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Abstract. WSML presents a framework encompassing different language vari-
ants, rooted in Description Logics and (F-)Logic Programming. So far, the pre-
cise relationships between these variants have not been investigated. We take the
nonmonotonic first-order autoepistemic logic, which generalizes both Descrip-
tion Logics and Logic Programming, and extend it with frames and concrete do-
mains, to capture all features of WSML; we call this novel formalism FF-AEL.
We consider two forms of language layering for WSML, namely loose and strict
layering, where the latter enforces additional restrictions on the use of certain lan-
guage constructs in the rule-based language variants, in order to give additional
guarantees about the layering. Finally, we demonstrate that each WSML variant
semantically corresponds to its target formalism, i.e. WSML-DL corresponds to
SHIQ(D), WSML-Rule to the Stable Model Semantics for Logic Programs (the
Well-Founded Semantics can be seen as an approximation), and WSML-Core to
DHL(D) (without nominals), a Horn subset of SHIQ(D).

1 Introduction

The Web Service Modeling Language WSML1 [6] is a language for modeling ontolo-
gies and Web services. In this paper we are only concerned with WSML ontologies.
Thus, when referring to WSML in the remainder, we mean WSML ontologies. Refer-
ences to the ongoing work on the semantics of the functional and behavioral description
of Web services can be found in [5].

WSML encompasses a framework of variants based on Description Logics [1] and
(F-)Logic Programming [8, 9, 13]. Each WSML variant has a target formalism: WSML-
Core is based on an intersection of the Description Logic SHIQ(D) and Horn Logic
(without equality), called DHL(D) [10]. WSML-DL captures the Description Logic
SHIQ(D). WSML-Flight is based on the Datalog subset of F-Logic, extended with
(locally) stratified negation, for which the Well-Founded and Stable Model Semantics
correspond [8, 9]. WSML-Rule is based on F-Logic Programming, extended with nega-
tion under the Well-Founded Semantics [8]. WSML-Full extends both WSML-DL and
WSML-Rule towards first-order logic with nonmonotonic extensions.

WSML has two alternative layerings: Core ⇒ DL ⇒ Full and Core ⇒ Flight ⇒
Rule ⇒ Full. For both layerings, WSML-Core and WSML-Full mark the least and
? This work was partially supported by the European Commission under the projects Knowledge

Web (IST-2004-507482), DIP (FP6-507483), and SUPER (FP6-026850).
1 http://www.wsmo.org/wsml/wsml-syntax



most expressive variants, respectively. The original WSML specification [6] did not
demonstrate any semantic properties of this layering, nor did it include a specification
of the semantics for WSML-Full; this was considered an open research topic.

In this paper, we specify an abstract syntax for WSML logical expressions, and
define the WSML variants as subsets of this syntax. In order to give a semantics to
WSML-Full and to investigate the language layering features of WSML, we specify a
novel semantic framework for all WSML variants, based on first-order autoepistemic
logic (FO-AEL) [14, 3], extended with frames [13] and concrete domains [2]. Our ap-
proach to concrete domains is a generalization of the approaches typically followed
in Description Logics [2] and Datalog [19]. We call this extended language FF-AEL.
We define the semantics of each individual WSML variant through an embedding in
FF-AEL. This embedding translates a given WSML description to FF-AEL, and, de-
pending on the language variants, includes a number of sentences which axiomatize the
semantics of certain WSML constructs. As an example, we show the difference in the
treatment of the subclass (subConceptOf ) construct in WSML-DL and WSML-Rule.

A subclass statement is of the form A ::B, where A,B are terms. In F-Logic, this
statement has an intentional (only if) semantics: whenever A ::B is true, then every
instance of A must be an instance of B. In Description Logics, however, subclass state-
ments (of the form A v B) have an extensional (if and only if) semantics: A v B is
true if and only if every instance of A is an instance of B. In order to guarantee the cor-
respondence between WSML-DL and Description Logics, this extensional semantics
needs to be axiomatized. However, such extensional semantics cannot be axiomatized
in a typical rules language such as WSML-Rule, because it would require universal
quantification in the body of a rule, which is beyond the expressiveness of a rules lan-
guage. For example, the following entailment is valid in WSML-DL and WSML-Full
(x :A stands for “x is an instance of A”):

∀x(x :A ⊃ x :B) |= A ::B,
whereas it is not valid in WSML-Rule.

This distinction between intentional and extensional treatment of language con-
structs leads us to the definition of two approaches to language layering in WSML.
When considering loose layering, a variant L2 is layered on a variant L1 if, consid-
ering an arbitrary theory of L1, every L1-formula which is a consequence under L1

semantics, is also a consequence under L2 semantics. When considering strict layering,
additionally every L1-formula which is a consequence under L2 semantics must be a
consequence under L1 semantics. Considering these notions of language layering in the
context of OWL, we observe that OWL Lite and OWL DL are strictly layered, and that
OWL DL and OWL Full are not strictly, but loosely layered (cf. [12]).

It turns out that when considering strict language layering in WSML, certain restric-
tions on the use of ontology modeling constructs (e.g. subclass statements :: ) must be
enforced for the rule-based WSML variants.

In the remainder of the paper we first review the Description Logic SHIQ(D) in Sec-
tion 2. We proceed with our definitions of F-Logic with concrete domains, F-Logic
Programming, and FF-AEL, in Sections 3, 4, and 5. We then proceed to describe the
abstract syntax for WSML variants, and define strict and loose language layering, in



Section 6. We demonstrate the correspondence between the variants and the intended
target formalisms in Section 7. Finally, we conclude the paper in Section 8.

2 The Description Logic SHIQ(D)

The signature Σ = 〈C,D,Ra,Rc,Fa,Fc〉 of a SHIQ(D) [1] language consists of
pairwise disjoint sets of concept (C), datatype (D), abstract role (Ra), concrete role
(Rc), individual (Fa), and data value (Fc) identifiers. SHIQ(D) descriptions are de-
fined as follows, with A a concept identifier, D a datatype identifier, C, C ′ descriptions,
R, R′ role identifiers, S, S′ abstract role identifiers, U,U ′ concrete role identifiers, a, b
individual identifiers, o a data value identifier, and n a non-negative integer.

C, C′ −→ ⊥ | A | C u C′ | ¬C |> nS.C |> nU.D |6 nS.C |6 nU.D

A SHIQ(D) ontology is a set of axioms of the following forms.

C v C′ | S v S′ | U v U ′ | S ≡ S′− | (S)+ | C(a) | S(a, b) | U(a, o) | a = b | a 6= b

Additionally, we have that in number restrictions > nS.C and 6 nS.C, S has to be
simple, i.e., S and its sub-roles may not be transitive (with (S)+ denoting transitivity).

For reasons of space, we do not present the SHIQ(D) semantics here, but refer
to [1]. Given a SHIQ(D) axiom φ (resp., ontology Φ), we denote the FOL-equivalent
of π (resp., Φ) with π(φ) (resp., π(Φ)); by [1] we know that such equivalents exist.

DHL(D) ([10]) is a Horn subset of SHIQ(D), which means that every DHL(D)
ontology is equivalent to a Horn theory. For the complete definition of DHL(D),
see [5].

3 Frame Logic with Concrete Domains

In this section we review F-Logic, following [4], and define a novel extension with
concrete domains, which is similar to, but more general than, the concrete domains
extensions usually considered in Description Logics [2] and Datalog [19].

A language L has a signature of the form ΣL = 〈F ,P,FD,PD〉, with F and P
sets of function- and predicate-symbols, and FD and PD sets of concrete function and
predicate symbols, each with an associated arity n, which is a nonnegative integer; F
and FD (resp., P and PD) are pairwise disjoint. Notice that the symbols in F and P
do not have associated arities.

Let V be a set of variable symbols, disjoint from all sets of symbols in ΣL. Abstract
terms are constructed using symbols from F and V as usual. Concrete terms are con-
structed using symbols from FD and V . Terms are either abstract or concrete terms.
Abstract atomic formulas (atoms) are >,⊥ or are constructed from terms and symbols
in P in the usual way. Concrete atoms are constructed from concrete terms and symbols
in PD. Atoms are either abstract or concrete atoms. Molecules are isa molecules of the
form t1 : t2, subclass molecules of the form t1 :: t2, or attribute value molecules of the
form t1[t2 ³ t3], with t1, t2, t3 terms.

Formulas are constructed in the usual way from atoms and molecules using the
symbols ¬,∧,∨,⊃,≡,∀,∃, ), (, with the difference that abstract quantifiers are indexed



with a (∃a, ∀a) and concrete quantifiers are indexed with c (∃c, ∀c). Finally, variables
quantified using an abstract quantifier (∃a, ∀a) may not occur in a concrete term or
atom.

An interpretation is a tuple I = 〈U,UD,≺U ,∈U , IF , IP , I→→〉. U and UD are dis-
joint non-empty countable sets, called the abstract and concrete domains, ≺U is an
irreflexive partial order over U ∪ UD, and ∈U is a binary relation over U ∪ UD.
We write a ¹U b when a ≺U b or a = b, for a, b ∈ U ∪ UD. For each inter-
pretation holds that if a ∈U b and b ¹U c then a ∈U c. Thus, if b ¹U c, then
{k | k ∈U b, k ∈ U ∪ UD} ⊆ {k | k ∈U c, k ∈ U ∪ UD}. We call the set
{k | k ∈U b, k ∈ U ∪ UD} the class extension of b. Thus, if b ¹U c, then the
class extension of b is a subset of the class extension of c. However, the converse of this
statement is not universally true.

An abstract function symbol f ∈ F is interpreted as a function over the domain
U : IF (f) : U i → U , for every i ≥ 0. An n-ary concrete function symbol f ∈ FD

is interpreted as a function over the domain UD: IF (f) : (UD)n → UD. An abstract
predicate symbol p ∈ P is interpreted as a relation over the domain U ∪ UD: IP (p) ⊆
(U ∪UD)i, for every i ≥ 0. An n-ary concrete predicate symbol p ∈ PD is interpreted
as a relation over the domain UD: IP (p) ⊆ (UD)n. I→→ associates a binary relation
over U ∪ UD with each u ∈ U ∪ UD: I→→(u) ⊆ (U ∪ UD)× (U ∪ UD).

A concrete domain scheme S is a tuple S = 〈US,FS,PS, ·S〉, where US is a
non-empty countable set of concrete values, FS and PS are disjoint sets of concrete
function and predicate symbols, each with an associated nonnegative arity n, and ·S is
an interpretation function which assigns a function fS : (US)n → US to every f ∈
FS and a relation pS ⊆ (US)n to every p ∈ PS. A language L with signature ΣL =
〈F ,P,FD,PD〉 conforms to a concrete domains scheme S = 〈US,FS,PS, ·S〉 if
FD = FS and PD = PS. An interpretation I = 〈U,UD,≺U ,∈U , IF , IP , I→→〉 of L
conforms to S if UD = US, and IF (f) = fS, IP (p) = pS for every f ∈ FS, p ∈
PS, respectively. In the remainder we assume that every language conforms to the
concrete domain scheme under consideration. We illustrate the concept through the
definition of a concrete domain scheme for integers and strings.

Example 1. We define the concrete domain scheme S = 〈US,FS,PS, ·S〉 as fol-
lows: US is the union of the sets of integer numbers and finite-length sequences of
Unicode characters. FS is the union of the set of finite-length sequences of decimal
digits, optionally with a leading minus (-), and the set of finite-length sequences of
Unicode characters, delimited with " (for simplicity, we assume that the character "
does not occur in such strings), all with arity 0. PS consists of unary predicate sym-
bols integer and string, and the binary predicate symbol numeric-equals. The inter-
pretation function ·S interprets (signed) sequences of decimal digits and "-delimited
sequences of characters as integers and strings, respectively, in the natural way; ·S
interprets integer and string as the set of integers and strings; finally, ·S interprets
numeric-equals as identity over the set of integers.

Our approach to integrating concrete domains is a generalization of the usual ap-
proaches to integrating concrete domains in Description Logics [2], as well as exten-
sions such as [17], and Datalog [19] (where they are called built-ins). In DLs, all pred-
icate symbols are sorted (using the sorts abstract and concrete; binary predicates with



the sort abstract× concrete are usually called features) and certain restrictions apply
on the concrete domain schemes in order to guarantee decidability of reasoning and the
existence of effective algorithms. In Datalog concrete predicates are only allowed to
occur in rule bodies, and variables must occur in abstract atoms in the body of the rule;
this guarantees the existence of effective terminating reasoning methods.

A variable assignment B assigns each variable x ∈ V to an individual xB ∈ U ∪UD. A
variable assignment B′ is an abstract (resp., concrete) x-variant of B if xB′ ∈ U ∪UD

(resp., xB′ ∈ UD) and yB′ = yB for y 6= x. The interpretation of a term t in some I
with respect to some variable assignment B, written tI,B , is defined as: tI,B = tB if
t ∈ V , and tI,B = IF (f)(tI,B1 , . . . , tI,Bn ) if t is of the form f(t1, . . . , tn). A variable
substitution β, usually written in postfix notation, is a partial mapping from variable
symbols to ground terms. A variable substitution β is associated with (cf. [3]) a variable
assignment B if for every variable symbol x such that xB = k and there exists a ground
term t such that tI,B = k, then xβ = t′ for some ground term t′ such that t′I,B = k;
otherwise xβ is not defined.

Satisfaction of atomic formulas and molecules φ in I, given the variable assign-
ment B, denoted (I, B) |=f φ, is defined as: (I, B) |=f >, (I, B) 6|=f ⊥, (I, B) |=f

p(t1, . . . , tn) iff (tI,B1 , . . . , tI,Bn ) ∈ IP (p), (I, B) |=f t1 : t2 iff tI,B1 ∈U tI,B2 , (I, B)
|=f t1 :: t2 iff tI,B1 ¹U tI,B2 , (I, B) |=f t1[t2→→t3] iff 〈tI,B1 , tI,B3 〉 ∈ I→→(tI,B2 ), and
(I, B) |=f t1 = t2 iff tI,B1 = tI,B2 .

This extends to arbitrary formulas as follows: (I, B) |=f φ1 ∧ φ2 (resp. (I, B) |=f

φ1 ∨ φ2, (I, B) |=f ¬φ1) iff (I, B) |=f φ1 and (I, B) |=f φ2 (resp. (I, B) |=f φ1 or
(I, B) |=f φ2, (I, B) 6|= φ1); (I, B) |=f ∀ax(φ1) (resp. (I, B) |=f ∃ax(φ1)) iff for
every (resp. for some) B′

a which is an abstract x-variant of B, (I, B′
a) |=f φ1; (I, B)

|=f ∀cx(φ1) (resp. (I, B) |=f ∃cx (φ1)) iff for every (resp. for some) B′
c which is a

concrete x-variant of B, (I, B′
c) |=f φ1. If a variable x is quantified using a concrete

quantifier (∀c, ∃c), x is a concrete variable; otherwise, x is an abstract variable.
Given a concrete domain scheme S, an interpretation I is a model of a formula φ

if I conforms to S and for every variable assignment B, (I, B) |=f φ. A formula φ is
satisfiable if it has a model; φ is valid if every interpretation which conforms to S is a
model of φ. These notions extend to theories Φ ⊆ L in the natural way. A theory Φ ⊆ L
entails a formula φ ∈ L if every model of Φ is also a model of φ.

Contextual FOL is F-Logic without molecules. Classical FOL is contextual first-order
logic in which each function symbol and predicate symbol has one associated arity n,
which is a nonnegative integer. We denote satisfaction and entailment in classical FOL
with the symbol |=.

The following correspondence between SHIQ(D) and F-Logic ontologies is a
straightforward extension of a result in [4]. Given an FOL formula (resp., theory) φ
(resp., Φ), then δ(φ) (resp., δ(Φ)) is the F-Logic formula (resp., theory) obtained from
φ (resp., Φ) by replacing all atoms of the forms A(t) and R(t1, t2), where t, t1, t2 are
terms, with molecules of the forms t :A and t1[R ³ t2], respectively.

Proposition 1. Given a concrete domain scheme S, let Φ, φ be a SHIQ(D) theory
and formula, respectively. Then, Φ |= φ iff δ(π(Φ)) |=f δ(π(φ)).



4 F-Logic Programs

Given a concrete domain scheme S and a language L with at least one 0-ary function
symbol, a rule is of the form

h ← b1, . . . , bm, not c1, . . . , not cn, (1)

where h, b1, . . . , bm, c1, . . . , cn are (equality-free) atoms or molecules, and h is not a
concrete atom. h is the head atom of r, B+(r) = {b1, . . . , bm} is the positive body
of r, and B−(r) = {c1, . . . , cn} is the negative body of r. If B−(r) = ∅, then r is
positive. If every variable in r occurs in an abstract atom in B+(r), then r is safe.
If a variable occurs in a concrete atom, it is a concrete variable; otherwise, it is an
abstract variable. The following rules axiomatize the semantics of subclass molecules:
(∗) x :: z ← x ::y, y :: z, (∗∗) x : z ← x :y, y :: z, and (∗ ∗ ∗) x ::x, where (*)
axiomatizes transitivity of the subclass relation; (∗∗) axiomatizes inheritance of class
membership; and (∗ ∗ ∗) axiomatizes the fact that every class is a subclass of itself2.
A normal F-Logic program P is a set of rules of the form (1) which includes the rules
(∗, ∗∗, ∗∗∗). If every rule r ∈ P is positive (resp., safe), then P is positive (resp., safe).

The Herbrand base of L is the set of ground atomic formulas and molecules of L.
Subsets of the Herbrand base are called Herbrand interpretations.

The grounding of a logic program P , denoted gr(P ), is the union of all possible
ground instantiations of P , obtained by replacing each abstract (resp., concrete) variable
in a rule r with a ground (resp., ground concrete) term of L, for each rule r ∈ P .

Let P be a positive program. A Herbrand interpretation M of P is a model of P if
M conforms to S, > ∈ M,⊥ /∈ M , and, for every rule r ∈ gr(P ), B+(r) ⊆ M
implies H(r) ∩M 6= ∅. A Herbrand model M is minimal iff for every model M ′ such
that M ′ ⊆ M , M ′ = M .

Following [9], the reduct of a logic program P with respect to an interpretation M ,
denoted PM , is obtained from gr(P ) by deleting (i) each rule r with B−(r) ∩M 6= ∅,
and (ii) not c from the body of every remaining rule r with c ∈ B−(r). If M is a
minimal Herbrand model of PM , then M is a stable model of P .

If P is a positive logic program, then the corresponding Horn F-Logic theory Φ is
obtained by replacing the arrow← and comma (,) in every rule with the symbols⊃ and
∧ in the usual way, and prefixing the formula with a concrete (resp., abstract) universal
quantifier (∀c or ∀a, resp.) for every concrete (resp., abstract) variable x. The following
proposition follows straightforwardly from the definition, and the classical results by
Herbrand.

Proposition 2. Given a concrete domain scheme S, let P be a positive logic program
and Φ be the corresponding Horn F-Logic theory, then
– P has a stable model iff Φ is satisfiable, and
– if P has a stable model M , it is unique, and for every ground atom or molecule α,
α ∈ M iff Φ |=f α.

2 Note that the rule (4) is not safe. However, (∗ ∗ ∗) is not necessary in case subclass statements
( :: ) do not occur in rule bodies and are not considered when determining consequences.



5 First-Order Autoepistemic Logic with Frames and Concrete
Domains

First-Order Autoepistemic Logic (FO-AEL) [14, 3] is an extension of first-order logic
with a modal belief operator L, which is interpreted nonmonotonically. We specify an
extension of FO-AEL, based on F-Logic with concrete domains, called FF-AEL.

An FF-AEL language LL is defined relative to a language L:
– any atomic formula or molecule in L is a formula in LL,
– if φ is a formula in LL, then Lφ, called a modal atom, is a formula in LL, and
– complex formulas are constructed as in F-Logic with concrete domains.
A formula without modal atoms is an objective formula.

An autoepistemic interpretation is a pair 〈I, Γ 〉, where I = 〈U, UD, ≺U , ∈U , IF ,
IP , I→→〉 is an interpretation, and Γ ⊆ LL is a set of sentences, called the belief set.
Satisfaction of objective atomic formulas in 〈I, Γ 〉 corresponds to satisfaction in I.

Satisfaction of a formula Lφ (φ ∈ LL) in an interpretation 〈I, Γ 〉 with respect to
a variable assignment B under the any-name semantics3, denoted (I, B) |=Γ Lφ, is
defined as follows:

(I, B) |=Γ Lφ iff, for some variable substitution(s) β, associated with B, φβ
has no free variables and φβ ∈ Γ .

This extends to arbitrary formulas in the usual way (see also Section 3).
〈I, Γ 〉 is a model of φ, denoted I |=Γ φ, if (I, B) |=Γ φ for every variable assign-

ment B. This extends to sets of formulas in the usual way. A set of formulas A ⊆ LL

entails a sentence φ with respect to a belief set Γ , denoted A |=Γ φ, if for every inter-
pretation I such that I |=Γ A, I |=Γ φ.

A central notion in FF-AEL is the stable expansion, which is the set of beliefs of
an ideally introspective agent, given some base set. A belief set T ⊆ LL is a stable
expansion of a base set A ⊆ LL iff T = {φ | A |=T φ}.

A formula φ is an autoepistemic consequence of A if φ is included in every stable
expansion of A. In the remainder, when referring to consequences of a theory A we
mean objective autoepistemic consequences, unless specified otherwise. The following
proposition is a straightforward generalization of a result in [14].

Proposition 3. Given a concrete domain scheme S, let Φ ⊆ L be a satisfiable F-Logic
theory. Then, Φ has one consistent stable expansion T , and T ∩ L = {φ | Φ |=f φ}.

Embedding Logic Programs Following [3], we define an embedding as a function
which takes a normal F-Logic program P as its argument and returns a set of FF-AEL
sentences. Since the unique-names assumption does not hold in FF-AEL, it is necessary
to axiomatize default uniqueness of names. With UNAΣ we denote the set of axioms

¬L(t1 = t2) ⊃ t1 6= t2, for all pairs of distinct ground terms t1, t2.

3 [14] presents also the all-names semantics, but we follow [14, 3] in their choice for the any-
name semantics.



Let r be a normal rule of the form (1). Then,

τHP (r) = (∀) ∧
1≤i≤mbi ∧

∧
1≤j≤n¬Lcj ⊃ h,

such that each concrete variable is quantified using ∀c, and all other variables are quan-
tified using ∀a. For a normal F-Logic program P , we define:

τHP (P ) = {τHP (r) | r ∈ P} ∪UNAΣP
.

Recall the three rules (∗), (∗∗) and (∗ ∗ ∗), which are part of every F-Logic pro-
gram. These rules translate to FF-AEL as follows: (∗) ∀ax, y, z (x ::y ∧ y :: z ⊃ x :: z),
(∗∗) ∀ax, y, z (x :y ∧ y :: z ⊃ x : z) and (∗ ∗ ∗) ∀ax (x ::x). It can be easily verified,
using the definition of interpretations and satisfaction in F-Logic, that the embeddings
of these formulas are all valid in F-Logic and thus in FF-AEL (i.e. they are included in
every stable expansion). Faithfulness of the embedding is established in the following
proposition, which generalizes a result in [3].

Proposition 4. Given a concrete domain scheme S, a Herbrand interpretation M of
a normal F-Logic program P is a stable model of P iff there is a consistent stable
expansion T of τHP (P ) such that M coincides with the set of objective ground atoms
and molecules in T .

6 WSML Logical Expressions

In this section we present an abstract syntax for WSML logical expressions, and define
their semantics through an embedding in FF-AEL. We use this abstract syntax to discuss
two forms of language layering between the WSML variants. Note that this abstract
syntax for WSML formulas differs from the more verbose (logical expression) surface
syntax in the original specification. There is, however, a straightforward mapping from
the syntax we use here to the surface syntax; see [5, Section 4.3].

Given a concrete domain scheme S4, the signature of a WSML language L is of the
form Σ = 〈F ,P,FS,PS〉, as in F-Logic with concrete domains (cf. Section 3).

Terms and atoms are defined as in Section 3. Molecules are defined analogously to
F-Logic: if t1, t2, t3 are terms, then t1 : t2, t1 :: t2 and t1[t2 x t3], with x ∈ {ot , it , hv},
are molecules. The symbol ot stands for the WSML construct ofType; a statement
t1[t2 ot t3] requires all values for the attribute t2 to be known to be of a member of
the type t3; it stands for the WSML construct impliesType; a statement t1[t2 it t3] im-
plies that all values for the attribute t2 are a member of the class t3; hv stands for the
WSML construct hasValue; a molecule t1[t2 hv t3] says that the individual t1 has an
attribute t2 with value t3.

WSML formulas are inductively defined as follows, with φ, ψ ∈ L:
– atoms and molecules are formulas;
– ∼ φ, with ∼∈ {¬, not }, is a formula;
– φ ? ψ, with ? ∈ {∧,∨,⊃,≡}, is a formula; and

4 It is assumed in WSML that such a concrete domain scheme incorporates at least the XML
Schema datatypes string, integer, and decimal [6, Appendix C].



– Q x(φ), with Q ∈ {∀a,∃a,∀c, ∃c} and x ∈ V , is a formula.
Additionally, no variable quantified using an abstract quantifier (∀a,∃a) may be used
in a concrete atom. We assume that the predicate symbols it, ot are not used in any
WSML formula. As usual, WSML sentences are WSML formulas with no free vari-
ables.

The semantics of WSML formulas is defined through a translation to FF-AEL: let
Φ be a set of WSML formulas, then tr(Φ) is the FF-AEL theory obtained as follows:
for each φ ∈ Φ, tr(φ) is obtained from φ by replacing each occurrence of not with ¬L,
replacing hv with →→, and replacing molecules of the forms t1[t2 ot t3] and t1[t2 it t3],
with t1, t2 and t3 terms, with atoms of the forms ot(t1, t2, t3) and it(t1, t2, t3), re-
spectively. Finally, the following formulas are used to axiomatize the intentional (only
if) semantics of the ot and it molecules:

∀a x, y, z, v, w ( ot(x, y, z) ∧ v :x ∧ v[y→→w] ∧ ¬Lw : z ⊃ ⊥); (2)
∀a x, y, z, v, w ( it(x, y, z) ∧ v :x ∧ v[y→→w] ⊃ w : z), (3)

and the following formulas are used to axiomatize the extensional (if and only if) se-
mantics of the it and :: molecules, necessary for DL-like languages:

∀a x, y, z (∀av, w(v :x ∧ v[y→→w] ⊃ w : z)) ⊃ it(x, y, z), and (4)
∀a x, y (∀av(v :x ⊃ v :y)) ⊃ x ::y. (5)

WSML-Full and -FOL Any WSML sentence is a WSML-Full sentence. A WSML-Full
theory is a set of WSML-Full sentences. The semantics of a WSML-Full theory Φ is
given through the embedding trFull(Φ) = tr(Φ) ∪ {(2), (3), (4), (5)}.

A WSML-FOL sentence is a WSML-Full sentence which neither contains ot -
molecules, nor occurrences of the default negation operator not . A WSML-FOL theory
is a set of WSML-FOL sentences. The semantics of a WSML-FOL theory Φ is given
through the embedding trFOL(Φ) = tr(Φ) ∪ {(3), (4), (5)}.

WSML-Rule WSML-Rule formulas are of the form

(∀)b1 ∧ . . . ∧ bl ∧ not c1 ∧ . . . ∧ not cm ⊃ h (6)

where b1, . . . , bl, c1, . . . , cm are atoms or hv , ot , or isa ( : ) molecules, with l,m non-
negative integers, and h an abstract equality-free atom or molecule; if h = ⊥, then
we call the rule an integrity constraint. Additionally, each quantifier is either abstract
(∀a) or concrete (∀c). A WSML-Rule theory is a set of WSML-Rule sentences. The
semantics of a WSML-Rule theory Φ is given through the embedding trRule(Φ) =
tr(Φ) ∪ {(2), (3)}.

Concrete atoms in WSML-Rule correspond to the common built-in atoms in Logic
Programming.

Notice that there is a natural correspondence between WSML-Rule formulas of the
form (6) and rules in a logic program of the form (1). Thus, WSML-Rule formulas are
essentially rules with a head and a body. Notice that, whereas the embedding trFull(Φ)
includes the sentences (4) and (5), the embedding trRule(Φ) does not, because there is



no natural correspondence to rules due to the universal quantification in the antecedent
of the formulas (4) and (5). The it - and :: -molecules may not be used in the body of
a rule in order to maintain a strict correspondence between the WSML-Rule semantics
and the WSML-Full semantics, as illustrated in the following example.

Example 2. Consider the theory Φ consisting of the formulas

∀ax(x :A ⊃ x :B) and
A ::B ⊃ q.

The theory trRule(Φ) neither has A ::B nor q among its consequences. In contrast, it is
easy to verify that, by (5), trFull(Φ) has both A ::B and q among its consequences.

WSML-Flight A WSML-Flight theory is a WSML-Rule theory for which holds that, for
every formula of the form (6), every variable occurs in a positive abstract body atom bi,
no function symbol in (6) is used with an arity higher than 0, and the theory is locally
stratified5.6 The semantics of a WSML-Flight theory Φ is given through the embedding
trFlight(Φ) = trRule(Φ).

WSML-DL Given an FOL formula φ, δ′(φ) is obtained from φ by replacing atoms of the
forms A(t1), R(t1, t2), with t1, t2 terms, with molecules of the forms t1 :A, t1[Rhv t2].

Given a SHIQ(D) signature Σ = 〈C, D, Ra, Rc, Fa, Fc〉, the corresponding
WSML signature is 〈C ∪ D ∪ Ra ∪ Rc ∪ Fa, ∅,F ′c,D′〉, where F ′c is the set of 0-
ary functions symbols obtained from Fc and D′ is the set of 1-ary predicate symbols
obtained from D. A WSML-DL formula is a WSML formula of the form

– δ′(φ), where φ is the FOL equivalent of a SHIQ(D) axiom of the signature Σ,
– a :: b, with a, b ∈ C,
– a[s it b], with s ∈ Ra and a, b ∈ C, or
– a[u itd], with u ∈ Rc, a ∈ C and d ∈ D.

Given a SHIQ(D) signature Σ, a WSML-DL theory is a set of WSML-DL sentences.
The semantics of a WSML-DL theory Φ is given through the embedding trDL(Φ) =
trFOL(Φ).

WSML-Core A WSML-DL formula which is also a Flight formula is a WSML-Core
formula. WSML-Core theory is a set of WSML-Core sentences. The semantics of a
WSML-Core theory Φ is given through the embedding trCore(Φ) = trFlight(Φ) =
trRule(Φ).

Let S be a concrete domain scheme and x ∈ {Core, F light, Rule, DL, FOL,
Full} a WSML variant. We say that a WSML-x theory Φ is consistent if trx(Φ) has a
consistent stable expansion an WSML-x formula φ, and is a WSML-x consequence of
Φ if φ ∈ T for every stable expansion T of trx(Φ).

5 Each atom or molecule in gr(Φ) is assigned a stratum, which is an integer. We say that gr(Φ)
is stratified if there is an assignment of atoms and molecules to strata such that: if an atom or
molecule p occurs positively in a rule with an atom or molecule q as its head, then p has the
same or a lower stratum, and if p occurs negatively in a rule with q as its head, then p has a
lower stratum than q. If gr(Φ) is stratified, then Φ is locally stratified.

6 These conditions correspond to the usual safety condition which must hold for Datalog pro-
grams, and the usual local stratification for logic programs.



WSML Language Layering We now turn to the relationships between the language
variants. Certain relationships are straightforward, because of equivalence of the em-
beddings in FF-AEL (e.g. given a WSML-Core theory Φ, trCore(Φ) = trFlight(Φ) =
trRule(Φ)); however, there are also certain differences between embeddings (e.g. given
a WSML-Core theory Φ, trCore(Φ) 6= trDL(Φ) 6= trFull(Φ)). We consider two forms
of language layering: strict and loose language layering.

Admissible consequences under strict/loose language layering are subsets of all for-
mulas of a given WSML variant. Intuitively, admissible consequences are the formulas
allowed to be considered when checking consequences of a given a theory.

The admissible consequences under strict language layering for WSML are as fol-
lows: every it - and :: -free WSML-(Core/Flight/Rule) sentence is an admissible con-
sequence of WSML-(Core/Flight/Rule), and every WSML-(DL/FOL/Full) sentence is
an admissible consequence of WSML-(DL/FOL/Full) under strict language layering.
Under loose layering, additionally every WSML-(Core/Flight/Rule) sentence is an ad-
missible consequence of WSML-(Core/Flight/Rule). We denote the set of admissible
consequences under strict (resp., loose) language layering of a given WSML variant L
with L|as (resp., L|al).

Definition 1. Let L1, L2 be two WSML variants with associated embeddings (seman-
tics) tr1, tr2. Then,

– L2 is strictly layered on top of L1, denoted L1 ⇒s L2, if for every theory Φ ⊆ L1

and every formula φ ∈ L1|as, φ is a consequence of tr1(Φ) if and only if φ is a
consequence of tr2(Φ), and

– L2 is loosely layered on top of L1, denoted L1 ⇒l L2, if for every theory Φ ⊆
L1 and every formula φ ∈ L1|al, φ is a consequence of tr2(Φ) whenever φ is a
consequence of tr1(Φ).

It turns out that when considering loose language layering, we can consider gener-
alized WSML-(Core/Flight/Rule) formulas, which are WSML-(Core/Flight/Rule) for-
mulas which additionally allow it - and :: -molecules in the body, i.e. for formulas of
the form (6) holds that bi, ci may be atoms or arbitrary molecules. This notion nat-
urally extends to WSML-(Core/Flight/Rule) theories. We thus obtain the generalized
WSML-(Core/Flight/Rule) language variants.

Theorem 1 (WSML Language Layering).

– WSML-Core ⇒s WSML-Flight ⇒s WSML-Rule ⇒s WSML-Full.
– WSML-Core ⇒s WSML-DL ⇒s WSML-FOL ⇒s WSML-Full.
– Gen. WSML-Core ⇒l gen. WSML-Flight ⇒l gen. WSML-Rule ⇒l WSML-Full.
– Gen. WSML-Core ⇒l WSML-DL ⇒l WSML-FOL ⇒l WSML-Full.

An important distinction between the strict and the loose language layering, is that
in the strict language layering setting certain schema-level formulas (i.e. those involving
it - and :: - molecules) are not among the admissible consequences. Therefore, it is not
possible in WSML-Flight and WSML-Rule to reason about subclass and certain typing
relationships, when adhering to strict layering. We illustrate the differences between the
two forms of layering with an example.



Example 3. Consider the WSML-Core theory Φ = {Person[hasChild itPerson],
Astronaut ::Person, ∀a x(x :Person ⊃ x :Animal)} which says that, for every
instance of the class Person, each value of the attribute hasChild is an instance of
Person, Astronaut is a subclass of Person, and every instance of Person is also
an instance of Animal. Now consider the formulas φ1 = Astronaut[hasChild it
Person] and φ2 = Person ::Animal; φ1 and φ2 are both consequences of trDL(Φ),
but neither is a consequence of trCore(Φ) (or indeed trFlight(Φ) or trRule(Φ)). One
can verify that, in fact, the set of consequences of trCore(Φ) is a subset of the set of
consequences of trDL(Φ). Observe also that φ1 and φ2 are not admissible WSML-
Core consequences under strict language layering. In fact, the sets of consequences of
trCore(Φ) and trDL(Φ) coincide with respect to admissible WSML-Core consequences
under strict language layering, as was demonstrated with Theorem 1.

Comparing strict and loose language layering, we observe that if strict language
layering is considered, the definitions of WSML-Flight and WSML-Rule formulas are
more restrictive, and there are certain (some may argue, unintuitive) restrictions on the
kinds of consequences which are admissible. In fact, under strict language layering, the
Core, Flight, and Rule variants are significantly less expressive than the corresponding
generalized variants under loose layering, because inferences of it - and :: statements
may not be considered. Therefore, the use of loose language layering seems more attrac-
tive. Indeed, the use of loose language layering is common in Semantic Web standards;
for example, RDFS is loosely layered on top of RDF, OWL Full is loosely layered on
top of RDFS, and OWL Full is loosely layered on top of OWL DL. However, one could
imagine scenarios in which strict language layering is more attractive. For example,
when directly using a WSML-DL reasoner for reasoning with WSML-Core theories,
one needs to be sure that the semantics correspond; otherwise, certain inferences might
be incorrect with respect to the WSML-Core semantics.

7 Correspondence with Target Formalisms

In this section we show the correspondences between the WSML language variants
and the logical language formalisms which have originally motivated the definition of
these variants, with respect to the reasoning tasks relevant in the formalism. The target
formalisms for WSML-Core, WSML-DL, WSML-Flight, WSML-Rule and WSML-
FOL are DHL(D), SHIQ(D), the Well-Founded Semantics for stratified and general
logic programs, and (F-Logic-extended) classical first-order logic, respectively.

WSML-Full and WSML-FOL The usual reasoning tasks for autoepistemic logic are
existence of stable expansions, inclusion of a formula in some stable expansion, and
inclusion of a formula in all stable expansions (autoepistemic consequence) (cf. [16]).
We expect these reasoning tasks to be relevant for WSML-Full as well.

From the definition we can see that WSML-FOL does not make use of the non-
monotonic modal operator L and thus basically corresponds to F-Logic with concrete
domains. The following theorem follows straightforwardly from Proposition 3.



Theorem 2 (WSML-FOL correspondence). Given a concrete domain scheme S, a
WSML language L, a WSML-FOL theory Φ ∈ L and a formula φ ∈ L, then trFOL(Φ)
|=f tr(φ) iff tr(φ) is a consequence of trFOL(Φ).

WSML-DL and -Core The usual reasoning tasks for the Description Logic SHIQ(D)
are concept satisfiability, knowledge base satisfiability and logical entailment (usually
restricted to formulas of a specific shape, such as ground atoms and subsumption ax-
ioms). Since these problems can all be reduced to each other [1], we only need to
consider the entailment problem.

Theorem 3 (WSML-DL correspondence). Given a concrete domain scheme S, if Φ
is a WSML-DL theory and φ is a WSML-DL axiom, then there are a corresponding
SHIQ(D) theory Φ′ and SHIQ(D) axiom φ′ (and vice versa) such that Φ′ |= φ′ iff
tr(φ) is a consequence of trDL(Φ).

Proof (Sketch). By definition of WSML-DL we have that for each SHIQ(D) theory
Ψ there is an equivalent WSML-DL theory Φ.

Let Φ be a WSML-DL theory and φ be a WSML-DL axiom, and let φ′ be the
(FOL equivalent of a) SHIQ(D) axiom obtained from φ by replacing each molecule
of the form t :f with an atom of the form f(t), each molecule of the form t1[r hv t2]
with an atom of the form r(t1, t2), each formula of the form t1 :: t2 with a formula
of the form ∀x(t1(x) ⊃ t2(x)), each formula of the form t1[t2 it t3] with a formula
of the form ∀x, y(t1(x) ∧ t2(x, y) ⊃ t3(y)), and let Φ′ be obtained from Φ in the
same way, discarding the formulas (3,4,5). It is easy to verify that Φ′ and φ′ are FOL
equivalents of a SHIQ(D) theory and axiom. Using Proposition 1 it is can be verified
that trDL(Φ) |=f tr(φ) iff Φ′ |= φ′ (under standard FOL semantics). The theorem then
follows immediately from Theorem 2. ut

The following Theorem follows straightforwardly from the proof of Theorem 3 and
the definition of WSML-Core.

Theorem 4 (WSML-Core correspondence). Given a concrete domain scheme S, if
Φ is a WSML-Core theory and φ is a :: - and it -free WSML-Core axiom, then there are
a correspondingDHL(D) theory Φ′ andDHL(D) axiom φ′ (and vice versa) such that
Φ′ |= φ′ iff tr(φ) is a consequence of trCore(Φ).

WSML-Rule and -Flight The usual reasoning task for the Well-Founded Semantics is
ground entailment, i.e. inclusion in the well-founded model. Additionally, as WSML-
Flight and WSML-Rule have integrity constraints, consistency checking is also an im-
portant reasoning task.

Reasoning in the Well-Founded Semantics can be seen as an approximation to rea-
soning in the Stable Model Semantics. In fact, given a logic program P , if a ground
atom α is true in the well-founded model of P , then α is included in every stable model
of P , and thus is entailed under cautious inferencing. In the remainder we consider the
Stable Model Semantics because of its close relation to autoepistemic logic.

In the following theorem we establish a correspondence between the stable expan-
sions of a WSML-Rule theory and the stable models of the corresponding logic pro-
gram. Correspondence with respect to all relevant reasoning tasks follows immediately.



For example, cautious reasoning corresponds to autoepistemic consequence, and con-
sistency checking corresponds to existence of a consistent stable expansion. The theo-
rem follows straightforwardly from Proposition 4.

Theorem 5 (WSML-Rule and WSML-Flight correspondence). Given a concrete
domain scheme S, if Φ is a WSML-Rule theory, then there is a corresponding nor-
mal F-Logic Program P (and vice versa) such that a Herbrand interpretation M of P
is a stable model of P iff there is a consistent stable expansion T of trRule(Φ) such that
M coincides with the set of objective ground atoms and molecules in T .

If, additionally, Φ is a WSML-Flight theory, then P has at most one stable model,
and Φ is consistent iff P has exactly one model.

8 Conclusions

In this paper we have presented a novel semantic framework for WSML based on FF-
AEL, which is first-order autoepistemic logic [14, 3] extended with Frames [13] and
concrete domains [2]. Using this framework we have defined a semantics for WSML-
Full, and have proposed two paradigms for language layering in WSML. Strict language
layering requires additional restrictions on the syntax of the WSML variants, but gives
more guarantees on the preservation of consequences than loose language layering. The
WSML group is considering adopting loose language layering for future versions of
the language; the main motivation is that it is considered unintuitive to disallow certain
inferences (i.e. those involving it - and :: -molecules).

The approach for defining concrete domains in FF-AEL is very general, and might
be applied in the area of Logic Programming, to extend current approaches to built-ins
such as the one in Datalog [19], and might be used to extend the support for concrete
domains in WSML-DL towards customized data types [17].

Two alternative embeddings for logic programs in FO-AEL have been considered
in [3], besides the one we used in this paper (τHP ). The distinguishing feature between
the embedding we have considered in this paper, and these two alternative embeddings,
is that, using the embedding τHP , positive rules are translated to Horn formulas, which
means that there is a very tight integration between the axioms originating from a DL
knowledge base and the rules originating from the logic program, corresponding to our
intuition behind WSML-Full as a unifying integrating language.

An alternative formalism which has been used for combining rules and ontologies
in a unifying semantics is MKNF [15]. This approach is very similar to ours (however,
frames are not considered in MKNF), although the precise relationship between FF-
AEL and MKNF remains to be investigated. The embedding of logic programs used in
[15] is quite different from the embedding τHP which we considered in this paper, but it
is very close in spirit to the embedding τEH , which is one of the alternative embeddings
considered in [3]. Investigating the relationship between FF-AEL and MKNF, as well as
other formalisms which combine Description Logics and Logic Programming (e.g. [7,
18, 11]) is future work. Since positive rules are interpreted as Horn formulas, we con-
jecture that our semantics corresponds to that of SWRL [11], provided only positive
programs are considered, and certain restrictions apply to the allowed concrete domain
schemes.
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