92 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

Guarded Open Answer Set Programming

Stijn Heymans, Davy Van Nieuwenborgtand Dirk Vermeit*

Dept. of Computer Science
Vrije Universiteit Brussel, VUB
Pleinlaan 2, B1050 Brussels, Belgium
{sheynmans, dvni euwe, dver nei r }@ub. ac. be

Abstract. Open answer set programming (OASP) is an extension of arsater
programming where one may ground a program with an arbisapgrset of the
program’s constants. We define a fixed point logic (FPL) esitenof Clark’s
completion such that open answer sets correspond to mofiéBloformulas
and identify a syntactic subclass of programs, called @yoguarded programs.
Whereas reasoning with general programs in OASP is undaleidhe FPL trans-
lation of (loosely) guarded programs falls in the decidgldesely) guarded fixed
point logic (u(L)GF).

Moreover, we reduce normal closed ASP to loosely guarded)aBabling a
characterization of an answer set semanticg:b&F formulas. Finally, we re-
late guarded OASP to DatalagTe, thus linking an answer set semantics to a
semantics based on fixed point models of extended stratifé¢dl®y programs.
From this correspondence, we deducexTIME-completeness of satisfiability
checking w.r.t. (loosely) guarded programs.

1 Introduction

A problem with finite closed answer set programming (ASP)j4@hat all significant
constants have to be present in the program in order to @tarintended semantics.
E.g., a program with a rule : p(X) «— not ¢(X) and a factg(a) has the unique
answer sefq(a)} and thus leads to the conclusion thais not satisfiable. However,
if r is envisaged as a schema constraint ansl just one possible data instance, this
conclusion is wrong: other data makesatisfiable.

This problem was solved in [11] by introducirignew constantsk finite, and
grounding the program with this extended universe; the anssts of the grounded
program were called-belief setsWe extended this idea, e.g. in [16], by allowing for
arbitrary, thus possibly infinite, universé&3pen answer setre then pairgU, M) with
M an answer set of the program grounded withThe above program has an open
answer set{x, a}, {q(a), p(z)}) wherep is satisfiable.

Characteristic about (O)ASP is its treatment of negatidaiige (naf): one guesses
an interpretation for a program, computes the program withaf (the GL-reduct[10]),

* Supported by the FWO.
** This work was partially funded by the Information Societychipologies programme of the
European Commission, Future and Emerging Technologiesruhd IST-2001-37004 WASP
project.

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 92-104, 300
© Springer-Verlag Berlin Heidelberg 2005

Guarded Open Answer Set Programming 93

calculates the iterated fixed point of this reduct, and cheekether this fixed point
equals the initial interpretation. We compile these exdemanipulations, i.e. not ex-
pressible in the language of programs itself, into fixed pluigic (FPL)[14] formulas
that are at most quadratic in the size of the original progiéinst, we rewrite an arbi-
trary program as a program containing only one designatdiqatep and (in)equality;
this makes sure that when calculating a fixed point of theipagel variablep, it con-
stitutes a fixed point of the whole program. In the next phasgeh ap-program P is
translated to FPL formulasomp(P). comp(P) ensures satisfiability of program rules
by formulas comparable to those in Clark’s completion. Tiec#ic answer set seman-
tics is encoded by formulas indicating that for each atdm) in the model there must
be a true rule body that motivates the atom, and this in a naihivay, i.e. using a fixed
point predicate. Negation as failure is correctly handigdiaking sure that only those
rules that would be present in the GL-reduct can be used tivatetatoms.

In [5], Horn clauses were translated to FPL formulas and # féasoning with an
extension of stratified Datalog was reduced to FPL, but, eédoisst of our knowledge,
this is the first encoding of an answer set semantics in FPL.

In[21, 19], ASP with (finite) propositional programs is regd to propositional sat-
isfiability checking. The translation makes the loops in agpam explicit and ensures
that atomsp(x) are motivated by bodies outside of these loops. Although ithian
elegant characterization of answer sets in the propositicase, the approach does not
seem to hold for OASP, where programs are not propositiantgddissibly ungrounded
and with infinite universes. Instead, we directly use thédt{ii‘loop detection” mech-
anism of FPL, which enables us to go beyond propositionanaims.

Translating OASP to FPL is thus interesting in its own rightt it also enables the
analysis of decidability of OASP via decidability resultsfragments of FPL. Satis-
fiability checking of a predicatg w.r.t. a program, i.e. checking whether there exists
an open answer set containing sopie), is undecidable, e.g. the undecidable domino
problem can be reduced to it[15]. It is well-known that S&lsility checking in FOL is
undecidable, and thus the extension to FPL is too. Howexpressive decidable frag-
ments of FPL have been identified[14loosely) guarded fixed point logig:(L)GF)
extends thé€loosely) guarded fragmelft)GF of FOL with fixed point predicates.

GF was identified in [2] as a fragment of FOL satisfying prdjgsrsuch as decid-
ability of reasoning and the tree-model property, i.e. gveodel can be rewritten as a
tree-model. The restriction of quantified variables byuard an atom containing the
variables in the formula, ensures decidability in GF. Geane responsible for the tree-
model property of GF (where the concept of tree is adaptegifedicates with arity
larger thar2), which in turn enables tree-automata techniques for sgaecidability
of satisfiability checking. In [4], GF was extended to LGF whguards can be con-
junctions of atoms and, roughly, every pair of variables nnestogether in some atom
in the guard. Satisfiability checking in both GF and LGF isX2rTIME-complete[13],
as are their extensions with fixed point predicat€s~ anduLGF[14].

We identify a syntactically restricted class of prograffegsely) guarded programs
((L)GPs) for which the FPL translation falls in(L)GF, making satisfiability checking
w.r.t. (L)GPs decidable and in 2xPTIME. In LGPs, rules have a set of atoms, the
guard, in the positive body, such that every pair of variabighe rule appears together

94 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

in an atom in that guard. GPs are the restriction of LGPs wheaeds must consist of
exactly one atom. Programs under the normal answer set semean be rewritten as
LGPs under the open answer set semantics by guarding adlblesi with atoms that
can only deduce constants from the original program. Beside desirable property
that OASP with LGPs is thus a proper decidable extension ohabASP, this yields

that satisfiability checking w.r.t. LGPs is, at leasExPTIME-hard.

DatalogLITE[12] is a language based on stratified Datalog with input igegds
where rules are monadic or guarded and may have generatieedd in the body, i.e.
literals of the formvY - « = b for atomsa andb. It has an appropriately adapted
bottom-up fixed point semantics. Dataloge was devised to ensure linear time model
checking while being expressive enough to captomputational tree logi8] and
alternation-freg:-calculus[18]. Moreover, it was shown to be equivalent teralation-
free uGF. Our reduction of GPs toGF, ensures that we have a reduction from GPs
to DatalogLITE, and thus couples the answer set semantics to a fixed poiainsies
based on stratified programs. Intuitively, the guess fomaéerpretation in the answer
set semantics corresponds to the input structure one fedhs stratified Datalog pro-
gram. The translation from GPs to Datalage needs only one stratum to subsequently
perform the minimality check of answer set programming.

The other way around, we reduce satisfiability checking cursion-free Datalog
LITE to satisfiability checking w.r.t. GPs. Recursion-free D@ga.ITE is equivalent to
GF[12], and, since satisfiability checking of GF formulagisxpTIME-hard[13], we
obtain 2exPTIME-completeness for satisfiability checking w.r.t. (L)GPs.

In [16, 17], other decidable classes of programs under tle@ apswer set seman-
tics were identified; decidability was attained differgntthan for (L)GPs, by reduc-
ing OASP to finite ASP. Although the therein identifieohceptual logic programare
more expressive in some aspects (they allow for a more libssof inequality), they
are less expressive in others, e.g. the use of predicatestigcted to unary and binary
ones. Moreover, the definition of (L)GPs is arguably morga@ecompared to the often
intricate restrictions on the rules in conceptual logicgreans.

The remainder of the paper is organized as follows. Aftealiig the open answer
set semantics in Section 2, we reduce reasoning under threamssver set semantics
to reasoning with FPL formulas in Section 3. Section 4 déssriguarded OASP, to-
gether with a 2EXPTIME complexity upper bound and a reduction from finite ASP
to loosely guarded OASP. Section 5 discusses the relaijpmsth DatalogLITE and
establishes ZxpTIME-completeness for (loosely) guarded open answer set progra
ming. Section 6 contains conclusions and directions fah&nrresearch. Due to space
restrictions, proofs have been omitted; they can be foufitih

2 Open Answer Set Semantics

We recall the open answer set semantics from [O8nstantsvariables terms and
atomsare defined as usual. Kteral is an atomp(t) or a naf-atomnot p(t).> The
positive partof a set of literals is o™ = {p(t) | p(t) € o} and thenegative part

1 We have no negation, however, programs with can be reduced to programs without it, see
e.g. [20].

Guarded Open Answer Set Programming 95

of wisa™ = {p(t) | not p(t) € a}. We assume the existence of binary predicates
= and #, wheret = s is considered as an atom ahd#4 s asnot t = s. E.g. for
a={X#Y,Y =Z},wehavew™ = {Y = Z} anda™ = {X = Y}. Aregularatom
is an atom that is not an equality atom. For aXetf atoms;not X = {notl |l € X}.

A programis a countable set of rules «— 3, wherea and g are finite sets of
literals, |a™| < 1, andVt,s -t = s € a™, i.e. a contains at most one positive atom,
and this atom cannot be an equality atdifhe setx is theheadof the rule and repre-
sents a disjunction of literals, while is called thebodyand represents a conjunction
of literals. If « = 0, the rule is called @onstraint Free rulesare rules of the form
q(t) vV not q(t) «— for a tuplet of terms; they enable a choice for the inclusion of
atoms. We call a predicatefree if there is a free rule(t) v not p(t) — . Atoms,
literals, rules, and programs that do not contain variaateground

For a programP, let cts(P) be the constants i®, vars(P) its variables, and
preds(P) its predicates. AuniverseU for P is a non-empty countable superset of the
constants inP: cts(P) C U. We call Py the ground program obtained frof by
substituting every variable i by every possible constant iA. Let Bp be the set of
regular atoms that can be formed from a ground progPam

An interpretation/ of a groundP is any subset oBp. For a ground regular atom
p(t), we write I = p(t) if p(t) € I, For an equality atomp(t) = ¢t = s, we have
I = p(t) if s andt are equal terms. We have = not p(t) if I % p(t). For a set
of ground literalsX, I = X if I |= [for everyl € X. Aground ruler : a «— f8
is satisfiedw.r.t. I, denoted! = r, if I |= [for somel € « wheneverl | G, i.e.r
is appliedwhenever it isapplicable A ground constraint— g is satisfied w.r.tI if
I } (. For a ground progran® without not, an interpretatiod of P is amodelof P
if I satisfies every rule iP; it is ananswer seof P if it is a subset minimal model
of P. For ground program#® containingnot, the GL-reducf10] w.r.t. I is defined as
P!, whereP! containsat « 3% fora « 3in P, I = not ~ andl = a~.Iis an
answer sebf a groundP if I is an answer set dp’.

In the following, a program is assumed to be a finite set ofsititdinite programs
only appear as byproducts of grounding a finite program witinéinite universe. An
open interpretatiomf a programP is a pair(U, M) whereU is a universe fo® andM
is an interpretation oP;. An open answer seif P is an open interpretatiofd/, M) of
P with M an answer set af;. An n-ary predicate in P is satisfiableif there is an
open answer sél, M) of P and ax € U™ such thap(x) € M. We assume that when
satisfiability checking a predicajg p is always non-free, i.e. there are no free rules
with p in the head. Note that satisfiability checking of a freary predicate w.r.t. P
can always be reduced to satisfiability checking of a new fnean-ary predicatey’
w.rt. PU{p’(X) <« p(X)}. Note that this is a linear reduction.

3 Open Answer Set Programming via Fixed Point Logic

We assume without loss of generality that the set of constamd the set of predicates
in a program are disjoint and that each predicates one associated arity, eqfx)

2 The conditiona™| < 1 ensures that the GL-reduct is non-disjunctive.

96 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

andgq(z,y) are not allowed. A progran® is a p-programif p is the only predicate
in P different from the (in)equality predicate. We can rewrite/ @rogrampP as an
equivalenp-programpP, by replacing every regulan-ary atomg(t) in P by p(t, 0, q)
wherep has arityn, with n the maximum of the arities of predicates/ihaugmented
by 1, 0 a sequence of new constantsf lengthn — m — 1, andg a new constant with
the same name as the original predicate. Furthermore, ar twdavoid interference of
the new constants, we add for every varialilén a non-free rule € P and for every
newly added constantin P,, X # a to the body. E.qg., the rul(a, b) — ¢(X)in P
corresponds t@(a, b,h) — p(X,0,¢9),X # 0,X # h, X # ¢qin P,.

Proposition 1. Let P be a program and a predicate inP. ¢ is satisfiable w.r.tP iff
there is an open answer s@t’, M) of thep-program P, with p(x, 0, ¢) € M.

The translation of a program topaprogram does not influence the complexity of rea-
soning, i.e. the size of, is linear in the size of°. By Proposition 1, we can focus
attention onp-programs only. Since-programs have open answer sets consisting of
one predicate, fixed points calculated w.r.yield minimal models of the whole pro-
gram as we will show in Proposition 2.

In[5], a similar motivation drives the reduction of Horn gtges to clauses consisting
of only one defined predicate. Their encoding does not imitechew constants to iden-
tify old predicates and depends entirely on the use of (idéty. However, to account
for databases consisting of only one element, [5] needs diti@ahl transformation
that unfolds bodies of clauses.

We assume that FOL interpretations have the same form asiojgepretations: a
pair (U, M) corresponds with the FOL interpretatidd over the domairl/. Further-
more, we consider FOL with equality such that equality isaglsvinterpreted as the
identity relation ovelU. (Least) Fixed Point Logic (FPL)s defined along the lines of
[14]. Fixed point formulagre of the form

[LFP WX (W, X)|(X) , (1)

whereW is ann-ary predicate variableX is ann-ary sequence of variableg(V, X)
is a FOL formula where all free variables are containeXirand wherell/’ appears
only positively iny (W, X).2

We associate witlil) and an interpretatiofl/, M) that does not interpréd’, an
operatoryy(U"M) . 2U" _, 2U" defined on sets of n-ary tuples ag)(V:*)(S) =
{x € U™ | (U,M) = (S, x)}. By definition, W appears only positively i such
thaty(Y"") is monotonic on sets of-ary U-tuples and has a least fixed point, which
we denote byLFP (¢(U"M), Finally, we haveU, M) |= [LFP W X (W, X)|(x) iff
x € LFP(y(U:M)),

We can reduce g-programp to equivalent FPL formulasomp(P). Thecompletion
comp(P) consists of formulas # b for different constants andb in P making sure
that constants are interpreted as different elements,enhgrb = —(a = b). comp(P)

3 Sincey (W, X) is a FOL formula, we do not allow nesting of fixed point formaild his
restriction is sufficient for the FPL simulation of OASP, arfidrthermore, it simplifies the
notation since one does not have to take into account an fextetion y that gives meaning
to free second-order variables different fréin.

Guarded Open Answer Set Programming 97

also contains the formuldX - true ensuring the existence of at least one element in
the domain of an interpretation. Besides these technigaiirements that match FOL
interpretations with open interpretatiorsmp(P) contains the formulas ifix(P) =
sat(P) U gl(P) U £pf(P), which can be intuitively categorized as followsit(P)
ensures that a model oix(P) satisfies all rules i, g1(P) is an auxiliary component
defining atoms that indicate when a rulefirbelongs to the GL-reduct d@?, and finally,
fpf(P) ensures that every model dfx(P) is a minimal model of the GL-reduct iR;
it uses the atoms defined gn (P) to select, for the calculation of the fixed point, only
those rules inP that are in the GL-reduct af.

We interpret a naf-atomot « in a FOL formula as the literaka. Moreover, we
assume that, if a set is empty,\ X = true and\/ X = false We further assume that
the arity ofp, the only predicate in a-program, isn.

Definition 1. Let P be ap-program. Thenfix(P) = sat(P) U gl(P) U fpf(P),
where

— sat(P) contains formulas
vy -Aps=\e ()

for rulesa <+ § € P with variablesY,
— g1(P) contains formulas

VY -r(Y) e oA -8 (3)

forrulesr : o <+ (8 € P with variablesY and a new predicate,
— fpf(P) contains the formula

VX - p(X) = [LFP WX.6(W,X)]|(X) 4)

with o(W, X) = W(X) V V. vacsep E(r) and E(r) = 3Y - X1 =t A
o AXy =t AN BT [pIW]AT(Y), whereX = X, ..., X,, aren new variables,
Y are the variables in, W is a new (second-order) variable apth [p|W] is 5+
with p replaced byW'.

Thecompletionof P is comp(P) = fix(P)U{a # b | a # b € cts(P)}U{3X -true}.

The predicatdV appears only positively i(W, X ') such that the fixed point formula
in (4) is well-defined. The first conjunct/’ (X)), in (W, X) ensures that previously
deduced tuples are deduced by the next application of thd fixént operator, i.e.

S C ¢WM)(S). The disjunction\/, E(r) makes sure that for each atom there is a
rule r in the GL-reduct4Y - »(Y)) with a true positive body that can motivate that
atom.

Example 1.Take ap-programP with rule r : p(X) « p(X). comp(P) is then such
thatsat(P) = {VX - p(X) = p(X)}, ensuring that is satisfied, ang1(P) = {VX -
r(X) < true} says that- belongs to every GL-reduct since there are no naf-atoms.
Finally, fpf(P) = {VX,-p(X;) = [LFP WX;.¢(W, X;)](X1)}, with (W, X;) =
W(X;)V3IX - X, =X AW(X)Ar(X).

98 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

Proposition 2. Let P be ap-program. Then(U, M) is an open answer set d? iff
(U, M UR) is amodel okomp(P), whereR = {r(y) | r[Y|y] € P}, vars(r) =Y},
i.e. the atoms corresponding to rules in the GL-reducPofw.r.t. M .4

Example 2.For a universé/ = {x}, we have the unique open answer gétf)) of P
in Example 1. Sincé&/ is non-empty, every open answer set with a univérsatisfies
3X - true. Both (U, M; = {p(z),r(z)}) and (U, My = {r(x)}) satisfysat(P) U
gl(P). SinceLFP(¢(V:M1)) = LFP(¢(V'"M2)) = (), only (U, M) satisfiestpf(P);
(U, M) corresponds exactly to the open answer(&ef) of P.

The completion in Definition 1 differs from Clark’s completi[6] both in the presence
of the fixed point construct ifd) and the atoms representing membership of the GL-
reduct. Fop-programsP, Clark’s Completiorccomp(P) does not contaigl(P), and
£pf(P) is replaced by the formuldX - p(X) =V, ,4)va—gep D(r) With D(r) =
Y X =t AN...ANX, = to, ANANB A Aa—. ProgramP in Example 1 is the
OASP version of the classical example— p[19], for which there are FOL models of
ccomp(P) that do not correspond to any answer sets: 61}, {p(x)}) and({z},)
are FOL models while only the latter is an open answer sét.of

Using Propositions 1 and 2, we can reduce satisfiability kihgdn OASP to sat-
isfiability checking in FPL. Moreover, with the number of constants in a progrdm
the number of formulas # b is 1¢(c — 1), and, since the rest efomp(P) is linear in
P, this yields a quadratic bound for the sizecofup(P).

Theorem 1. Let P be a program and ann-ary predicate inP. g is satisfiable w.r.tP
iff p(X,0,q) A comp(P,) is satisfiable. Moreover, this reduction is quadratic.

4 Guarded Open Answer Set Programming

We repeat the definitions of tHeosely guarded fragmef] of FOL as in [14]: The
loosely guarded fragment LGF of FOL is defined inductivelfodlews:

(1) Every relational atomic formula belongs to LGF.
(2) LGF is closed under propositional connectives\, Vv, =, and<.
() Ify(X,Y)isin LGF, anda(X,Y) = a1 A ... A auy iS @ conjunction of atoms,
then the formulas
Y - o(X,Y)AN(X,Y)
VY -a(X,Y) = ¢(X,Y)

belong to LGF (andy (X, Y") is the guard of the formula), provided that f(ee C
freela) = X U'Y and for every quantified variabl& € Y and every variable
Z € X UY there is at least one atom; that contains botit” and Z (where
free(v)) are the free variables ap).

Theloosely guarded (least) fixed point logit. GF is LGF extended with fixed point
formulas (1) where) (W, X)) is a LGF formul& such that?” does not appear in guards.

* We denote the substitution & = Yi,..., Yo withy = v1,...,ya inaruler by 7[Y |y].
5 Thus, in accordance with our definition of FPL, nesting of(gled) fixed point logic formulas
is not allowed.

Guarded Open Answer Set Programming 99

The guarded fragmenGF is defined as LGF where the guards are atoms instead of
conjunctions of atoms. Thguarded fixed point logizGF is GF extended with fixed
point formulas whereg) (W, X') is a GF formula such thal” does not appear in guards.

Definition 2. Aruler : a «— 3 isloosely guarded there is ay, C 57 such that every
two variablesX andY fromr appear together in an atom from,; we call v, a body
guardof r. It is fully loosely guardedf it is loosely guarded and there isg, C a~
such that every two variable¥ andY fromr appear together in an atom from,; v,
is called ahead guaraf r.

A programP is a (fully) loosely guarded program ((F)LGH)every non-free rule
in P is (fully) loosely guarded.

Example 3.The rule in Example 1 is loosely guarded but not fully loosgharded.
Arule a(Y)Vnot g(X,Y) « not b(X),f(X,Y) has body guard f(X,Y)} and
head guardg(X,Y)}, and is thus fully loosely guarded.

Definition 3. A rule isguardedf it is loosely guarded with a singleton body guard. It
is fully guardedif it is fully loosely guarded with singleton body and heacugls.

A program P is a (fully) guarded program ((F)GH} every non-free rule inP is
(fully) guarded.

Every F(L)GP is a (L)GP, and we can rewrite every (L)GP as §GR

Example 4.The rulep(X) «— p(X) can be rewritten ap(X) V not p(X) «— p(X)
where the body guard is added to the negative part of the loefashttion as the head
guard. Both programs are equivalent: for a univérséoth have the unique open an-
swer se(U, ().

Formally, we can rewrite every (L)GP as an equivalent F(L)GP*, wherePf is P
with everya « G replaced byy U not 8 « 3. The body guard of arule in a (loosely)
guarded progran® is then also a head guard of the corresponding ruléfijrand P! is
indeed a fully (loosely) guarded program.

A rule is vacuously satisfied if the body of a rulef is false and consequently the
head does not matter; if the body is true then the newly addddrpthe head becomes
false and the rule itP* reduces to its corresponding rulefih

Proposition 3. Let P be a program. An open interpretatiqi/, M) of P is an open
answer set oP iff (U, M) is an open answer set éf'.

Since we copy the positive bodies to the heads, the siZ& @inly increases linearly
in the size ofP. Furthermore, the construction opgprogram retains the guardedness
propertiesP is a (F)LGP iff P, is a (F)LGP. A similar property holds for (F)GPs.

For a fully (loosely) guardeg-programP, we can rewritecomp(P) as the equiva-
lent u(L)GF formulasgcomp(P). gcomp(P) is comp(P) with the following modifica-
tions:

— FormulaiX -true is replaced byl X - X = X, a formula guarded by = X.

100 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

— Formula(2) is removed ifr : o« < S is free and otherwise replaced by

VY A=V av V=@ vVe,

where~y, is a body guard of; we logically rewrite formula(2) such that it is
(loosely) guarded. If is a free rule of the formy(t) v not ¢(t) «— , we have
VY - true = ¢(t) V —q(t) € comp(P), which is always true and can be removed.
— Formula(3) is replaced by the formulagY - r(Y) = Aa™ A A5~ andVvY -
Ay = r(Y)VV G~ VV-(a\), wherey, is a head guard of. We thus
rewrite an equivalence as two implications. The first imgtdiien is guarded by
r(Y) and the second one is (loosely) guarded by the head guard oilédh— hence
the need for a fully (loosely) guarded program, instead sf fu(loosely) guarded
one.
— For everyE(r) in (4), defineT = {¢; & cts(P) | 1 <14 < n}, and replace(r)
by
E'@r)y= N\ Xi=t:A3Z-(\BTpIWIAr(Y))[t: € TIX)]
t;&T

with Z = Y'\T, i.e. move allX; = ¢; wheret; is constant out of the quantifier’s
scope, and remove the others by substituting each/A 57 [p|W] A r(Y') by X;.
This rewriting makes sure that every variable in the quadifart of E'(R) is
guarded by-(Y)[t; € T|X;].

Example 5.For the fully guardeg-programP containing a rulep(X) V not p(X) «—
p(X) with body and head guarflo(X)}, one has thasat(P) = {VX - p(X) =
p(X)V-p(X)}, g1(P) = {VX - r(X) & p(X)} and the formulap(W, X;) in
fpf(P)is p(W, X)) = W(X;) v3X - X1 = X AW(X) Ar(X). gcomp(P) does
not modifysat(P) and rewrites the equivalenceg(P) as two guarded implications.
The rewrittenp(W, X1) is W (X1) V (W (X1) A r(X1)).

For a fully (loosely) guardeg-programP, gcomp(P) is a u(L)GF formula, and it is
logically equivalent tocomp(P), i.e. (U, M) is a model ofcomp(P) iff (U, M) is a
model ofgcomp(P). gcomp(P) is a simple logical rewriting otomp(P), with a size
linear in the size otomp(P). Using Proposition 3 and Theorem 1, satisfiability check-
ing w.r.t. (L)GPs can be quadratically reduced to satidfighthecking of au(L)GF
formula.

Theorem 2. Let P be a (L)GP and; an n-ary predicate inP. q is satisfiable w.r.tP
iff p(X,0,q9) A gcomp((Pf)p) is satisfiable. Moreover, this reduction is quadratic.

Since satisfiability checking fqu(L)GF is 2£xpPTIME-complete (Proposition [1.1] in
[14]), we have the following upper complexity bound.

Theorem 3. Satisfiability checking w.r.t. (L)GPs is in2xPTIME.

An answer set of a programi (in contrast with aropenanswer set) is defined as an
answer set of the grounding &fwith its own constants, i.€\/ is an answer set o? if

it is a minimal model ofPCIﬁ(P). As is common in literature, we assurifecontains at
least one constant.

Guarded Open Answer Set Programming 101

We can make any program loosely guarded and reduce the asstveemantics
for programs to the open answer set semantics for looselydgdgprograms. For a
programP, let P& be the progran®, where for each rule in P and for each pair of
variablesX andY in r, g(X,Y) is added to the body of. Furthermore$ contains
rulesg(a, b) — foreverya,b € cts(P), making its size quadratic in the size Bf
Note that we assume w.l.0.g. thatdoes not contain a predicaje

The newly added guards in the bodies of rules together wald#finition of those
guards for constants only ensure a correspondence betwseriasets and open an-
swer sets where the universe of the latter equals the caastethe program.

Proposition 4. Let P be a programM is an answer set a? iff (cts(P), MU{g(a,b) |
a,b € cts(P)}) is an open answer set @. Moreover, this reduction is quadratic.

By construction,P# is loosely guarded. We can reduce checking whether thestsexi
an answer set containing a literal to satisfiability cheghkanr.t. the open answer set
semantics for loosely guarded programs.

Proposition 5. Let P be a program and ann-ary predicate inP. There is an answer
set M of P with g(a) € M iff ¢ is satisfiable w.r.t.P8. Moreover, this reduction is
quadratic.

The “only if” direction is trivial; the other direction uséisat for every open answer set
(U, M") of a loosely guarded progra#2, M’ contains only terms fromats(P), and
can be rewritten as an open answer(set(P), M U {g(a,b) | a,b € cts(P)}), after
which Proposition 4 becomes applicable.

By [7, 3] and the disjunction-freeness of the GL-reduct efpihograms we consider,
we have that checking whether there exists an answev/set P containing ag(a) is
NEXPTIME-complete. Thus, by Proposition 5, satisfiability checkingt. a LGP is
NEXPTIME-hard. In the next section, we improve on this result and sttat both
satisfiability checking w.r.t. GPs and w.r.t. LGPs is adualexPTIME-hard.

5 Relationship with DatalogLITE

We defineDatalogLITE as in [12]. ADatalog ruleis a rulea — 5 wherea = {a} for
some atomu. A basic Datalog progranis a finite set of Datalog rules such that no head
predicate appears in negative bodies of rules. Predidseappear only in the body of
rules areextensionabr input predicates. Note that equality is, by the definition of rules
never a head predicate and thus always extensional. Thensesaf a basic Datalog
programP, given a relational input structuté defined over extensional predicates of
PS, is given by itsfixed point modelsee e.g. [1]; for a queryP, ¢), whereP is a basic
Datalog program ang is an-ary predicate, we write. € (P, q)(U/) if there is a fixed
point modelM of P with input/ such thatg(a) € M. We call (P, q) satisfiable if
there exists & and ana such that € (P, ¢)(U).

5 We assume that, iff defines equality, it does so as the identity relation on,a&t|ehe terms
in the regular atoms @f and on the constants iR. Moreoverl{ may define equality even if
no (in)equality is present i#’; one can thus introduce arbitrary universes.

102 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

A programP is astratified Datalog progranif it can be written as a union of basic
Datalog programép, . . ., P,,), so-calledstrata, such that each of the head predicates
in P is a head predicate in exactly one stratmFurthermore, if a head predicatefh
is an extensional predicate i}, then:i < j. This definition entails that head predicates
in the positive body of rules are head predicates in the saméaver stratum, and head
predicates in the negative body are head predicates in a kivegum. The semantics
of stratified Datalog programs is defined stratum per stragianting from the lowest
stratum and defining the extensional predicates on the way up

A generalized literais of the formvYy,... Y, - « = b wherea andb are atoms
andwvars(b) C vars(a). A DatalogLITE program is a stratified Datalog program, pos-
sibly containing generalized literals in the positive bodiiere each rule isionadicor
guarded A rule is monadic if each of its (generalized) literals @ns only one (free)
variable; it is guarded if there exists an atom in the positiedy that contains all vari-
ables (free variables in the case of generalized literdi$he rule. The definition of
stratified is adapted for generalized literals: forfa, ..., Y, - a = b in the body of a
rule where the underlying predicate®is a head predicate, this head predicate must be
a head predicate in a lower stratum (ués treated as a naf-atom) and a head predicate
underlyingb must be in the same or a lower stratum (b.és treated as an atom). The
semantics can be adapted accordingly sinteecompletely defined in a lower stratum.

In[12], Theorem 8.5., a DatalagTe query(r,, ¢,,) was defined for an alternation-
free’ uGF sentenceyp such thatU, M) |= ¢ iff (m,, g,)(M Uid(U)) evaluates to true,
where the latter means that is in the fixed point model of, with input M U id(U),
and whered(U) = {z = = | = € U}. For the formal details of this reduction, we refer
to [12].

Satisfiability checking with GPs can be polynomially redditeesatisfiability check-
ing in DatalogLITE. Indeed, by Theorem 2,is satisfiable w.r.t. a GP iff p(X,0,¢) A
gcomp((Pf)p) is satisfiable, and the latter is satisfiableff= 3X - p(X,0,q) A
gcomp((Pf)p) is. Sincey is a;GF sentence, we have thatis satisfiable iff(7,, g,)
is satisfiable. By Theorem 2, the translationfofo ¢ is quadratic in the size aP and
the query(r,, g,) iS quadratic inp[12], resulting in a polynomial reduction.

Theorem 4. Let P be a GPg¢ ann-ary predicate inP and ¢ the uGF sentencélX -
p(X,0,9) A gcomp((Pf)p). q is satisfiable w.r.tP iff (7, q,,) is satisfiable. Moreover,
this reduction is polynomial.

Satisfiability checking in stratified Datalog under the fiy@mint model semantics can
be linearly reduced to satisfiability checking w.r.t. praxgus under the open answer
set semantics. For a stratified Datalog progniet P° be the progran? with free
rulesf(X) V not f(X) «— added for all predicatefthat are extensional in the entire
programP (with the exception of equality predicates). The free rite®° mimic the
role of extensional predicates from the origialthey allow for an initial free choice
of the relational input structure.

" Since we did not allow nested least fixed point formulas in @efinition of (L)GF, it is
trivially alternation-free.
8 A sentence is a formula without free variables.

Guarded Open Answer Set Programming 103

Proposition 6. Let P be a stratified Datalog queryP, q). (P, q) is satisfiable iffq is
satisfiable w.r.t.P°. Moreover, this reduction is linear.

Recursion-freestratified Datalog is stratified Datalog where the head pegds in the
positive bodies of rules must be head predicates in a lowatush. We call recursion-
free DatalogLITE where all rules are guarded, i.e. without monadic rules @éhatnot
guarded, DatalogITER, where the definition of recursion-free is appropriately ex
tended to take into account the generalized literals.

For a Datalog ITER programP, let —— P be the progranP where all generalized
literals are replaced by a double negation. B(g) < f(X),VY - r(X,Y) = s(Y)
is rewritten as the ruleg(X) — f(X), not ¢'(X) and¢'(X) < (X, Y), not s(Y).

As indicated in [12],-—P is equivalent toP and the recursion-freeness ensures that
——P is stratified. Clearly(——P)° is a GP.

For a DatalogLITER query (P,q), (——P,¢) is an equivalent stratified Datalog
query. Hence, by Proposition 6;—P, q) is satisfiable iffy is satisfiable w.r.t{——P)°.
This reduction is linear since—P is linear in the size of” and so is(——P)°. Thus
satisfiability checking of DatalogiTER queries can be linearly reduced to satisfiability
checking w.r.t. GPs.

Theorem 5. Let (P, q) be a Datalog ITER query.(P, q) is satisfiable iff; is satisfiable
w.r.t. (=—P)°. Moreover, this reduction is linear.

The reduction fromuGF sentence$ to DatalogLITE queries(r,, ¢,,) Specializes, as
noted in [12], to a reduction from GF sentences to recurfie@Datalog.ITE queries.
Moreover, the reduction contains only guarded rules suah@®f sentenceg are ac-
tually translated to Datalog TER querieS(w,, ¢,).

Satisfiability checking in the guarded fragment GF igxTIME-complete[13],
such that, using Theorem 5 and the intermediate Datalogr translation, we have
that satisfiability checking w.r.t. GPs isexPTIME-hard. Completeness readily follows
from the 2exPTIME membership in Theorem 3.

Every GP is a LGP and satisfiability checking w.r.t. to thenfer is 2EXPTIME-
complete, thus satisfiability checking w.r.t. LGPs i€2rTIME-hard. Completeness
follows again from Theorem 3.

Theorem 6. Satisfiability checking w.r.t. (L)GPs is2xPTIME-complete.

6 Conclusions and Directions for Further Research

We embedded OASP in FPL and used this embedding to identibs€ly) guarded
OASP, a decidable fragment of OASP. Finite ASP was reducddasely guarded
OASP and the relationship with Datalagre was made explicit. Finally, satisfiabil-
ity checking w.r.t. (loosely) guarded OASP was shown to lExRTIME-complete.

We plan to further exploit the correspondence between€lgpguarded OASP and
1(L)GF by seeking to apply implementation techniques used:fb)GF satisfiability
checking directly to (loosely) guarded OASP. Possibly, e take advantage of the
fact that the embedding does not seem to need the full poweg(L9GF — there are,
e.g., no nested fixed point formulas in the FPL translatio®ASP. It is interesting to

104 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

search for fragments of guarded OASP that can be implemesiad existing answer
set solvers such asLv[9] or sMODELY23]. Another promising direction is to study
generalized literals in the context of the answer set sdoganwhat is an appropriate
semantics in the absence of stratification, can this stidrbbedded in FPL?

Finally, w-restricted programs[22] are programs where function yimhbre al-
lowed but reasoning is kept decidable by “guarding” vaegsbh a rule with a predicate
thatis in a lower stratification than the predicate of thedhafahat rule. Since reasoning
with w-restricted programs B&-NEXPTIME-complete, it should be possible to simulate
guarded open answer set programming in this framework.

References

-

. S. Abiteboul, R. Hull, and V. Vianuroundations of Database#\ddison-Wesley, 1995.
H. Andréka, I. Nemeti, and J. Van Benthem. Modal Langsagnd Bounded Fragments of
Predicate LogicJ. of Philosophical Logic27(3):217-274, 1998.
3. C. Baral. Knowledge Representation, Reasoning and Declarativel®molsolving Cam-
bridge Press, 2003.
4. J. Van Benthem. Dynamic Bits and PieceslUhC research reportUniversity of Amster-
dam, 1997.
5. A. K. Chandra and D. Harel. Horn Clauses and the Fixpoirgr@tidierarchy. InProc. of
PODS '82 pages 158-163. ACM Press, 1982.
6. K. L. Clark. Negation as Failure. Readings in Nonmonotonic Reasonipgges 311-325.
Kaufmann, 1987.
7. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Comjpitgxand Expressive Power of
Logic ProgrammingACM Comput. Sury33(3):374-425, 2001.
8. E. A. Emerson and E. M. Clarke. Using Branching Time Terapbtogic to Synthesize
Synchronization Skeleton&ciene of Computer Programmirzy3):241-266, 1982.
9. W. Faber, N. Leone, and G. Pfeifer. Pushing Goal DerivatidLP Computations. IRroc.
of LPNMR volume 1730 o£NCS pages 177-191. Springer, 1999.
10. M. Gelfond and V. Lifschitz. The Stable Model Semantmmslfogic Programming. If#roc.
of ICLP’88, pages 1070-1080, Cambridge, Massachusetts, 1988. M§E.Pre
11. M. Gelfond and H. Przymusinska. Reasoning in Open Dosnéirlogic Programming and
Non-Monotonic Reasoningages 397-413. MIT Press, 1993.
12. G. Gottlob, E. Gradel, and H. Veith. Datalog LITE: A detive query language with linear
time model checkingACM Transactions on Computational Log8(1):1-35, 2002.
13. E. Gradel. On the Restraining Power of Guardsurnal of Symbolic Logic64(4):1719—
1742, 1999.
14. E. Gradel and I. Walukiewicz. Guarded Fixed Point Login Proc. of LICS '99 pages
45-54. |EEE Computer Society, 1999.
15. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Gua@leein Answer Set Program-
ming. Technical report. http://tinf2.vub.ac.be/"shensigech/guarded-oasp.ps.gz.
16. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Semakigb Reasoning with Con-
ceptual Logic Programs. IRroc. of RuleML 2004pages 113-127. Springer, 2004.
17. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Nonrtario Ontological and Rule-
Based Reasoning with Extended Conceptual Logic Prograni&ok. of ESWC 2005um-
ber 3532 in LNCS, pages 392-407. Springer, 2005.
18. D. Kozen. Results on the Propositiopatalculus. Theor. Comput. Sgi27:333-354, 1983.
19. J. Lee and V. Lifschitz. Loop Formulas for Disjunctivedio Programs. IrProc. of ICLP
2003 volume 2916 of NCS pages 451-465. Springer, 2003.

n

20.

21.

22.

23.

Guarded Open Answer Set Programming 105

V. Lifschitz, D. Pearce, and A. Valverde. Strongly Eqlént Logic ProgramsACM Trans-
actions on Computational Logi@(4):526-541, 2001.

F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of a Ldgiogram by SAT Solvers.
In Proc. of 18th National Conference on Atrtificial Intelligenpages 112-117. AAAI, 2002.
T. Syrjanen. Omega-restricted Logic ProgramsProc. of LPNMR volume 2173 of.NAI,
pages 267-279. Springer, 2001.

T. Syrjanen and I. Niemela. TteoODELS System. InProc. of LPNMR volume 2173 of
LNCS pages 434-438. Springer, 2001.

