Weighted Answer Sets and Applications in Intelligence
Analysis

Davy Van Nieuwenborgh Stijn Heymans, and Dirk Vermeir

Dept. of Computer Science
Vrije Universiteit Brussel, VUB
Pleinlaan 2, B1050 Brussels, Belgium
{dvni euwe, sheynans, dvernei r }@ub. ac. be

Abstract. The extended answer set semantics for simple logic prograens
programs with only classical negation, allows for the defdfarules to resolve

contradictions. In addition, a partial order relation oa gfrogram’s rules can be
used to deduce a preference relation on its extended anstselrsthis paper, we
propose a “quantitative” preference relation that assesia weight with each
rule in a program. Intuitively, these weights define the tto$ defeating a rule.

An extended answer set is preferred if it minimizes the surthefweights of

its defeated rules. We characterize the expressivenes® oésulting semantics
and show that it can capture negation as failure. Moreowesémantics can be
conveniently extended to sequences of weight preferemdmut increasing the
expressiveness. We illustrate an application of the agbrdg showing how it

can elegantly express subgraph isomorphic approximatioblgms, a concept
often used in intelligence analysis to find specific regiohaterest in a large

graph of observed activities.

1 Introduction

Over the last decade a lot of research has been done on dizelgmagramming us-
ing the answer set semantics [10, 2, 16], a generalizatitimeo$table model semantics
[8]. In answer set programming, one uses a logic program tdutaoly describe the
requirements that must be fulfilled by the solutions to aipaldr problem, i.e. the an-
swer sets of the program correspond to the intended sotutibthe problem. One of
the possible problems in answer set programming is the absefnany solutions in
case of inconsistent programs. To remedy this, the authopoped [14] theextended
answer set semantiaghich allows for thedefeatof problematic rules. E.g., the rules
a <, b+ and—a < b are clearly inconsistent and have no classical answengkeilg,
both{a, b} and{—a, b} will be recognized as extended answer sets. Intuitivety— b
is defeated by < in {a, b}, while —a «— b defeats: < in {—a, b}.

Within the context of inconsistent programs, it is natucahéive some kind of pref-
erence relation that is used to prefer certain extendedersats above others. In [14],

* Supported by the FWO
** This work was partially funded by the Information Societychipologies programme of the
European Commission, Future and Emerging Technologiesruhd IST-2001-37004 WASP
project

a “qualitative” preference semantics is proposed, usingeéepence relation on rules,
to induce a partial ordering on the extended answer sets afgagm.

As an alternative, this paper considers a “quantitativeifgnence relation for the
extended answer set semantics on simple programs, i.egpnsgontaining only clas-
sical negation. We assign each rule in a program a (nonwegatieight, represent-
ing the cost associated with defeating the rule. Solutiongifese weighted programs,
calledweighted answer setare those extended answer sets that minimize the sum of
the weights of defeated rules.

The resulting semantics turns out to be more expressivediaasical answer set
programming, even in the absence of negation as failure. &@dstrate that e.g. the
membership problem is complete for the second level of therdenistic class of the
polynomial hierarchy, i.eAl’-complete. Furthermore, we show how negation as failure
can be added to the formalism without increasing the conitglex

In some situations more than one actor is involved in thegesof finding a solu-
tion to a particular problem. Quite often we have a sequehdedsion makers, where
each one sorts out the best solutions according to her prafes among the solutions
that are preferred by the previous one in the sequencetilalyj the solutions that are
still preferred by the last decision maker in the sequened#ar ones that are acceptable
by all parties. E.qg., in a job selection procedure, the sagyevill only keep the appli-
cants that passed all the tests. Secondly, the head of tlaetaemt will prefer people
that have better marks on their math tests, and among ttheseanagement of the firm
will select those with a better psychological profile.

Such hierarchies of individual weight preferences are sttpd byweight sequence
programs where each rule in a program is equipped with a sequengg_; ,, of
weights corresponding to the cost each decision maker iasspavith defeating this
rule (w; has a higher priority thamw,). Semantically, weighted answer sets for such
programs will be obtained from first finding the weighted aesgets w.r.t. the weights
of the first decision maker, i.e. the weights, and among those finding the ones that
are minimal w.r.t. the weights of the second decision malerthe weightsu,, etc.
Regarding the complexity, it turns out that such sequentegimhts do not result in
any additional expressiveness of the formalism, nevezfisallowing to express certain
problems more intuitively.

The proposed semantics has applications in several areas whantitative prefer-
ences are useful. E.g., in the area of subgraph isomorphgmtams [12] it is use-
ful, in case of absence of an exact match of the pattern grajptei larger graph, to
search fossubgraph isomorphic approximatio@SIA for short) of the larger graph that
are minimal in some sense, i.e. searching for a “minimal’cfétems to add to the
larger graph such that the pattern occurs in it. We show hevstiutions of such SIA
problems correspond with the weighted answer sets of a wegbrogram that can
be constructed out of the given instance graphs. Applinataf SIA can be found in
the area of intelligence analysis [9, 4], where it is commmearch for a pattern of
interest in a large attributed relational graph [9] (ARG $biort). An ARG is a normal
graph where nodes and edges can carry additional attrieigedenoting relationships.
In intelligence analysis, ARGs are used to model observéditycin the world un-
der consideration. We show how the translation of the SlAbjenm for graphs into

weighted programs can be intuitively adapted to the settf®RGs, thus providing a
useful tool for intelligence analysis.

The remainder of this paper is organized as follows: Se@&ioroduces weighted
programs and the corresponding weighted answer set sasaotjether with a char-
acterization of the expressiveness. Additionally, we show negation as failure can
be added without increasing the complexity. Section 3 fdimea weight sequence pro-
grams and we show that these systems do not have additigralsiveness in compar-
ison to normal weighted programs. In Section 4, we introdheeroblem of subgraph
isomorphic approximations in graph theory and show how tieig programs can be
conveniently used to compute them. Section 5 discussesexamation of subgraph
isomorphic approximations in the area of attributed refsi graphs. Finally, we con-
clude in Section 6. Due to space restrictions, proofs hage benitted®

2 Weighted Programs

We use the following basic definitions and notationitéral is anatoma or a negated
atom-—a. For a set of literalsX, =X denotes{—a | a € X} where——a = a. X is
consistenif X N =X = (. An interpretation/ is a consistent set of literals. gimple
rule r is of the forma « 3 with {a} U j3 a finite set of literal& The ruler is satisfied
by I, denoted! | r, if a € T whenever3 C I, i.e. if r is applicable(s C I), then it
must beapplied(a € I).

A countable set of simple rules is calledsianple logic program(SLP). TheHer-
brand base3p of a SLP P contains all atoms appearing ia. For a SLPP and an
interpretation/ we say that a rule — g € P is defeatedw.r.t. I iff there exists an
appliedcompeting rule-a < 3’ € P. Furthermore, we us@; C P to denote the
reductof Pw.rt. I,i.e. Py = {r € P | I = r}, the set of rules satisfied by

An interpretatior/ is called a model of a SLP if P; = P, i.e. [satisfies all rules
in P. If there is no model of P such that/ C I, I is a minimal model oanswer set
of P. An extended answer séir P is any interpretatiod such that/ is an answer set
of P; and each unsatisfied rule In\ P; is defeated.

Example 1.Consider the following SLE° about diabetes.

hypoglycemia «— diabetes «— sugar «— hypoglycemia
—sugar < diabetes cola_light «— —sugar cola «— sugar

Clearly, while this program has no traditional answer sietas, however, two ex-
tended answer sefs= {diabetes, hypoglycemia, sugar, cola} andJ = {diabetes,
hypoglycemia, —sugar, colalight}.

The extended answer sets of a program are not always equafsried. E.g., in
the above example, when low on sugagoglycemia), one would prefer drinking
cola, rather than taking no sugar at athdugar). So, defeating the ruleugar
hypoglycemia is “worse” than defeating the rulesugar «— diabetes. Therefore, we

! They are available in http://tinf2.vub.ac.be/"dvnieugvaphasptech.ps
2 As usual, we assume that programs have already been grounded

equip the rules in simple programs with a weight represegrttie “penalty” involved
when defeating the rule. Naturally, extended answer satsiimimize the total penalty
of a program are to be preferred over others.

Definition 1. A simple weight rule is a ruler of the forma «— S{w), where{a} U

is a finite set of literals and is an associated weight value, i.e. a non-negative integer.
We usew(r) to denote the weight of A countable set of such simple weight rules is
a simple weight program (SWP). Theextended answer sets of a SWPP coincide with

the extended answer sets of the SPRobtained fromP by removing the weights from
the rules.

The program from Example 1 can be extended to a SWP contaidarger “penalty”
weight for the hypoglycemiarules, i.e. the program:

hypoglycemia — (0) diabetes — (0) sugar «— hypoglycemia (1)
—sugar «— diabetes(0) cola_light «— —sugar(0) cola — sugar{0)

This program still had and J as its extended answer sets, but intuitivélis better
thanJ as it satisfies the rule with weight 1 whiledoes not, which we formalize in the
following definition.

Definition 2. The penalty of an extended answer s8tw.r.t. a SWPP, is defined by
Pp(S) = 3 epps w(r), i.e. the sum of the weights of all defeated rule®im.r.t. 5.
For two extended answer sefs and S, of P, we defineS; < Sy iff &p(S1) <
Pp(S2). Aweighted answer set of P is an extended answer set Bfthat is minimal
w.r.t. < (a < biff a < b and notb < a) among the set of all extended answer setB of
A weighted answer sétof P with @p(S) = 0 is called aproper weighted answer set.

Intuitively, weighted answer sets are those solutions thimimize the penalties
incurred by defeating rules. For the weighted version ofgtegram from Example 1
one obtains thabp (/) = 0 and®p(J) = 1 such thatl < .J, which corresponds with
our intuition.

While the previous example uses only two different weigHues, the following
example shows that one can use the proposed semanticségseapcomplex relations
between defeated rules.

Example 2.Consider a company that wants to hire an employee. To get,lyioei have
to do some tests and based on these results the companydecide

math — (0) lang «— (0) psych «— (0) prac < (0) phys «— (0)
—math — (0) —lang — (0) —psych — (0) —prac «— {0) —phys < (0)
hire — (3) —hire «— —math(1) —hire — —lang(1)

—hire <« —psych(3) —hire «— —prac(2) —hire «— —phys(4)

Intuitively, the rules with weight 0, i.e. no penalty inveld when defeated, represent
the choice between passing or not passing a certain tegihdfomore, the last five rules
encode which penalty is involved when a person fails a aetésit, but still gets hired.
E.g., not passing the practical test is the same as failily Imath and language. On

the other hand, not passing the physical is considered eptatde while failing the
psychological test will be tolerated only if it is the onlyiléd test. Finally, the rule
hire — (3) expresses the company’s policy: defeating this rule is pleftom the
moment the penalty gets higher th&n

Some of the program’s extended answer setdére= {math, lang, psych, prac,
phys, hire}, My = {—math, -lang, psych, prac, phys, hire}, Ms = {math, lang,
psych, —prac, phys, hire}, My = {-math,lang, psych, —prac, phys, hire} and
M5 = {—math,lang, psych, —prac, phys, —hire}.

Computing the penalties for these extended answer sethsras@p (M) = 0,
Pp(My) = Pp(M3) = 2 anddp(My) = $p(Ms) = 3. These values imply the fol-
lowing order among the given extended answer seis< { M, Mg} < { My, Ms}. It
can be checked, that/, is the only (proper) weighted answer setffWhile M, has
a penalty of 2 by defeating two rules with weightMz only defeats a single rule, but
with weight 2, yielding that\/, and M3 are incomparable, and thus equally preferred.
Similarly, M, and M5 only differ in the hire atom and are incomparable with each
other, both having a penalty 8f

Combining simple programs with weights turns out to be natixpressive.

Theorem 1. Let P be a SWP and let be a literal. Deciding whether there exists a
weighted answer sét/ of P containingl is A}’-complete.

The above resultillustrates that the weighted answer sgistics is more powerful
than the classical answer set semantics for (non-disjtg)ghrograms containing also
negation as failure. Below, we provide a simple translatimrsuch programs to SWPs.
In addition, we show that extending SWPs with negation darfaidoes not increase
their expressiveness.

In this context, arextended literals a literal or anaf-literal of the formnot! where
[is a literal. The latter form denotes negation as failure.d&eet of extended literals
X, we useX ~ to denote the set of ordinary literals underlying the nifréils inX, i.e.
X~ ={l|not! € X}. For a set of ordinary literal¥’, we usenotY” to denote the set
notY = {noty | y € Y'}. An extended literal is true w.r.t. an interpretatioh denoted
I'E1ifl € Iincasel is ordinary, ora ¢ I if I = nota for some ordinary literak. As
usual,] = X for some set of (extended) literdldff VI € X - T = .

An extended rulés a rule of the formu < (3 whereaq is a literal ands3 is a finite set
of extended literals. An extended rule= a «— [is satisfiedby I, denoted! |= r, if
a € I whenevel = 3, i.e.if r isapplicable(I =), then it must beapplied(a € I).

A countable set of extended rules is calledeatended logic progratELP). When an
ELP P does not contain classical negation, we ¢a seminegative logic prograriVe
adopt from SLP the notion of the redult w.r.t. an interpretatiod and the notion of
defeating of rules.

For an extended logic prografand an interpretatiohwe define th&L-reduc{8]
for P w.r.t. I, denotedP’, as the program consisting of those rules- (3\not3-)
wherea « Bisin P andl = not3~. Now, all rules inP! are free from negation
as failure, i.e P! is a simple program. An interpretatidnis then ananswer sebf P
iff I is an answer set of the GL-reduef. Again, anextended answer sédr P is any
interpretation/ that is an answer set &f; and that defeats each rule i\ P;.

Theorem 2. Let P be a seminegative program. The weighted versioR ig defined
by N(P) = P’ U P,, whereP’ = {a — ('(1) | a — 8 € P} with 5’ obtained from3
by replacing each naf-literal ngt with —p, and P, = {—a < (0) | a € Bp}. Then,.M
is an answer set aP iff M U —(Bp\ M) is a proper weighted answer set&f(P).

Intuitively, the rules inP,, introduce negation as failure using classical negation
by allowing their defeat “for free”, while defeating rules P’, corresponding to the
original rules inP, is penalized.

Example 3.Consider the seminegative progrdt= {a < notb,b « nota}. The
weighted versionV(P) consists of the rule§—a « (0), —b « (0),a < —b(1),b «—
-a(1)}. This program has two proper weighted answer sets] i-e.{a, ~b} andJ =
{—a, b}, corresponding with the answer séts} and{b} of P.

Simple weighted programs can be extended with negationilasefai.e. extended
weighted programs (EWP), without increasing the expressss of the formalism.
The latter is confirmed by the next theorem which reduces af® E\an equivalent
SWP. For this reduction, we define a mappindranslating original naf-literals by:
(nota) = a, andy(not—a) = a,;, where for each atom € Bp, a,, anda,; are fresh
atoms. We use (X), X a set of naf-literals, to denofe)(z) | z € X }.

Theorem 3. Let P be a finite EWP. The SWP versionf denotedS(P), is defined
by S(P) = P, U P’ U P., whereP,, = {¢(notl) < {(0) | l € BpU-Bp}, P/ =
{a — F{w) | a «— p{w) € P} wheres is obtained from3 by replacing not5~
with ¢(not 57), and P, = {-¢(notl) — I(T) | | € BpU-Bp} where? =1 +
ZTEP ’LU(T)

Then,M is a weighted answer set @f iff there exists a weighted answéf’ of
S(P) such that (a)pg(py(M') < T;and (b)M = M’ N (Bp U—-Bp).

Intuitively, the rules inP,, introduce negation as failure for all literals in the Her-
brand base. As defeating negation as failure should betfreeules all get a weight of
0. In P’ we adapt the original program with the corresponding waiblytreplacing the
naf-literals by their new representation. The ruleginensure the consistency of any
solution by allowing the new representations of naf-liteta be defeated. To enforce
the satisfaction of these rules, we give them a weight thaigher than any possible
combination of weights in the original program, i.e. the sofall weights plus 1. As
a result,S(P) will only yield weighted answer sets with high penalties, defeating
some of the rules iP., iff the original program itself has no solutions, makinghde
tion (a) in Theorem 3 necessary.

E.g., the single rule progra® = {a < nota(0)} has no weighted answer sets. Its
translationS(Q) = {a, < (0),a, — (0),~a, — a(l),a, — —a(l),a «— a,{0)}
has only one weighted answer det= {a,, a,;, a} for which the penalty ig () =
1, yielding a value not strictly smaller than 1, correspogdio the non-existence of
weighted answer sets for the original program.

Combining Theorem 3 with Theorem 1 yields that EWPs havedheescomplexity
as SWPs, i.eAl-complete.

3 Weight Sequences

In [13] an intuitive semantics is presented for sequencéasdifidual complex qualita-
tive preferences. The idea is to apply each individual pegfee in the sequence in turn
and to let it sort out the preferred answer sets left over bypttevious preferences in
the sequence. It is shown in [13] that this semantics is gifFessive as it can han-
dle arbitrary complete problems of the polynomial hiergrdfiore specifically, for a
sequence of preference relations, the semantic<i§, ; -complete.

It is natural to wonder if a similar semantics for sequendeisdividual weights
will also yield a complexity blow-up depending on the lengftthe sequence. It turns
out that this is not the case as sequences of weights refdaicomplete.

Definition 3. An n-weight sequence rule is a rule r of the forma «— S(w;)i=1,... n,
where{a} U (is a finite set of literals andw;),_, ,, is a sequence of associated
weight values, i.e. a sequence of non-negative ihtegers.ls\e/e;i(r) to denote the
weightw; of r. A countable set ofi-weight sequence rules is amnweight sequence
program (nWSP). Thextended answer sets of annWSPP coincide with the extended
answer sets of the SLP’ obtained fromP by removing the weight sequences from the
rules.

Thepenalty of an extended answer sgtw.r.t. the weights (1 < i < n) and an
nWSPP, is defined bypi,(S) = > remps wi(r), i.e. the sum of the weights; of all
defeated rules if® w.r.t. S. Each of the penaltie®’, induces a preference relation;
between the extended answer sets, as in Definition 2.

We define the preference of extended answer sets up to ancergiht level by
induction.

Definition 4. Let P be anWSP. An extended answer $eis preferable up to weight
level<;, 1 <i <n,iff

— ¢=1andsS is minimal w.r.t.<y, or
— 1 > 1, S is preferable up to<;_1, and there is nd", preferable up to<;_1, such
thatT <; S.

An extended answer sgtof P is aweighted answer set iff it is preferable up to<,,.

Example 4.Consider the problem of two people having to decide whattfoeainner.
After checking the available ingredients, the cook prematine dinner decides to let his
wife propose some possible combinations from which he wilase the final one. As
his wife is rather hungry, she decides to choose the mealhaikiquickest to make,
the reason for which she assigns weights correspondingtiniéts needed to make a
particular part of the meal. On the other hand, her husbatige and wants to make
a meal that is easy to prepare, yielding weights represgthia difficulty to make a
particular part of the meal. Further, they agree on somet@ints that each meal should
satisfy, e.g. with french fries they take mayonnaise, et@2WSP corresponding with
this problem is shown below.

Note that the rulew «— v(200, 200) enforces the satisfaction of the common con-
straints, as it implies that every solution not making on¢hefrules withv in the head
applicable, is better than any solution making one of thatesrapplicable.

french_fries < (0,0) rice — (0,0) steak — (0,0)
—french_fries «— (15,1) —rice — (5,1) —steak «— (10, 1)
stew «— (0,0) meat_ball — (0,0) mayonnaise — (0, 0)
—stew — (75, 3) —meat_ball — (20, 2) —mayonnaise — (10, 5)
tomato_sauce «— (0, 0) —tomato_sauce < (10, 2)
v «— —french_fries, —rice(0, 0) v« —steak, mmeat _ball, —stew (0, 0)
v « steak, ~french_fries{0,0) v« rice, meat_ball, ~tomato_sauce{0,0)

v — french_fries, ~mayonnaise(0,0) - «— v(200, 200)

For the extended answer s = {french_fries, steak, mayonnaise} andSy =
{rice, meat_ball, tomato_sauce} one can check thabkL(S;) = #L(S2) = 35 and
no other extended answer sets exists with a smaller permaltyf, yielding that both
S1 and S, are preferable up to weight level;. On the other hand?%(Sl) = 7 and
9%(S2) = 5, making Sy preferable up to weight levek,, yielding thatS, is the
weighted answer set for this problem.

Finally, rearranging the weight sequence yields, in gdnéiféerent solutions. E.g.,
if the cook first decides which meals he wants to make andvediels his wife can
choose a particular one, it can be checked that {rice, stew} will be the weighted
answer set of the problem.

In the following theorem we show that anweight sequence program can be trans-
formed into a simple weight program such that the weightesiven sets of the former
coincide with the weighted answer sets of the latter.

Theorem 4. Let P be annWSP and lef”’ be the SWP defined by
= {a « B{w; x 10&> | a — Bl{w;)i=1

whereg, = 0and&; = 3¢y (length (2, cpw; (r))) otherwise, withength(z)
the number of digits in, e.g.length(2611) = 4.
Then,S is a weighted answer set &fiff S is a weighted answer set &f.

Reconsider the rulesstew «— (75,3) from Example 4. In the SWP version of
this program, the rule would yield the rulestew « (3) and—stew < (75000), as
> ep wa(r) = 215, yielding thatlength(215) = 3 and75 x 10 = 75000.

The above transformation can be performed in polynomiat tigielding the fol-
lowing complexity result fon-weighted sequence programs.

Corollary 1. Let P be annWSP. Deciding whether there exists a weighted answer set
S of P containingl is AL-complete.

This resultimplies that, unlike for sequences of qualiagireferences [13], introducing
sequences of weights does not yield an increase of expeessis. Nevertheless, these
sequences allow for a more intuitive expression of certeablems.

3 To keep the size of the extended answer sets small, we onliderthe positive literals.

4 Approximate Subgraph Isomorphisms

While approximate subgraph isomorphisms are similar tarfimthrgest common sub-
trees [1], the formalisation we introduce in this sectigriaghe best of our knowledge,
new.

A graphis atupleG = (N, E), whereN is a finite set ohodesandE C N x N is
a set of tuples representing thdgedn the graph. We assume that graphs are directed,;
an undirected edge from to m can still be represented by having bdth, n) and
(n,m)in E.

Two graphs&; = (N;, E1) andG2 = (N», E») are said to bésomorphic denoted
G1 = G, if there exists a bijectiorf : Ny — Ny such thatf (F,) = F», wheref(E;)
denoteq (f(t), f(h)) | (t,h) € E}. Onthe other handy- is called asubgraphof G1,
denotedG, < Gy, iff No C Ny andEy C FE;. Furthermore(s is calledsubgraph
isomorphicto G1, denotedG, < Gy, if there exists a subgrapfi; < G; such that
G2 = Gg.

Subgraph isomorphism itself is sometimes too strong a ndto certain appli-
cations. E.g., when a grapfl: = (Ns, E») is not subgraph isomorphic to a graph
G1 = (N1, Ey), it may be interesting to know what is “missing” @&, for G, to be
subgraph isomorphic to it. In this context, a gra@h = (s, E3) is called anex-
tensionof G; w.r.t. G2 just whenG; = G35 and N3 = N; when|N;| > |Ny| or
N3 = Ny U{x; | 1 < i < |Na| — |Ny|} otherwise, where the; are new nodes not
occurring inN3. The latter construction d¥; is necessary to handle the cases in which
the graph to search for is bigger than the graph to search gmaphGs is asubgraph
isomorphic approximatiof G; w.r.t. G iff G5 is an extension off; w.r.t. G, and
G2 2 G3. We useld; S, Gsto denote thafy, is approximately subgraph isomorphic
to G3 w.r.t. Gy, i.e. Gs is a subgraph isomorphic approximation@f w.r.t. G5. The
set of all subgraph isomorphic approximationgfw.r.t. G, is denoted bydq, (G2).

Obviously, not every subgraph isomorphic approxima€i@re Aq, (G») is equally
interesting. E.g., the fully connected grafi¥l;, N5 x N3) is, clearly, always a subgraph
isomorphic approximation and thus v, (G2). However, in most cases there will ex-
ist smaller extensions d¥; in Ag, (G2). Therefore, we are particularly interested in
elements fromd, (G2) that have a minimal, in some sense, difference with the maigi
graphG;. Here we use¢, (G3) to denote theinidirectional edge differendeetween
G1 anng, i.e.AGI (Gg) = Eg\El.

Two minimality criteria, which are widely used in areas lifmgnostic reasoning
[5, 6,15], are cardinal minimality and subset minimality.the former case, we select
those elements fromlg, (G2) that are minimal w.r.t. cardinality among the elements
in Ag, (G2). Formally, a grapltis € Ag, (G2) is said to be aubgraph isomorphic c-
approximationiff there does not exist a gragh, € Ag, (G2) such thaiAg, (G4)| <
|Ac, (G3)|. The set of all c-approximations is denoted A§; (G2).

Example 5.Consider the three undirected graphis, Go andG3 represented in Fig-
ure 1. ClearlyG, is subgraph isomorphic t6's, i.e. G1 3 Ga, but not toGs. How-
ever, adding a single (bidirectional) edge between sgand r in Gs, i.e. G4 =
(N3, EsU{(m,r), (r,m)}), results in a subgraph isomorphic approximatiotrgfw.r.t.
G1,i.e.G1 Za; Ga. Obviously,Gy is cardinal minimal yielding that', € Ag, (G1).

9

Fig. 1. The graphg1, G2 andG35 of Example 5.

Subset minimal isomorphic approximations can be definedsimédar way. How-
ever, in contrast with diagnostic reasoning, subset milifynis less intuitive in this
setting. E.g. adding the edgés o), (o, w), (w, v) and(v, p) (and their reverses) t6';
in Example 5 yields a subset minimal isomorphic approxioratv.r.t. G;. However,
if we seeGG3 as an activity graph and'; as a pattern of interest, as is often done by
intelligence agencies for detecting possible threatdi] previously mentioned subset
minimal approximation is not very useful as it forces theragyeto checkd possible
relations between currently unrelated things. On the dihed, the approximations in
Ag, (G1) are of much more value as they all yield one missing link to piete the
pattern, implying that the agency can quickly confirm thedat®ns (see also the next
section).

Obviously, when a graph is subgraph isomorphic to another tire latter is the
only c-approximation of itself.

Theorem 5. LetG; andG be graphs such that; 3 Gi1. Then,Ag, (G2) = {G1}.

Using the weighted answer set semantics, we have the meaffiettively compute
the c-approximations of a given gragh w.r.t. a graphGs. In what follows, we will
sometimes use non-grounded rules for clarity, but groundiperformed as usual.

Intuitively, we introduce the edges @}, as facts of the fornedge(z,y) < (0),
where(z,y) € E;. For each possible edde,y) ¢ F;, with z,y € Ny, we give a
choice to either include it or notin an approximation bydamtncing the factsdge(x, y) «—
(0) and—edge(x,y) < (1). The penalty involved in the latter fact is to ensure that the
computed approximations are cardinal minimal, i.e. natiitisg an edge (defeating the
former rule) can be done freely, but inserting an edge (diefgshe latter rule) has to
be minimized. In casgV;| < |N2| we also add edges to th&,| — | V1| new nodes.

To matchG, with the possible approximations, we need to introduce dochenode
n € Np a unique new variable nam¥. Searching for a match af, in the ap-
proximation is done by the single ruteatch — ((0), where = {edge(X,Y) |
(x,y) € B2} U{X #Y | (x,y) € E2 Az # y}. Finally, we add the single rule
match «— notmatch(0) which forces any solution to contain a match (note that this
rule cannot be defeated).

Definition 5. LetG; = (N7, E1) andG2 = (N», E») be graphs. The program com-
puting the c-approximations @f; w.r.t. G2, denotedCq, (G2), is defined by the rules:

— {edge(z,y) «— (0) | (z,y) € En} ;

10

= {edge(z,y) — (0); medge(w,y) — (1) [w,y € NiUfzi | (N[<[N2))A(L <
i <[No| = [Ni)} A (2, y) & En}

— {match «— ((0)}, whereg = {edge(X,Y) | (x,y) € E2} U{X #Y | (z,y) €
Ey ANz #y} ;and

— {match < notmatch(0)} .

If we reconsider the graphS; and Gs from Example 5, the programic, (G1)
contains, besides the numereuge/2 facts, the rule

match — edge(A, B), edge(B, D), edge(D, C), edge(C, A), edge(B, A), edge(D, B)
edge(C, D), edge(A,C),A#+ B,B# D,D#+C,C# A .

One of the possible weighted answer setsCef, (G1) is e.g. S = {edge(x,y) |
(z,y) € Es} U{edge(m,r),edge(r,m)}t U ({~edge(z,y) | z,y € N3 A (z,y) ¢
Es}\ {edge(m,r), edge(r,m)}). Clearly,S corresponds with the extensign, from
Example 5, which is a cardinal minimal approximation(®f w.r.t. G;. This behavior
is confirmed by the following theorem.

Theorem 6. LetGy, = (N1, E1) andGy = (N, E») be graphs. TherGs = (N3, Es) €
Agl(GQ) iff M = {Edge(zay) | <‘Tay> € E3} U {ﬂedge(:r,y) | T,y € N3 A <‘Tay> g
Es} U {match} is a weighted answer set 8, (G2).

In the current approach no distinction is made between tgesthat can be added
to a graph to obtain an approximation. However, one can inggituations in which
adding one edge is more “difficult” than adding another,the.cost of adding an edge
may vary. E.g., for an intelligence agency, it may be easi@hieck a relationship be-
tween people in the home country, than between people ilgfoo®untries, but check-
ing 4 internal relationships may be as hard as checkiegternal relationship, resulting
in a cost of4 for edges between externals and a cost fifr edges between internals.
Such costs represent a quantitative preference relatimeba edge additions.

In this case, optimal solutions are approximations thaimiize the sum of all costs
associated with the added edges in the approximation. titiglifficult to see that this
kind of minimization can easily be computed by an adaptediwarof the program in
Definition 5: just replace the weightswith the cost associated for adding the edge to
an approximation. Clearly, Theorem 6 remains valid in tiiigrsion.

Similarly, we could think of an agency where possible thseat first selected, by
some field agent, depending on the effort needed to checkiceeiationships. After-
wards, the supervisor will apply, on the proposed invetitiga of his field agent, an-
other kind of quantitative preferences, e.g. using infdromefrom other departments.
In case there are still a number of possible solutions ledt after the supervisor, even
a third individual, e.g. the director, could apply his prefeces on these possibilities.
Again, it is not difficult to see that this problem can be elgjamodeled by an adapted
version of the program in Definition 5, this time using theveight sequence programs
introduced in Section 3. Also in this extension, an adapt&dien of Theorem 6 re-
mains valid.

11

5 An Application in Intelligence Analysis

Attributed relational graphs (ARGS), an extension of thstert directed graphs de-
fined in the previous section, are often used in e.g. infiag analysis to understand
complex, and often uncertain, situations. The nodes in 8lREs are used to describe
objects in the observed world, e.g. persons, organizationg/hile the edges are used
to represent relationships between the nodes, e.qg. iti@mmaownership, trust,

In addition, ARG nodes and edges may have additional at&shthat describe the
details of the specific objects or relationships: e.g. theeaf a person, the kind of
chemical, the type of conversation. An example of such an AiGed on an example

House,21 West St Car, Honda House, 34 East St

Factory Person, Alice reside reside

o Person, Tom .04

Person, Richard Person, Harry

Factory,Acme Inc.
Chemicals,HCI

reside

Truck House Chemicals Person, Ted

P House, 123 Main St
Car, Bentley Person, Jennifer

Fig.2. The pattern
graph [4]. Fig. 3. The observed activity graph [4].

from [4], can be found in Figure 3. Here, a person named B#l temted a truck for
carrying liquids and that same person resides in a house3aMb street together
with a person called Ted. Furthermore, Ted has been obgeaviactory called Acme
Inc. and he also bought large quantities of the chenfit@.

Intelligence analysts normally define small abstract pastevhich are believed to
be indications of possible threats. An example of such &patbased on the same ex-
ample from [4], can be found in Figure 2. Intuitively, it statthat two persons residing
at the same place and both observing the same factory camgerdas if one person
buys some chemical, while the other rents a truck.

Having both an ARG of observed activity and a pattern, thdyateneed tools
for finding specific regions in the ARG that “closely” matctettefined threat pat-
tern. Subgraph isomorphic approximations turn out to baatak tools to accomplish
this task [4]. The framework and results we developed iniSeet can be intuitively
adapted to the setting of ARGs, where the transformatiananveighted program al-
lows an analyst to compute subgraph isomorphic approximatihat are minimal in
some quantitative sense. In situations where investigatiissing additional relation-
ships is equally hard, the analyst can use the cardinal ralrapproximations. On the
other hand, if investigating some relationship has a highet than investigating oth-
ers, an analyst could rely upon the extension of the framleafdBection 4, i.e. defining
a cost with each relationship (edge) that can be added todauegraph isomorphic

12

approximation and only keeping the approximations thaimmire the sum of the costs.
Similarly, it could be the case that the analist is not theyamle in charge of making

the final decision or that he has multiple equivalent pobsés. In such situations, it

can be useful to apply the quantitative preferences of saher people, e.g. a super-
visor or the director, to refine the number of solutions, stailing the most preferred
solution. By using the second extension of the frameworleztiBn 4, also this kind of

reasoning with ARGs can be solved, i.e. by using weight secgiprograms.

Instead of formally adapting the framework and the resultsjllustrate the adap-
tation, and its usefulness, using the example on inteligemalysis: we will translate
the ARG and pattern of Figures 3 and 2 into a weighted progradrshow that the so-
lutions of the program correspond with the regions of thireétie ARG w.r.t. the given
pattern.

First we translate, for convenience, the nodes of the AR@Gotite predicates. E.g.
a person named Bill forces the factde (person, bill) — (0) into the program, while
the factory Acme Inc. is responsible for the fagtde(factory, acme_inc) «— (0). In
total, we have 17 of such facts in our weighted program.

Next, we have to describe the relationships between thesnaglag extended ver-
sions of theedge/2predicates used in the previous section. E.g. Ted resigirthe
house in 123 Main street gives rise to the fact

edge(person, ted, reside, house, 123 _main_street) «— (0) ,
while the conversation between Jennifer and Bill can beritest by the fact
edge(person, bill, conversation, phone, person, jennifer) < (0) .

Note that the differenedgefacts can have different arities, which is not a problem
as long as the arities, and the ordering of the argumentgharsame for the same
relationship. E.gedgefacts representing the conversation relationship alviay® six
arguments: the first two correspond to a node, the third hag tiwonversation”, the
fourth the type of conversation and the last two again cpoed to a node.

Also note that ARGs are directed graphs, but certain relatése bidirectional, e.g.
friendsandmarried For these relationships we have to explicitly add bothdlioss
using theedgefacts: e.g. botkedge(person, richard, friend, person, tom) «— (0) and
edge(person, tom, friend, person, richard) «— (0) have to be present in the weighted
program. One could argue that a conversation through plsoaksd bidirectional, but
we use a directed edge here to represent who initiated the cal

The pattern in Figure 2 can be translated into the followirlg,rwhere names start-
ing with an uppercase letter correspond to a variable:

match «— edge(person, NamePersonl, observe, factory, NameFactory),
edge(person, NamePerson2, observe, factory, NameFactory),
edge(person, NamePersonl, reside, house, AddressHouse),
edge(person, NamePerson2, reside, house, AddressHouse),
edge(person, NamePersonl, rent, truck, KindOfTruck),
edge(person, NamePerson2, buy, chemicals, KindOfChemical) (0)

13

The above pattern matching rule also matches situationsendrdy one person
observes a factory and does both the renting of the trucktantuying of the chemi-
cals. If one wants to have explicitly two different persome,need to add the condition
NamePersonl # NamePerson2 to the rule.

Finally, we have to add rules for the edges that can evegthalbdded to our ac-
tivity graph to obtain a subgraph isomorphic approximatibimese edges will directly
point out the region of interest in the activity graph as thaimization assures that
only edges are added where necessary, i.e. on those platesdntivity graph where
the pattern (almost) matches. While we introduced all idsstdges in the simula-
tion of Section 4, doing the same in the context of ARGs mayheothe best way to
go. Indeed, ARGs can have multiple edges between the sanes mod with differ-
ent attributes, which are not always useful to define betvesstain types of nodes.
E.g. edge(chemical, hel, buys, chemical, gasoline) «— (0) is theoretically possible,
but useless in real life. Therefore, one should avoid thechiction of meaningless
edges in the program, possibly by adding extra semanticatraints, e.g. typing the
attributes in ARGS. Some examples of choices of edges toradd a

edge(person, bill, observe, factory, acme_inc) «— (0)
— edge(person, bill, observe, factory, acme_inc) «— (v)
edge(person, bill, buy, chemical, hel) — (0)
- edge(person, bill, buy, chemical, hel) — (w)
edge(person, alice, conversation, phone, person, ted) «— (0)
— edge(person, alice, conversation, phone, person, ted) «— (z)

In the above rules for possible edges to add, the rules withs#iye occurrences of
the edgepredicate always have a weight@fas not adding an edge, i.e. defeating the
rule, can be done for free. On the other hand, the negativeraates have a weight
corresponding to the cost associated with adding the edgeade we use cardinal
minimality, the costs (e.g:, w andz) will all be 1, while in case of total cost minimality
we could definer = 4, w = 2 andz = 1 yielding that it is twice as hard to check if
someone observed a factory than checking if he bought soemeichl, which in turn
is twice as hard than checking if he made a phone call.

For simplicity, we only consider cardinal minimality (and sequences) in what
follows, i.e. we take all the weights of the rules with negatbccurrence of andge
predicate to bé. If we consider the weighted program obtained in the way veedieed
above, we will have two weighted answer s€tandT'. Both will contain all the edges
from the original activity graph together with the fagttch. Additionally, S will con-
tain the factedge(person, bill, observe, factory, acme_inc) together with all negated
versions of the otheedgepredicates we added to the program Similaffyill con-
tain the factedge(person, ted, rent, truck, liquids) together with all negated versions,
except the one occurring positively. Clearly, batrandT" correspond with the only
cardinal minimal subgraph isomorphic approximations efphoblem.

As said before, we can add the conditidamePersonl # NamePerson2 to the
pattern rule in our program if we explicitly want two differepersons. When we con-
sider the weighted program obtained in that wéiyyill be the single weighted answer
set of the program, corresponding to the single subgraphagehic approximation of
the problem.

14

6

Conclusions and Directions for Further Research

We presented a simple and intuitive quantitative preféabsgmantics based on the ex-
tended answer set semantics, characterized its expreasvand illustrated its useful-
ness using an application in the area of intelligence aiglp®ssible topics for further

research include the efficient implementation of the seiogng.g. using existing an-

swer set solvers such as dlv [7] or smodels [11]. Furtherntbearelationships between
the present proposal and other weighted semantics suchedsoaestraints [3] need to

be investigated.

References

1.

2.

10.

11.

12.
13.

14.

15.

16.

Tatsuya Akutsu and Magnis M. Halldorsson. On the appration of largest common
subtrees and largest common point s@tseoretical Comp. Scienc233(1-2):33-50, 2000.
Chitta BaralKnowledge Representation, Reasoning and Declarativel®moBolving Cam-
bridge Press, 2003.

. Francesco Buccafurri, Nicola Leone, and Pasquale Rbtlong and weak constraints in dis-

junctive datalog. IProceedings of the 4th International Conference on LogmgPamming
(LPNMR '97) pages 2-17, 1997.

. Thayne Coffman, Seth Greenblatt, and Sherry Marcus. lEbaped technologies for intel-

ligence analysisCommunications of the ACM7(3):45-47, 2004.

. L. Console and P. Torasso. A spectrum of logical defintioh model-based diagnosis.

Computational Intelligencer(3):133-141, 1991.

. Thomas Eiter, Wolfgang Faber, Nicola Leone, and Geradif&f The diagnosis frontend of

the dlv systemAl Communications12(1-2):99-111, 1999.

. Thomas Eiter, Wolfgang Faber, Nicola Leone, and Geratdféf Declarative problem-

solving using the dlv systeniogic-Based Artificial Intelligencgpages 79-103, 2000.

. Michael Gelfond and Vladimir Lifschitz. The stable modemantics for logic programming.

In Logic Programming, Proceedings of the Fifth Internatio@dnference and Symposium
pages 1070-1080. MIT Press, 1988.

. R.J. Heuer. Psychology of intelligence analysis. Ceotahe Study of Intelligence, Central

Intelligence Agency, 2001.

Vladimir Lifschitz. Answer set programming and plan geiion. Journal of Atrtificial
Intelligence 138(1-2):39-54, 2002.

Syrjanen T. and Niemela I. The smodels systemPrisceedings of the 6th International
Conference on Logic Programming and Nonmonotonic Reagpmatume 2173 oLecture
Notes in Computer Sciengaages 434-438, Vienna, Austria, September 2001. Springer
J.R. Ullman. An algorithm for subgraph isomorphisinof the ACM 23(1):31-42, 1976.
Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Verme&dn programs with linearly
ordered multiple preferences. Rmoc. of 20th Intl. Conference on Logic Programming (ICLP
2004) volume 3132 ot.ecture Notes in Computer Scienpages 180-194. Springer, 2004.
Davy Van Nieuwenborgh and Dirk Vermeir. Preferred amssets for ordered logic pro-
grams. InEuropean Conference on Logics in Artificial Intelligenc&LIA 2002 volume
2424 ofLecture Notes in Atrtificial Intelligencepages 432—443, 2002.

Davy Van Nieuwenborgh and Dirk Vermeir. Ordered diaghol Proceedings of the 10th
International Conference on Logic for Programming, Aridildntelligence, and Reasoning
(LPAR2003)volume 2850 of_NAI, pages 244-258. Springer, 2003.

Marina De Vos and Dirk Vermeir. Logic programming ageuitsying games. IfiResearch
and Development in Intelligent Systems XIX (ES20B2)S Conference Series, pages 323—
336. Springer-Verlag, 2002.

15

