
92 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

Guarded Open Answer Set Programming

Stijn Heymans, Davy Van Nieuwenborgh?, and Dirk Vermeir??

Dept. of Computer Science
Vrije Universiteit Brussel, VUB

Pleinlaan 2, B1050 Brussels, Belgium
{sheymans,dvnieuwe,dvermeir}@vub.ac.be

Abstract. Open answer set programming (OASP) is an extension of answerset
programming where one may ground a program with an arbitrarysuperset of the
program’s constants. We define a fixed point logic (FPL) extension of Clark’s
completion such that open answer sets correspond to models of FPL formulas
and identify a syntactic subclass of programs, called (loosely) guarded programs.
Whereas reasoning with general programs in OASP is undecidable, the FPL trans-
lation of (loosely) guarded programs falls in the decidable(loosely) guarded fixed
point logic (µ(L)GF).
Moreover, we reduce normal closed ASP to loosely guarded OASP, enabling a
characterization of an answer set semantics byµLGF formulas. Finally, we re-
late guarded OASP to DatalogLITE, thus linking an answer set semantics to a
semantics based on fixed point models of extended stratified Datalog programs.
From this correspondence, we deduce 2-EXPTIME-completeness of satisfiability
checking w.r.t. (loosely) guarded programs.

1 Introduction

A problem with finite closed answer set programming (ASP)[10] is that all significant
constants have to be present in the program in order to capture the intended semantics.
E.g., a program with a ruler : p(X) ← not q(X) and a factq(a) has the unique
answer set{q(a)} and thus leads to the conclusion thatp is not satisfiable. However,
if r is envisaged as a schema constraint anda is just one possible data instance, this
conclusion is wrong: other data makesp satisfiable.

This problem was solved in [11] by introducingk new constants,k finite, and
grounding the program with this extended universe; the answer sets of the grounded
program were calledk-belief sets. We extended this idea, e.g. in [16], by allowing for
arbitrary, thus possibly infinite, universes.Open answer setsare then pairs(U,M) with
M an answer set of the program grounded withU . The above program has an open
answer set({x, a}, {q(a), p(x)}) wherep is satisfiable.

Characteristic about (O)ASP is its treatment of negation asfailure (naf): one guesses
an interpretation for a program, computes the program without naf (the GL-reduct[10]),

? Supported by the FWO.
?? This work was partially funded by the Information Society Technologies programme of the

European Commission, Future and Emerging Technologies under the IST-2001-37004 WASP
project.

C. Baral et al. (Eds.): LPNMR 2005, LNAI 3662, pp. 92-104, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Guarded Open Answer Set Programming 93

calculates the iterated fixed point of this reduct, and checks whether this fixed point
equals the initial interpretation. We compile these external manipulations, i.e. not ex-
pressible in the language of programs itself, into fixed point logic (FPL)[14] formulas
that are at most quadratic in the size of the original program. First, we rewrite an arbi-
trary program as a program containing only one designated predicatep and (in)equality;
this makes sure that when calculating a fixed point of the predicate variablep, it con-
stitutes a fixed point of the whole program. In the next phase,such ap-programP is
translated to FPL formulascomp(P). comp(P) ensures satisfiability of program rules
by formulas comparable to those in Clark’s completion. The specific answer set seman-
tics is encoded by formulas indicating that for each atomp(x) in the model there must
be a true rule body that motivates the atom, and this in a minimal way, i.e. using a fixed
point predicate. Negation as failure is correctly handled by making sure that only those
rules that would be present in the GL-reduct can be used to motivate atoms.

In [5], Horn clauses were translated to FPL formulas and in [12] reasoning with an
extension of stratified Datalog was reduced to FPL, but, to the best of our knowledge,
this is the first encoding of an answer set semantics in FPL.

In [21, 19], ASP with (finite) propositional programs is reduced to propositional sat-
isfiability checking. The translation makes the loops in a program explicit and ensures
that atomsp(x) are motivated by bodies outside of these loops. Although this is an
elegant characterization of answer sets in the propositional case, the approach does not
seem to hold for OASP, where programs are not propositional but possibly ungrounded
and with infinite universes. Instead, we directly use the built-in “loop detection” mech-
anism of FPL, which enables us to go beyond propositional programs.

Translating OASP to FPL is thus interesting in its own right,but it also enables the
analysis of decidability of OASP via decidability results of fragments of FPL. Satis-
fiability checking of a predicatep w.r.t. a program, i.e. checking whether there exists
an open answer set containing somep(x), is undecidable, e.g. the undecidable domino
problem can be reduced to it[15]. It is well-known that satisfiability checking in FOL is
undecidable, and thus the extension to FPL is too. However, expressive decidable frag-
ments of FPL have been identified[14]:(loosely) guarded fixed point logic(µ(L)GF)
extends the(loosely) guarded fragment(L)GF of FOL with fixed point predicates.

GF was identified in [2] as a fragment of FOL satisfying properties such as decid-
ability of reasoning and the tree-model property, i.e. every model can be rewritten as a
tree-model. The restriction of quantified variables by aguard, an atom containing the
variables in the formula, ensures decidability in GF. Guards are responsible for the tree-
model property of GF (where the concept of tree is adapted forpredicates with arity
larger than2), which in turn enables tree-automata techniques for showing decidability
of satisfiability checking. In [4], GF was extended to LGF where guards can be con-
junctions of atoms and, roughly, every pair of variables must be together in some atom
in the guard. Satisfiability checking in both GF and LGF is 2-EXPTIME-complete[13],
as are their extensions with fixed point predicatesµGF andµLGF[14].

We identify a syntactically restricted class of programs,(loosely) guarded programs
((L)GPs), for which the FPL translation falls inµ(L)GF, making satisfiability checking
w.r.t. (L)GPs decidable and in 2-EXPTIME. In LGPs, rules have a set of atoms, the
guard, in the positive body, such that every pair of variables in the rule appears together

94 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

in an atom in that guard. GPs are the restriction of LGPs whereguards must consist of
exactly one atom. Programs under the normal answer set semantics can be rewritten as
LGPs under the open answer set semantics by guarding all variables with atoms that
can only deduce constants from the original program. Besides the desirable property
that OASP with LGPs is thus a proper decidable extension of normal ASP, this yields
that satisfiability checking w.r.t. LGPs is, at least,NEXPTIME-hard.

DatalogLITE[12] is a language based on stratified Datalog with input predicates
where rules are monadic or guarded and may have generalized literals in the body, i.e.
literals of the form∀Y · a ⇒ b for atomsa and b. It has an appropriately adapted
bottom-up fixed point semantics. DatalogLITE was devised to ensure linear time model
checking while being expressive enough to capturecomputational tree logic[8] and
alternation-freeµ-calculus[18]. Moreover, it was shown to be equivalent to alternation-
freeµGF. Our reduction of GPs toµGF, ensures that we have a reduction from GPs
to DatalogLITE, and thus couples the answer set semantics to a fixed point semantics
based on stratified programs. Intuitively, the guess for an interpretation in the answer
set semantics corresponds to the input structure one feeds to the stratified Datalog pro-
gram. The translation from GPs to DatalogLITE needs only one stratum to subsequently
perform the minimality check of answer set programming.

The other way around, we reduce satisfiability checking in recursion-free Datalog
LITE to satisfiability checking w.r.t. GPs. Recursion-free Datalog LITE is equivalent to
GF[12], and, since satisfiability checking of GF formulas is2-EXPTIME-hard[13], we
obtain 2-EXPTIME-completeness for satisfiability checking w.r.t. (L)GPs.

In [16, 17], other decidable classes of programs under the open answer set seman-
tics were identified; decidability was attained differently than for (L)GPs, by reduc-
ing OASP to finite ASP. Although the therein identifiedconceptual logic programsare
more expressive in some aspects (they allow for a more liberal use of inequality), they
are less expressive in others, e.g. the use of predicates is restricted to unary and binary
ones. Moreover, the definition of (L)GPs is arguably more simple compared to the often
intricate restrictions on the rules in conceptual logic programs.

The remainder of the paper is organized as follows. After recalling the open answer
set semantics in Section 2, we reduce reasoning under the open answer set semantics
to reasoning with FPL formulas in Section 3. Section 4 describes guarded OASP, to-
gether with a 2-EXPTIME complexity upper bound and a reduction from finite ASP
to loosely guarded OASP. Section 5 discusses the relationship with DatalogLITE and
establishes 2-EXPTIME-completeness for (loosely) guarded open answer set program-
ming. Section 6 contains conclusions and directions for further research. Due to space
restrictions, proofs have been omitted; they can be found in[15].

2 Open Answer Set Semantics

We recall the open answer set semantics from [16].Constants, variables, terms, and
atomsare defined as usual. Aliteral is an atomp(t) or a naf-atomnot p(t).1 The
positive partof a set of literalsα is α+ = {p(t) | p(t) ∈ α} and thenegative part

1 We have no negation¬, however, programs with¬ can be reduced to programs without it, see
e.g. [20].

Guarded Open Answer Set Programming 95

of α is α− = {p(t) | not p(t) ∈ α}. We assume the existence of binary predicates
= and 6=, wheret = s is considered as an atom andt 6= s asnot t = s. E.g. for
α = {X 6= Y, Y = Z}, we haveα+ = {Y = Z} andα− = {X = Y }. A regularatom
is an atom that is not an equality atom. For a setX of atoms,not X = {not l | l ∈ X}.

A program is a countable set of rulesα ← β, whereα andβ are finite sets of
literals, |α+| ≤ 1, and∀t, s · t = s 6∈ α+, i.e.α contains at most one positive atom,
and this atom cannot be an equality atom.2 The setα is theheadof the rule and repre-
sents a disjunction of literals, whileβ is called thebodyand represents a conjunction
of literals. If α = ∅, the rule is called aconstraint. Free rulesare rules of the form
q(t) ∨ not q(t) ← for a tuplet of terms; they enable a choice for the inclusion of
atoms. We call a predicatep free if there is a free rulep(t) ∨ not p(t) ← . Atoms,
literals, rules, and programs that do not contain variablesareground.

For a programP , let cts(P) be the constants inP , vars(P) its variables, and
preds(P) its predicates. AuniverseU for P is a non-empty countable superset of the
constants inP : cts(P) ⊆ U . We callPU the ground program obtained fromP by
substituting every variable inP by every possible constant inU . Let BP be the set of
regular atoms that can be formed from a ground programP .

An interpretationI of a groundP is any subset ofBP . For a ground regular atom
p(t), we write I |= p(t) if p(t) ∈ I; For an equality atomp(t) ≡ t = s, we have
I |= p(t) if s and t are equal terms. We haveI |= not p(t) if I 6|= p(t). For a set
of ground literalsX , I |= X if I |= l for every l ∈ X . A ground ruler : α ← β

is satisfiedw.r.t. I, denotedI |= r, if I |= l for somel ∈ α wheneverI |= β, i.e. r
is appliedwhenever it isapplicable. A ground constraint← β is satisfied w.r.t.I if
I 6|= β. For a ground programP without not, an interpretationI of P is amodelof P
if I satisfies every rule inP ; it is an answer setof P if it is a subset minimal model
of P . For ground programsP containingnot, theGL-reduct[10] w.r.t. I is defined as
P I , whereP I containsα+ ← β+ for α ← β in P , I |= not β− andI |= α−. I is an
answer setof a groundP if I is an answer set ofP I .

In the following, a program is assumed to be a finite set of rules; infinite programs
only appear as byproducts of grounding a finite program with an infinite universe. An
open interpretationof a programP is a pair(U,M) whereU is a universe forP andM
is an interpretation ofPU . An open answer setof P is an open interpretation(U,M) of
P with M an answer set ofPU . An n-ary predicatep in P is satisfiableif there is an
open answer set(U,M) of P and ax ∈ Un such thatp(x) ∈M . We assume that when
satisfiability checking a predicatep, p is always non-free, i.e. there are no free rules
with p in the head. Note that satisfiability checking of a freen-ary predicatep w.r.t.P
can always be reduced to satisfiability checking of a new non-freen-ary predicatep′

w.r.t.P ∪ {p′(X)← p(X)}. Note that this is a linear reduction.

3 Open Answer Set Programming via Fixed Point Logic

We assume without loss of generality that the set of constants and the set of predicates
in a program are disjoint and that each predicateq has one associated arity, e.g.q(x)

2 The condition|α+| ≤ 1 ensures that the GL-reduct is non-disjunctive.

96 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

andq(x, y) are not allowed. A programP is a p-program if p is the only predicate
in P different from the (in)equality predicate. We can rewrite any programP as an
equivalentp-programPp by replacing every regularm-ary atomq(t) in P by p(t,0, q)
wherep has arityn, with n the maximum of the arities of predicates inP augmented
by 1, 0 a sequence of new constants0 of lengthn−m− 1, andq a new constant with
the same name as the original predicate. Furthermore, in order to avoid interference of
the new constants, we add for every variableX in a non-free ruler ∈ P and for every
newly added constanta in Pp, X 6= a to the body. E.g., the ruleh(a, b) ← q(X) in P
corresponds top(a, b, h) ← p(X , 0 , q),X 6= 0 ,X 6= h,X 6= q in Pp.

Proposition 1. LetP be a program andq a predicate inP . q is satisfiable w.r.t.P iff
there is an open answer set(U ′,M ′) of thep-programPp with p(x,0, q) ∈M ′.

The translation of a program to ap-program does not influence the complexity of rea-
soning, i.e. the size ofPp is linear in the size ofP . By Proposition 1, we can focus
attention onp-programs only. Sincep-programs have open answer sets consisting of
one predicatep, fixed points calculated w.r.t.p yield minimal models of the whole pro-
gram as we will show in Proposition 2.

In [5], a similar motivation drives the reduction of Horn clauses to clauses consisting
of only one defined predicate. Their encoding does not introduce new constants to iden-
tify old predicates and depends entirely on the use of (in)equality. However, to account
for databases consisting of only one element, [5] needs an additional transformation
that unfolds bodies of clauses.

We assume that FOL interpretations have the same form as openinterpretations: a
pair (U,M) corresponds with the FOL interpretationM over the domainU . Further-
more, we consider FOL with equality such that equality is always interpreted as the
identity relation overU . (Least) Fixed Point Logic (FPL)is defined along the lines of
[14]. Fixed point formulasare of the form

[LFP WX.ψ(W,X)](X) , (1)

whereW is ann-ary predicate variable,X is ann-ary sequence of variables,ψ(W,X)
is a FOL formula where all free variables are contained inX and whereW appears
only positively inψ(W,X).3

We associate with(1) and an interpretation(U,M) that does not interpretW , an
operatorψ(U,M) : 2Un

→ 2Un

defined on setsS of n-ary tuples asψ(U,M)(S) ≡
{x ∈ Un | (U,M) |= ψ(S,x)}. By definition,W appears only positively inψ such
thatψ(U,M) is monotonic on sets ofn-aryU -tuples and has a least fixed point, which
we denote byLFP(ψ(U,M)). Finally, we have(U,M) |= [LFP WX.ψ(W,X)](x) iff
x ∈ LFP(ψ(U,M)).

We can reduce ap-programP to equivalent FPL formulascomp(P). Thecompletion
comp(P) consists of formulasa 6= b for different constantsa andb in P making sure
that constants are interpreted as different elements, wherea 6= b ≡ ¬(a = b). comp(P)

3 Sinceψ(W,X) is a FOL formula, we do not allow nesting of fixed point formulas. This
restriction is sufficient for the FPL simulation of OASP, and, furthermore, it simplifies the
notation since one does not have to take into account an extrafunctionχ that gives meaning
to free second-order variables different fromW .

Guarded Open Answer Set Programming 97

also contains the formula∃X · true ensuring the existence of at least one element in
the domain of an interpretation. Besides these technical requirements that match FOL
interpretations with open interpretations,comp(P) contains the formulas infix(P) ≡
sat(P) ∪ gl(P) ∪ fpf(P), which can be intuitively categorized as follows:sat(P)
ensures that a model offix(P) satisfies all rules inP , gl(P) is an auxiliary component
defining atoms that indicate when a rule inP belongs to the GL-reduct ofP , and finally,
fpf(P) ensures that every model offix(P) is a minimal model of the GL-reduct inP ;
it uses the atoms defined ingl(P) to select, for the calculation of the fixed point, only
those rules inP that are in the GL-reduct ofP .

We interpret a naf-atomnot a in a FOL formula as the literal¬a. Moreover, we
assume that, if a setX is empty,

∧
X = true and

∨
X = false. We further assume that

the arity ofp, the only predicate in ap-program, isn.

Definition 1. Let P be ap-program. Then,fix(P) ≡ sat(P) ∪ gl(P) ∪ fpf(P),
where

– sat(P) contains formulas

∀Y ·
∧
β ⇒

∨
α (2)

for rulesα← β ∈ P with variablesY ,
– gl(P) contains formulas

∀Y · r(Y)⇔
∧
α− ∧

∧
¬β− (3)

for rulesr : α← β ∈ P with variablesY and a new predicater,
– fpf(P) contains the formula

∀X · p(X)⇒ [LFP W X.φ(W ,X)](X) (4)

with φ(W,X) ≡ W (X) ∨
∨

r:p(t)∨α←β∈P E(r) andE(r) ≡ ∃Y · X1 = t1 ∧

. . .∧Xn = tn∧
∧
β+[p|W]∧r(Y), whereX = X1, . . . , Xn aren new variables,

Y are the variables inr, W is a new (second-order) variable andβ+[p|W] is β+

with p replaced byW .

ThecompletionofP is comp(P) ≡ fix(P)∪{a 6= b | a 6= b ∈ cts(P)}∪{∃X · true}.

The predicateW appears only positively inφ(W,X) such that the fixed point formula
in (4) is well-defined. The first conjunct,W (X), in φ(W,X) ensures that previously
deduced tuples are deduced by the next application of the fixed point operator, i.e.
S ⊆ φ(U,M)(S). The disjunction

∨
r E(r) makes sure that for each atom there is a

rule r in the GL-reduct (∃Y · r(Y)) with a true positive body that can motivate that
atom.

Example 1.Take ap-programP with rule r : p(X) ← p(X). comp(P) is then such
thatsat(P) = {∀X · p(X)⇒ p(X)}, ensuring thatr is satisfied, andgl(P) = {∀X ·
r(X) ⇔ true} says thatr belongs to every GL-reduct since there are no naf-atoms.
Finally,fpf(P) = {∀X1 ·p(X1)⇒ [LFP W X1 .φ(W ,X1)](X1)}, with φ(W,X1) ≡
W (X1) ∨ ∃X ·X1 = X ∧W (X) ∧ r(X).

98 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

Proposition 2. Let P be ap-program. Then,(U,M) is an open answer set ofP iff
(U,M ∪R) is a model ofcomp(P), whereR ≡ {r(y) | r[Y |y] ∈ PM

U , vars(r) = Y },
i.e. the atoms corresponding to rules in the GL-reduct ofPU w.r.t.M .4

Example 2.For a universeU = {x}, we have the unique open answer set(U, ∅) of P
in Example 1. SinceU is non-empty, every open answer set with a universeU satisfies
∃X · true. Both (U,M1 = {p(x), r(x)}) and (U,M2 = {r(x)}) satisfysat(P) ∪
gl(P). SinceLFP(φ(U,M1)) = LFP(φ(U,M2)) = ∅, only (U,M2) satisfiesfpf(P);
(U,M2) corresponds exactly to the open answer set(U, ∅) of P .

The completion in Definition 1 differs from Clark’s completion[6] both in the presence
of the fixed point construct in(4) and the atoms representing membership of the GL-
reduct. Forp-programsP , Clark’s Completionccomp(P) does not containgl(P), and
fpf(P) is replaced by the formula∀X · p(X)⇒

∨
r :p(t)∨α←β∈P D(r) with D(r) ≡

∃Y · X1 = t1 ∧ . . . ∧ Xn = tn ∧
∧
β ∧

∧
α−. ProgramP in Example 1 is the

OASP version of the classical examplep ← p[19], for which there are FOL models of
ccomp(P) that do not correspond to any answer sets: both({x}, {p(x)}) and({x}, ∅)
are FOL models while only the latter is an open answer set ofP .

Using Propositions 1 and 2, we can reduce satisfiability checking in OASP to sat-
isfiability checking in FPL. Moreover, withc the number of constants in a programP ,
the number of formulasa 6= b is 1

2c(c − 1), and, since the rest ofcomp(P) is linear in
P , this yields a quadratic bound for the size ofcomp(P).

Theorem 1. LetP be a program andq ann-ary predicate inP . q is satisfiable w.r.t.P
iff p(X,0, q) ∧ comp(Pp) is satisfiable. Moreover, this reduction is quadratic.

4 Guarded Open Answer Set Programming

We repeat the definitions of theloosely guarded fragment[4] of FOL as in [14]: The
loosely guarded fragment LGF of FOL is defined inductively asfollows:

(1) Every relational atomic formula belongs to LGF.
(2) LGF is closed under propositional connectives¬, ∧, ∨,⇒, and⇔.
(3) If ψ(X,Y) is in LGF, andα(X ,Y) = α1 ∧ . . . ∧ αm is a conjunction of atoms,

then the formulas
∃Y · α(X ,Y) ∧ ψ(X,Y)
∀Y · α(X,Y)⇒ ψ(X,Y)

belong to LGF (andα(X ,Y) is the guard of the formula), provided that free(ψ) ⊆
free(α) = X ∪ Y and for every quantified variableY ∈ Y and every variable
Z ∈ X ∪ Y there is at least one atomαj that contains bothY andZ (where
free(ψ) are the free variables ofψ).

The loosely guarded (least) fixed point logicµLGF is LGF extended with fixed point
formulas (1) whereψ(W,X) is a LGF formula5 such thatW does not appear in guards.

4 We denote the substitution ofY = Y1, . . . , Yd with y = y1, . . . , yd in a ruler by r[Y |y].
5 Thus, in accordance with our definition of FPL, nesting of (guarded) fixed point logic formulas

is not allowed.

Guarded Open Answer Set Programming 99

The guarded fragmentGF is defined as LGF where the guards are atoms instead of
conjunctions of atoms. Theguarded fixed point logicµGF is GF extended with fixed
point formulas whereψ(W,X) is a GF formula such thatW does not appear in guards.

Definition 2. A ruler : α← β is loosely guardedif there is aγb ⊆ β+ such that every
two variablesX andY from r appear together in an atom fromγb; we callγb a body
guardof r. It is fully loosely guardedif it is loosely guarded and there is aγh ⊆ α−

such that every two variablesX andY from r appear together in an atom fromγh; γh

is called ahead guardof r.
A programP is a (fully) loosely guarded program ((F)LGP)if every non-free rule

in P is (fully) loosely guarded.

Example 3.The rule in Example 1 is loosely guarded but not fully looselyguarded.
A rule a(Y) ∨ not g(X ,Y) ← not b(X), f (X ,Y) has body guard{f(X,Y)} and
head guard{g(X,Y)}, and is thus fully loosely guarded.

Definition 3. A rule isguardedif it is loosely guarded with a singleton body guard. It
is fully guardedif it is fully loosely guarded with singleton body and head guards.

A programP is a (fully) guarded program ((F)GP)if every non-free rule inP is
(fully) guarded.

Every F(L)GP is a (L)GP, and we can rewrite every (L)GP as a F(L)GP.

Example 4.The rulep(X) ← p(X) can be rewritten asp(X) ∨ not p(X) ← p(X)
where the body guard is added to the negative part of the head to function as the head
guard. Both programs are equivalent: for a universeU , both have the unique open an-
swer set(U, ∅).

Formally, we can rewrite every (L)GPP as an equivalent F(L)GPP f , whereP f is P
with everyα← β replaced byα ∪ not β+ ← β. The body guard of a rule in a (loosely)
guarded programP is then also a head guard of the corresponding rule inP f , andP f is
indeed a fully (loosely) guarded program.

A rule is vacuously satisfied if the body of a rule inP f is false and consequently the
head does not matter; if the body is true then the newly added part in the head becomes
false and the rule inP f reduces to its corresponding rule inP .

Proposition 3. Let P be a program. An open interpretation(U,M) of P is an open
answer set ofP iff (U,M) is an open answer set ofP f .

Since we copy the positive bodies to the heads, the size ofP f only increases linearly
in the size ofP . Furthermore, the construction of ap-program retains the guardedness
properties:P is a (F)LGP iffPp is a (F)LGP. A similar property holds for (F)GPs.

For a fully (loosely) guardedp-programP , we can rewritecomp(P) as the equiva-
lentµ(L)GF formulasgcomp(P). gcomp(P) is comp(P) with the following modifica-
tions:

– Formula∃X · true is replaced by∃X ·X = X , a formula guarded byX = X .

100 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

– Formula(2) is removed ifr : α← β is free and otherwise replaced by

∀Y ·
∧
γb ⇒

∨
α ∨

∨
¬(β+\γb) ∨

∨
β− ,

whereγb is a body guard ofr; we logically rewrite formula(2) such that it is
(loosely) guarded. Ifr is a free rule of the formq(t) ∨ not q(t) ← , we have
∀Y · true ⇒ q(t) ∨ ¬q(t) ∈ comp(P), which is always true and can be removed.

– Formula(3) is replaced by the formulas∀Y · r(Y) ⇒
∧
α− ∧

∧
¬β− and∀Y ·∧

γh ⇒ r(Y) ∨
∨
β− ∨

∨
¬(α−\γh), whereγh is a head guard ofr. We thus

rewrite an equivalence as two implications. The first implication is guarded by
r(Y) and the second one is (loosely) guarded by the head guard of the rule – hence
the need for a fully (loosely) guarded program, instead of just a (loosely) guarded
one.

– For everyE(r) in (4), defineT ≡ {ti 6∈ cts(P) | 1 ≤ i ≤ n}, and replaceE(r)
by

E′(r) ≡
∧

ti 6∈T

Xi = ti ∧ ∃Z · (
∧
β+[p|W] ∧ r(Y))[ti ∈ T |Xi] ,

with Z = Y \T , i.e. move allXi = ti whereti is constant out of the quantifier’s
scope, and remove the others by substituting eachti in

∧
β+[p|W] ∧ r(Y) byXi.

This rewriting makes sure that every variable in the quantified part ofE′(R) is
guarded byr(Y)[ti ∈ T |Xi].

Example 5.For the fully guardedp-programP containing a rulep(X) ∨ not p(X)←
p(X) with body and head guard{p(X)}, one has thatsat(P) = {∀X · p(X) ⇒
p(X) ∨ ¬p(X)}, gl(P) = {∀X · r(X) ⇔ p(X)} and the formulaφ(W,X1) in
fpf(P) is φ(W,X1) ≡ W (X1) ∨ ∃X · X1 = X ∧W (X) ∧ r(X). gcomp(P) does
not modifysat(P) and rewrites the equivalence ingl(P) as two guarded implications.
The rewrittenφ(W,X1) isW (X1) ∨ (W (X1) ∧ r(X1)).

For a fully (loosely) guardedp-programP , gcomp(P) is aµ(L)GF formula, and it is
logically equivalent tocomp(P), i.e. (U,M) is a model ofcomp(P) iff (U,M) is a
model ofgcomp(P). gcomp(P) is a simple logical rewriting ofcomp(P), with a size
linear in the size ofcomp(P). Using Proposition 3 and Theorem 1, satisfiability check-
ing w.r.t. (L)GPs can be quadratically reduced to satisfiability checking of aµ(L)GF
formula.

Theorem 2. LetP be a (L)GP andq ann-ary predicate inP . q is satisfiable w.r.t.P
iff p(X,0, q) ∧ gcomp((P f)p) is satisfiable. Moreover, this reduction is quadratic.

Since satisfiability checking forµ(L)GF is 2-EXPTIME-complete (Proposition [1.1] in
[14]), we have the following upper complexity bound.

Theorem 3. Satisfiability checking w.r.t. (L)GPs is in 2-EXPTIME.

An answer set of a programP (in contrast with anopenanswer set) is defined as an
answer set of the grounding ofP with its own constants, i.e.M is an answer set ofP if
it is a minimal model ofPM

cts(P). As is common in literature, we assumeP contains at
least one constant.

Guarded Open Answer Set Programming 101

We can make any program loosely guarded and reduce the answerset semantics
for programs to the open answer set semantics for loosely guarded programs. For a
programP , let P g be the programP , where for each ruler in P and for each pair of
variablesX andY in r, g(X,Y) is added to the body ofr. Furthermore,P g contains
rulesg(a, b) ← for everya, b ∈ cts(P), making its size quadratic in the size ofP .
Note that we assume w.l.o.g. thatP does not contain a predicateg.

The newly added guards in the bodies of rules together with the definition of those
guards for constants only ensure a correspondence between answer sets and open an-
swer sets where the universe of the latter equals the constants in the program.

Proposition 4. LetP be a program.M is an answer set ofP iff (cts(P),M∪{g(a, b) |
a, b ∈ cts(P)}) is an open answer set ofP g. Moreover, this reduction is quadratic.

By construction,P g is loosely guarded. We can reduce checking whether there exists
an answer set containing a literal to satisfiability checking w.r.t. the open answer set
semantics for loosely guarded programs.

Proposition 5. LetP be a program andq ann-ary predicate inP . There is an answer
setM of P with q(a) ∈ M iff q is satisfiable w.r.t.P g. Moreover, this reduction is
quadratic.

The “only if” direction is trivial; the other direction usesthat for every open answer set
(U,M ′) of a loosely guarded programP g, M ′ contains only terms fromcts(P), and
can be rewritten as an open answer set(cts(P),M ∪ {g(a, b) | a, b ∈ cts(P)}), after
which Proposition 4 becomes applicable.

By [7, 3] and the disjunction-freeness of the GL-reduct of the programs we consider,
we have that checking whether there exists an answer setM of P containing aq(a) is
NEXPTIME-complete. Thus, by Proposition 5, satisfiability checkingw.r.t. a LGP is
NEXPTIME-hard. In the next section, we improve on this result and showthat both
satisfiability checking w.r.t. GPs and w.r.t. LGPs is actually 2-EXPTIME-hard.

5 Relationship with DatalogLITE

We defineDatalogLITE as in [12]. ADatalog ruleis a ruleα← β whereα = {a} for
some atoma. A basic Datalog programis a finite set of Datalog rules such that no head
predicate appears in negative bodies of rules. Predicates that appear only in the body of
rules areextensionalor inputpredicates. Note that equality is, by the definition of rules,
never a head predicate and thus always extensional. The semantics of a basic Datalog
programP , given a relational input structureU defined over extensional predicates of
P 6, is given by itsfixed point model, see e.g. [1]; for a query(P, q), whereP is a basic
Datalog program andq is an-ary predicate, we writea ∈ (P, q)(U) if there is a fixed
point modelM of P with input U such thatq(a) ∈ M . We call (P, q) satisfiable if
there exists aU and ana such thata ∈ (P, q)(U).

6 We assume that, ifU defines equality, it does so as the identity relation on, at least, the terms
in the regular atoms ofU and on the constants inP . Moreover,U may define equality even if
no (in)equality is present inP ; one can thus introduce arbitrary universes.

102 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

A programP is astratified Datalog programif it can be written as a union of basic
Datalog programs(P0, . . . , Pn), so-calledstrata, such that each of the head predicates
in P is a head predicate in exactly one stratumPi. Furthermore, if a head predicate inPi

is an extensional predicate inPj , theni < j. This definition entails that head predicates
in the positive body of rules are head predicates in the same or a lower stratum, and head
predicates in the negative body are head predicates in a lower stratum. The semantics
of stratified Datalog programs is defined stratum per stratum, starting from the lowest
stratum and defining the extensional predicates on the way up.

A generalized literalis of the form∀Y1, . . . , Yn · a ⇒ b wherea andb are atoms
andvars(b) ⊆ vars(a). A DatalogLITE program is a stratified Datalog program, pos-
sibly containing generalized literals in the positive body, where each rule ismonadicor
guarded. A rule is monadic if each of its (generalized) literals contains only one (free)
variable; it is guarded if there exists an atom in the positive body that contains all vari-
ables (free variables in the case of generalized literals) of the rule. The definition of
stratified is adapted for generalized literals: for a∀Y1, . . . , Yn · a ⇒ b in the body of a
rule where the underlying predicate ofa is a head predicate, this head predicate must be
a head predicate in a lower stratum (i.e.a is treated as a naf-atom) and a head predicate
underlyingb must be in the same or a lower stratum (i.e.b is treated as an atom). The
semantics can be adapted accordingly sincea is completely defined in a lower stratum.

In [12], Theorem 8.5., a DatalogLITE query(πϕ, qϕ) was defined for an alternation-
free7 µGF sentence8 ϕ such that(U,M) |= ϕ iff (πϕ, qϕ)(M∪id(U)) evaluates to true,
where the latter means thatqϕ is in the fixed point model ofπϕ with inputM ∪ id(U),
and whereid(U) ≡ {x = x | x ∈ U}. For the formal details of this reduction, we refer
to [12].

Satisfiability checking with GPs can be polynomially reduced to satisfiability check-
ing in DatalogLITE. Indeed, by Theorem 2,q is satisfiable w.r.t. a GPP iff p(X,0, q)∧
gcomp((P f)p) is satisfiable, and the latter is satisfiable iffϕ ≡ ∃X · p(X,0, q) ∧

gcomp((P f)p) is. Sinceϕ is aµGF sentence, we have thatϕ is satisfiable iff(πϕ, qϕ)
is satisfiable. By Theorem 2, the translation ofP to ϕ is quadratic in the size ofP and
the query(πϕ, qϕ) is quadratic inϕ[12], resulting in a polynomial reduction.

Theorem 4. LetP be a GP,q ann-ary predicate inP andϕ theµGF sentence∃X ·
p(X,0, q)∧ gcomp((P f)p). q is satisfiable w.r.t.P iff (πϕ, qϕ) is satisfiable. Moreover,
this reduction is polynomial.

Satisfiability checking in stratified Datalog under the fixedpoint model semantics can
be linearly reduced to satisfiability checking w.r.t. programs under the open answer
set semantics. For a stratified Datalog programP , let P o be the programP with free
rulesf (X) ∨ not f (X)← added for all predicatesf that are extensional in the entire
programP (with the exception of equality predicates). The free rulesin P o mimic the
role of extensional predicates from the originalP : they allow for an initial free choice
of the relational input structure.

7 Since we did not allow nested least fixed point formulas in ourdefinition of µ(L)GF, it is
trivially alternation-free.

8 A sentence is a formula without free variables.

Guarded Open Answer Set Programming 103

Proposition 6. LetP be a stratified Datalog query(P, q). (P, q) is satisfiable iffq is
satisfiable w.r.t.P o. Moreover, this reduction is linear.

Recursion-freestratified Datalog is stratified Datalog where the head predicates in the
positive bodies of rules must be head predicates in a lower stratum. We call recursion-
free DatalogLITE where all rules are guarded, i.e. without monadic rules thatare not
guarded, DatalogLITER, where the definition of recursion-free is appropriately ex-
tended to take into account the generalized literals.

For a DatalogLITER programP , let¬¬P be the programP where all generalized
literals are replaced by a double negation. E.g.q(X)← f (X), ∀Y · r(X ,Y)⇒ s(Y)
is rewritten as the rulesq(X) ← f (X),not q ′(X) andq ′(X) ← r(X ,Y),not s(Y).
As indicated in [12],¬¬P is equivalent toP and the recursion-freeness ensures that
¬¬P is stratified. Clearly,(¬¬P)

o is a GP.
For a DatalogLITER query (P, q), (¬¬P, q) is an equivalent stratified Datalog

query. Hence, by Proposition 6,(¬¬P, q) is satisfiable iffq is satisfiable w.r.t.(¬¬P)o.
This reduction is linear since¬¬P is linear in the size ofP and so is(¬¬P)

o. Thus
satisfiability checking of DatalogLITER queries can be linearly reduced to satisfiability
checking w.r.t. GPs.

Theorem 5. Let(P, q) be a DatalogLITER query.(P, q) is satisfiable iffq is satisfiable
w.r.t. (¬¬P)o. Moreover, this reduction is linear.

The reduction fromµGF sentencesϕ to DatalogLITE queries(πϕ, qϕ) specializes, as
noted in [12], to a reduction from GF sentences to recursion-free DatalogLITE queries.
Moreover, the reduction contains only guarded rules such that GF sentencesϕ are ac-
tually translated to DatalogLITER queries(πϕ, qϕ).

Satisfiability checking in the guarded fragment GF is 2-EXPTIME-complete[13],
such that, using Theorem 5 and the intermediate DatalogLITER translation, we have
that satisfiability checking w.r.t. GPs is 2-EXPTIME-hard. Completeness readily follows
from the 2-EXPTIME membership in Theorem 3.

Every GP is a LGP and satisfiability checking w.r.t. to the former is 2-EXPTIME-
complete, thus satisfiability checking w.r.t. LGPs is 2-EXPTIME-hard. Completeness
follows again from Theorem 3.

Theorem 6. Satisfiability checking w.r.t. (L)GPs is 2-EXPTIME-complete.

6 Conclusions and Directions for Further Research

We embedded OASP in FPL and used this embedding to identify (loosely) guarded
OASP, a decidable fragment of OASP. Finite ASP was reduced toloosely guarded
OASP and the relationship with DatalogLITE was made explicit. Finally, satisfiabil-
ity checking w.r.t. (loosely) guarded OASP was shown to be 2-EXPTIME-complete.

We plan to further exploit the correspondence between (loosely) guarded OASP and
µ(L)GF by seeking to apply implementation techniques used for µ(L)GF satisfiability
checking directly to (loosely) guarded OASP. Possibly, we can take advantage of the
fact that the embedding does not seem to need the full power ofµ(L)GF – there are,
e.g. , no nested fixed point formulas in the FPL translation ofOASP. It is interesting to

104 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

search for fragments of guarded OASP that can be implementedusing existing answer
set solvers such asDLV [9] or SMODELS[23]. Another promising direction is to study
generalized literals in the context of the answer set semantics: what is an appropriate
semantics in the absence of stratification, can this still beembedded in FPL?

Finally, ω-restricted programs[22] are programs where function symbols are al-
lowed but reasoning is kept decidable by “guarding” variables in a rule with a predicate
that is in a lower stratification than the predicate of the head of that rule. Since reasoning
with ω-restricted programs is2-NEXPTIME-complete, it should be possible to simulate
guarded open answer set programming in this framework.

References

1. S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison-Wesley, 1995.
2. H. Andréka, I. Németi, and J. Van Benthem. Modal Languages and Bounded Fragments of

Predicate Logic.J. of Philosophical Logic, 27(3):217–274, 1998.
3. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge Press, 2003.
4. J. Van Benthem. Dynamic Bits and Pieces. InILLC research report. University of Amster-

dam, 1997.
5. A. K. Chandra and D. Harel. Horn Clauses and the Fixpoint Query Hierarchy. InProc. of

PODS ’82, pages 158–163. ACM Press, 1982.
6. K. L. Clark. Negation as Failure. InReadings in Nonmonotonic Reasoning, pages 311–325.

Kaufmann, 1987.
7. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of

Logic Programming.ACM Comput. Surv., 33(3):374–425, 2001.
8. E. A. Emerson and E. M. Clarke. Using Branching Time Temporal Logic to Synthesize

Synchronization Skeletons.Sciene of Computer Programming, 2(3):241–266, 1982.
9. W. Faber, N. Leone, and G. Pfeifer. Pushing Goal Derivation in DLP Computations. InProc.

of LPNMR, volume 1730 ofLNCS, pages 177–191. Springer, 1999.
10. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. InProc.

of ICLP’88, pages 1070–1080, Cambridge, Massachusetts, 1988. MIT Press.
11. M. Gelfond and H. Przymusinska. Reasoning in Open Domains. InLogic Programming and

Non-Monotonic Reasoning, pages 397–413. MIT Press, 1993.
12. G. Gottlob, E. Grädel, and H. Veith. Datalog LITE: A deductive query language with linear

time model checking.ACM Transactions on Computational Logic, 3(1):1–35, 2002.
13. E. Grädel. On the Restraining Power of Guards.Journal of Symbolic Logic, 64(4):1719–

1742, 1999.
14. E. Grädel and I. Walukiewicz. Guarded Fixed Point Logic. In Proc. of LICS ’99, pages

45–54. IEEE Computer Society, 1999.
15. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. GuardedOpen Answer Set Program-

ming. Technical report. http://tinf2.vub.ac.be/˜sheymans/tech/guarded-oasp.ps.gz.
16. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Semantic Web Reasoning with Con-

ceptual Logic Programs. InProc. of RuleML 2004, pages 113–127. Springer, 2004.
17. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Nonmonotonic Ontological and Rule-

Based Reasoning with Extended Conceptual Logic Programs. In Proc. of ESWC 2005, num-
ber 3532 in LNCS, pages 392–407. Springer, 2005.

18. D. Kozen. Results on the Propositionalµ-calculus.Theor. Comput. Sci., 27:333–354, 1983.
19. J. Lee and V. Lifschitz. Loop Formulas for Disjunctive Logic Programs. InProc. of ICLP

2003, volume 2916 ofLNCS, pages 451–465. Springer, 2003.

Guarded Open Answer Set Programming 105

20. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs.ACM Trans-
actions on Computational Logic, 2(4):526–541, 2001.

21. F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of a LogicProgram by SAT Solvers.
In Proc. of 18th National Conference on Artificial Intelligence, pages 112–117. AAAI, 2002.

22. T. Syrjänen. Omega-restricted Logic Programs. InProc. of LPNMR, volume 2173 ofLNAI,
pages 267–279. Springer, 2001.

23. T. Syrjänen and I. Niemelä. TheSMODELS System. InProc. of LPNMR, volume 2173 of
LNCS, pages 434–438. Springer, 2001.

