Literal =
¬A, and for each clause K returned by E(A), where g.Literal = ¬A,
we add a new clause node j to J , where j.Clause = K, j.Goal = g, and
j.SubgoalIndex = 0, with all the other fields empty. We also set g.Status to
Resolved.

4. Propagate: For some goal node g and for some clause node j′ in g.Parents,
where j′.Clause is B :− A,Q and j′.SubgoalIndex is smaller than the length
of g.Claims,
let j = g.Claims[j′.SubgoalIndex] with j.Clause of the form A′, we create
a clause node j′′ with

(a) j′′.Clause set to σ(B :− Q) where A′ = σ(A),
(b) j′′.Goal set to j′.Goal, and
(c) j′′.SubgoalIndex set to 0.

Also, add j′′ to j′.Subclause, set j′′.Subclause to the empty set, and incre-
ment j′.SubgoalIndex by one.

5. Claim: For a clause j where j.Claim is of the form B, we add j to the
end of j.Goal.Claims unless B is already present as j′.Claim for some j′

in j.Goal.Claims. We assume that this step is done immediately after a
Propagate, Resolve, or External step whenever a claim is generated.

The abstract machine is initialized with a single initial goal node g with
g.Literal = ¬A with g.Index = 1 and with T = 1. The evaluation is terminated
when no rule is applicable. In the next subsection, we augment the abstract
machine with support for detecting termination. The key modifications in the
machine defined above are

1. The clauses in J are no longer maintained as a set. This is to simplify the
termination check.

2. The Propagate step does not scan all the claims but is instead triggered
by the addition of a claim to the goal.
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5.3 Abstract Machine with Termination Check

The abstract machine with the inference steps Backchain, Resolve, External,
Propagate, and Claim is a refinement of the abstract inference system in
Subsection 5.1. However, it lacks a way of checking that a subgoal g has been
fully evaluated, i.e., no further claims can be added to g.Claims. There is a
simple but impractical way to do this that is already implicit in the abstract
inference system: if the computation is stuck so that no further inference steps
can be applied, then the computation has terminated. This only works if we are
evaluating a single query in a sequential setting. However, ETB is a distributed
system where the Datalog engine is evaluating many queries simultaneously and
these computations could be sharing subgoals. Some of these subgoals might be
fully evaluated even while new queries are being added and other parts of the
computation have only be partially completed. A global termination check will
not work in this context. We still need a termination check so that completed
subgoals can be garbage collected.

Checking termination is not straightforward since the evaluation graph con-
sisting of goal and clause nodes can contain cycles. Swift and Sagonas [10] inter-
leave the evaluation with a check for strongly connected components (SCCs) to
identify the fully evaluated nodes. We present a more fine-grained method for
checking termination that can be run alongside the normal evaluation. For this
purpose, we augment the state of the goals g with

1. A map g.T from goals to sets of clauses such that g.T (h) is nonempty only
when h is an immediate subgoal of the goal g, and g.T (h) is the set of clauses
{j|j.Goal = g ∧ j.Subgoal = h}.

2. A partial map g.D from goals to a number so that g.D(h) is defined only
when h.Index < g.Index and h is not closed. The entry g.D(h) is the number
of claims from h that have been fully propagated in the derivation rooted
at g. This means that every sub-derivation of g has propagated at least k
claims from h for k = g.D(h). The partial map g.D contains the unclosed
subgoals of g at the point when the Close rule (defined below) is applied.

3. A slot g.Unclosed which, when defined, is the maximal index of an unclosed
subgoal h of g such that h.Index < g.Index. In particular, g.Unclosed is
defined when g is closed, and it is the maximal index of a goal h such that
g.D is defined.

We modify the Backchain step of the abstract machine so that whenever
it is applied to a clause j to set j.Subgoal to h, we also add j to g.T (h), where
g = j.Goal.

Define min(i1, i2) for two possibly undefined numeric values i1 and i2 as

1. undefined, if both i1 and i2 are undefined
2. i1, if i2 is undefined or i1 ≤ i2, and
3. i2 if i1 is undefined or i2 < i1.

For a set of indices I, min(i, I) is i if I is empty, or it is the minimal index in
{i}∪ I. If I is a nonempty set of indices, then min(I) is the minimal index in I.
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Close: The Close rule performs a step in the termination check computation.
We say that g is closed if g.Status is Closed or Completed. When g.Status =
Closed, then the only way a new claim can be added to g is if it is the result of
adding a new claim to some subgoal h of g such that h.Index < g.Index. When
g.Status = Completed, then no further claims can be added to g.

The Close rule is applied to a goal g where

1. g.Status ∈ {Resolved, Closed}, and for all j ∈ g.Children, j.Clause is a
claim or j.Subgoal has been set. This ensures that the immediate children
of g are either claims or have generated subgoals. Note that the Backchain
rule registers a subgoal in g.T as soon as it is generated.

2. For all h we check that either g.T (h) is empty, h.Index ≤ g.Index, or
h.Status is Closed and h.Unclosed ≤ g.Index when h.Unclosed is defined.
In the latter two cases, we also check that for all j in g.T (h), j.SubgoalIndex =
|h.Claims| and for all j′ ∈ j.Subclause, either j′.Clause is a claim or
j′.Subgoal has been set. This check ensures that we have a complete set
of subgoals that have propagated all their claims, and the resulting clauses
have also generated their subgoals (if any).

When this check is valid for a goal g, we compute the value of g.D(h) for h
such that h.Index < g.Index. We first compute for any h such that h.Index ≤
g.Index, the set

τ(g)(h) = {h′.D(h)|h′ is closed, g.T (h′) is nonempty, h′.D(h) is defined}.

If τ(g)(g) is either empty or min(τ(g)(g)) = |g.Claims|, then we mark g.Status
as Closed and then set g.D(h) as below for unclosed h such that h.Index <
g.Index. If g.T (h) is nonempty, g.D(h) is set to min(|h.Claims|, τ(g)(h)). Oth-
erwise, we set g.D(h) to min(τ(g)(h)). In any remaining case, g.D(h) is unde-
fined. Note that because of the way that τ is computed, g.D(h) is defined only
when h is not closed and h.Index < g.Index.

Once g.D is set, we can recompute g.Unclosed as the maximal unclosed h
such that g.D(h) is defined. If g.D is everywhere undefined, then g.Unclosed is
also undefined. The information that g is closed needs to be propagated to any
goal node h such that h.Unclosed = g, and this happens when the Close rule
is applied to h.

Complete: The rule Complete marks nodes as completed. If for some g,
g.Status is Closed then g.Status can be set to Completed if either

1. g.D(h) is everywhere undefined, or
2. For some goal h such that g is an immediate subgoal of h, h.Status =
Completed. Recall that g is an immediate subgoal of h when for some j in
g.Parents, j.Goal = h.

5.4 An Example

We illustrate the abstract machine on a simple example using the program in
Figure 2 consisting of clauses C1 through C7.
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C1 black(a, b)
C2 white(b, c)
C3 white(b, a)
C4 blackpath(X,Y ) :− black(X,Y )
C5 blackpath(X,Y ) :− black(X,Z), whitepath(Z, Y )
C6 whitepath(X,Y ) :− white(X,Y )
C7 whitepath(X,Y ) :− white(X,Z), blackpath(Z, Y )

Fig. 2. An Example Datalog Program

The derivation is summarized in the goal table and the clause table in Fig-
ures 3 and 4, respectively. The Backchain rule is implicit in the Parent column
and the Claim rule is implicit in the Claims column of the goal table. The
derivation steps for Resolve and Propagate are marked in the clause table.
are marked in the

Goal Literal Parents Claims Children Status

G1 ¬blackpath(a, Y ) J13 J4, J17, J18 J1, J2 Resolved
G2 ¬black(a, Z) J1, J2 J3 J3 Resolved
G3 ¬whitepath(b, Y ) J5 J10, J11, J19, J20 J12, J13 Resolved
G4 ¬white(b, Z) J6, J7 J8, J9 J8, J9 Resolved
G5 ¬blackpath(c, Y ) J12 J15, J16 Resolved
G6 ¬black(c, Z) J16 Resolved

Fig. 3. The Goal nodes

We can now look at the termination process. The map G6.T is everywhere
empty since it has no immediate subgoals. We can therefore mark it as Closed
with G5.Unclosed undefined, and then mark G6 as Completed since G6.D is
also everywhere undefined.

The map G5.T is only defined at G6 and G5.T (G6) = {J15}. The precon-
ditions of the Close rule hold for G65 since G6.Status is Closed, G6.Unclosed
is undefined, and J15.Subgoals is empty. G5 can therefore be marked as Closed
and Completed, and G5.D is everywhere undefined, and G5.Unclosed is also
undefined.

The map G4.T is also everywhere empty since it has no subgoals, and it can
also be marked as Closed and Completed with G4.D everywhere undefined.

The map G3.T is nonempty on G4, G5, and G1 so that G3.T (G1) = {J13},
G3.T (G4) = {J7}, G3.T (G5) = {J12}. Since both G4 and G5 are closed, we
set G3.D(G1) = 3, leave G3.D undefined on other arguments, and mark G3 as
Closed.
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Node Clause Derivation

J1 blackpath(a, Y ) :− black(a, Y ) Resolve(G1, C4)
J2 blackpath(a, Y ) :− black(a, Z), whitepath(Z, Y ) Resolve(G1, C5)
J3 black(a, b) Resolve(G2, C1)
J4 blackpath(a, b) Propagate(J3, J1)
J5 blackpath(a, Y ) :− whitepath(b, Y ) Propagate(J3, J2)
J6 whitepath(b, Y ) :− white(b, Y ) Resolve(G3, C6)
J7 whitepath(b, Y ) :− white(b, Z), blackpath(Z, Y ) Resolve(G3, C7)
J8 white(b, c) Resolve(G4, C2)
J9 white(b, a) Resolve(G4, C3)
J10 whitepath(b, c) Propagate(J8, J6)
J11 whitepath(b, a) Propagate(J9, J6)
J12 whitepath(b, Y ) :− blackpath(c, Y ) Propagate(J8, J7)
J13 whitepath(b, Y ) :− blackpath(a, Y ) Propagate(J9, J7)
J14 whitepath(b, b) Propagate(J4, J13)
J15 blackpath(c, Y ) :− black(c, Y ) Resolve(G5, C4)
J16 blackpath(c, Y ) :− black(c, Z), whitepath(Z, Y ) Resolve(G5, C5)
J17 blackpath(a, c) Propagate(J10, J5)
J18 blackpath(a, a) Propagate(J11, J5)
J19 whitepath(b, c) Propagate(J17, J13)
J20 whitepath(b, a) Propagate(J18, J13)

Fig. 4. The Clause nodes
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The goal G2 has no immediate subgoals and can be marked as Completed.
The goal G1 has subgoals G2 and G3 as immediate subgoal so that G1.T (G2) =
{J2, J2} and G1.T (G3) = {J5}. The τ definition for G1 has τ(G1)(G1) = 3,
and since τ(G1)(G1) = |G1.Claims|, we can mark G1.Status as Closed, and
since there are no goals with smaller indices, G1.Status can also be marked
as Completed. This is then propagated to G3, so that every goal node is now
marked as completed.

5.5 Correctness

The new abstract machine can be simulated by the abstract inference procedure,
but it is not easy to see why the termination check works. The termination check
marks a goal node as Closed when it has been completely evaluated modulo the
goal nodes with smaller indices. Each closed node also tracks its open subgoals in
g.D along with the minimal number of claims propagated from these subgoals.
The Close step ensures that a goal node is closed only when it is current with
respect to all its immediate subgoals. These subgoals can add new claims but
this has to be initiated by the addition of a claim to an open subgoal. We can
then make the following claims.

Theorem 1. Let g be a goal node with g.Status = Closed and let Pr(g)(h)
represent the number of claims propagated from an immediate subgoal h of g
in the derivation of g at the point when g.Status was last set to Closed. If a
new claim is added to g, then for some subgoal h different from g, |h.Claims| >
Pr(g)(h).

This is because a closed goal node is fully evaluated in terms of propagat-
ing claims from its subgoals and applying the Backchain rule to the clauses
resulting from the propagation. The only way a new claim can be added to g is
through a Propagate step applied to some subgoal of g other than g.

Theorem 2. When a goal node g is marked with g.Status = Closed, its evalua-
tion is complete modulo the evaluation of the goals h such that g.D(h) is defined.

This means that no new claims can be added to g unless there are new
claims (beyond the number recorded in g.D(h)) are added to some goal h such
that g.D(h) is defined. We maintain the invariant that if g.D(h) is defined, then
g.Index > h.Index and h is not closed. If we look at the subgoal relation in the
derivation of g, then the entry g.D(h) is defined for every unclosed subgoal h
of g, and g.D(h) is the minimum number of claims that have been propagated
in the derivation of g. By Theorem 1, the only way g can add a new claim is
if some immediate subgoal propagates a new claim. By induction, the only way
that a claim can be propagated to g is if a new claim is added to some unclosed
subgoal h of g, i.e., one where g.D(h) is defined. Hence, the theorem.

Theorem 3. When a goal node g is marked as completed, no further claims can
be added for it.
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This is because for such a node, g.D is everywhere undefined, and hence by
Theorem 2, it is not waiting on new claims from any other nodes. In fact, such a
node can be seen as the root node of a strongly connected component (SCC) in
the evaluation graph. If every node in the strongly connected component is closed
modulo other completed nodes or other closed nodes in the strongly connected
component, then the entire component has been completely evaluated.

Note that the Close step can be interleaved with other steps in the eval-
uation. It would also make sense to run the Close computation in rounds by
scanning the goals that are not marked as completed from the highest index
downwards.

The implementation of the ETB Datalog engine builds an an Application
Programming Interface (API) that can be used to implement the goals. The
API includes the following operations for adding goal nodes, processing a goal
by either resolving it against the rules or through external evaluation, processing
a clause node, propagating a new claim, and closing the evaluation.

We have thus defined an abstract machine for evaluating Datalog programs
that operates in a distributed setting.

6 Conclusions

The Evidential Tool Bus (ETB) is a framework for defining distributed workflows
that construct claims supported by arguments, where some of the subclaims can
be established by external services. ETB uses a variant of Datalog as the script-
ing language for defining workflows and as the metalanguage for representing
arguments. The main novelty of ETB Datalog is that it enhances the basic Dat-
alog language with external predicates for defining computations that invoke
external services over a distributed network. We have presented a denotational
semantics for ETB Datalog and defined an abstract machine that captures the
evaluation of programs using both internal and external predicates. This ab-
stract machine is the basis for the implementation of the Datalog engine used in
ETB.

The novel contributions of our work include

1. A powerful mechanism for external predicates that incorporates distributed
services.

2. A semantics for Datalog extended with external predicates.
3. An abstract machine that works in a distributed setting.
4. A novel termination check for the abstract machine that indicates when the

evaluation of a subgoal has been completed.

The semantic treatment of ETB Datalog given here is a step toward a richer
language for defining distributed workflows. The semantics we have given works
in a distributed setting where new goals can be added, but the evaluation is still
sequential. The body of a clause is evaluated in left-to-right order even when
there is no dependency. Since we would like to allow the definition of workflows
that exploit parallelism, we are working on extending the language to include
annotations for parallel evaluation.
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