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Abstract. We present FixIt(AILC), anovel procedure for deciding knowledge
base (KB) satisfiability in the Fuzzy Description Logic (FDL) ALC. FixIt(ALC)
does not search for tree-structured models as in tableau-based proof procedures,
but embodies a (greatest) fixpoint-computation of canonical models that are not
necessarily tree-structured, based on atype-elimination process. Soundness, com-
pleteness and termination are proven and the runtime and space complexity are
discussed. We give a precise characterization of the worst-case complexity of
deciding KB satisfiability (as well as related terminological and assertional rea-
soning tasks) in ALC in the general case and show that our method yields a
worst-case optimal decision procedure (under reasonable assumptions). To the
best of our knowledge it is the first fixpoint-based decision procedure for FDLS,
hence introducing a new class of inference procedures into FDL reasoning.

1 Introduction

Description Logics (DLs) [1] are a popular family of formally well-founded and de-
cidable knowledge representation languages. DL s have a wide range of applications,
e.g., they form the basis for Semantic Web (SW) ontology languages used such as
OWL [11]. Fuzzy Description Logics (FDLs) [17] extend DLs to represent vague con-
ceptsand relations, and as such are very well suited to cover for representing and reason-
ing with uncertainty, a requirement that naturally arises in many practical applications
of knowledge-based systems, in particular the SW; FDLs for instance fit very well to
the problem of multimediainformation retrieval [9]. Another feature that makes FDLs
specifically interesting for the SW is a basic form of para-consistency, i.e. a statement
and its negation are possible to hold at the same time (to a certain extent). This al-
lows knowledge providers on the SW to disagree on the basic properties of data objects
and their interrelation without causing the (uninformative) explosion of the deductive
closureasin classical DLs.

So far, reasoning in Fuzzy DLs is mainly based on tableau-methods (e.g. [17, 16,
7,15, 20, 3]). Further, [18] demonstrates how to use inference procedures for classical
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DLsto perform reasoning in (some) FDLs. Still, reasoningin FDLsis at least ashard as
reasoning in classical (crisp) DLs. Even in DLs of modest expressivity (e.g. ALC [17,
18, 16] the fuzzy variant of the DL ALC [14]) the worst-case complexity of reasoning
is significant (cf. Section 3) eveninrestricted cases[17]. Therefore, it is clear that there
can not be a single inference method that works well on all problems.

Conseguently, our goal is to enrich the range of available methods for reasoning
with FDLs with a fundamentally different approach. In practical applications of DLs
(and hence FDLSs) a particularly important feature for representing domain models is
the support of so-called general terminologies (see e.g. [16]), i.€., the possibility to cap-
ture (potentially recursive) interdependencies between complex concepts in a domain
model. However, besides the tabl eau-based methodsfor DLs (e.g[16, 7, 20, 3]) thereare
at present no other FDL inference methods which can deal with general terminologies.
We want to provide an aternative to tableau-based methods that can deal with general
terminologies.

The main contributions of the paper are as follows:

— We present a novel procedure FixIt(ALC) (cf. Section 4.2) for deciding knowl-
edge base (KB) satisfiability in the FDL ALC (cf. Section 2).

— We clarify the worst-case complexity of the reasoning task addressed by our algo-
rithm and show formally that the problem is ExPTIME-complete. From this resullt,
we can further establish EXPTIME-completenessfor arange of related terminolog-
ical and assertional reasoning tasks (cf. Section 3).

— We formally prove soundness, completeness and termination of the algorithm (cf.
Section 4.2) and show that the runtime behavior of the proposed algorithm is worst-
case optimal (cf. Section 4.3).

— FixIt(ALC) generalizes a type-elimination-based decision procedure[12] for the
(classical) modal logic K (i.e. KBDD [10]) to the FDL ALC. Additionally we
integrate (fuzzy) ABoxes and general TBoxes which are not dealt with in XBDD.

— To the best of our knowledge it is the first fixpoint-based decision procedure that
has been proposed for FDL introducing a new class of inference procedures into
FDL reasoning.

— Besides the tableau-based methodsin [16, 7, 20, 3], it is the only approach to inte-
grate general terminologiesin FDL reasoning and the first non-tableau-based one
that we are aware of. General terminologies are handled in afundamentally differ-
ent way than in standard tabl eau-based method such as[16, 7].

Our method is interesting especially regarding the last aspect since the handling of
genera terminologiesin standard tabl eau-based methods (e.g. [16, 7]) isamajor source
of non-determinism (cf. Section 5) and thus computational inefficiency. In our case no
non-deterministic choiceis introduced by terminologies.

2 Préiminaries

Weintroduce AILC [17], the fuzzy variant of the Description Logic ALC [14] (the latter
can be seen as a syntactic variant of the multi-modal logic K (1) [13]). ALLC provides
the starting point for more expressive FDLs [19] that have been proposed to fuzzify
major fragments of OWL [11].
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Syntax. Concept expressions are constructed from a signature ' = (C, R, I) with
concept names C, role names R, and individual names I. The set of concept expres-
sions C(X) over X' is defined as the smallest set of expressions that contains C, T
and is closed under the application of the concept constructors C' M D (intersection),
C U D (union), =C (complement), and VR.C' (universa role restriction) for R € R
and C,D € C(X) . We alow expressions 3R.C for C € C(X),R € R and L and
treat them as shortcuts for -VR.—C and —T respectively. A TBox axiom (or general
concept inclusion axiom (GCl)) is an expression of theform C C D st. C, D € C(X).
A terminology (or TBox) 7 isafinite set of TBox axioms. Syntactically, the vagueness
of descriptionsbecomes explicit only when describing specific instances and their inter-
relations: a (fuzzy) ABox axiomiseithera (i : C > d) ora(R(i,i’) > d) st. 4,7’ €1,
d € [0,1], and e {<,>,=}. An ABox A is afinite set of ABox axioms. Finaly, a
knowledgebase IC = (7, .A) consistsof aTBox 7 and an ABox A. Let Ind 4 C I de-
note the individual names that occur in .A. We denote the set of all concept expressions
that occur as subexpressionsin C by sub(KC).

Semantics. Semantically, vagueness is reflected in the use of fuzzy sets and relations
when interpreting concepts and roles: an interpretation Z = (AZ, -Z) consists of a non-
empty set AZ called the domain, and a function -Z which maps each concept name
C € Ctoafuzzy set C% : AT — [0,1], each role name R € R to afuzzy relation
RT : AT x AT — [0,1] and each individual namei € I to an elementi? € AZ. The
interpretation function - is extended to arbitrary concept expressions C' € C(X) asfol-
lows: 1. (C' 11 D)% (0) = min(C%(0), D% (0)) 2. (C U D)% (0) = maz(C*(0), D*(0))
3. (=C)*(0) =1 —C%(0) 4 (VR.C)*(0) = inf ,c ar{maz(1 — R%(0,0'),C*(0'))}
5. TZ(o) = 1fordl o € AT, C,D € C(X), R € R. Note that, in contrast to classical
DLs, it does not hold that (C' U —C)% = TZ for al interpretations Z, hence the need to
add T (or L) to the language explicitly.

An interpretation 7 satisfies a TBox axioma = C C D iff forall o € A7 it
holds that C%(0) < D%(0), i.e. C is afuzzy subset of D. T satisfies an ABox axiom
a = (i : Cad)iff CZ(i%)  d. T satisfies an ABox axiom a = (R(i,i") > d) iff
RI(i%,i"7) > d.Inall these cases, wewrite Z |= o. T satisfiesaTBox 7 (or isamodel
of T)iff Z = aforal a € 7.7 satisfiesan ABox .A (or isamodel of A)iff Z £ «
for al o € A. Finaly, 7 satisfies aknowledge base K = (7, .A) (or isamodel of K)
iff 7 =7 andZ = A.

Reasoningin ALC. Givenafuzzy KB K = (7, A), fuzzy ABox axiomsor GCls « and
concept expressions C, D € C(X), we can analyze particular semantic characteristics
and interdependencies: We say that K is satisfiable (or consistent) iff there is a model
7 for K. K entails « (denoted as K = «) iff al models Z of K satisfy «. Concept C
is subsumed by concept D (wrt. aKB K) iff X = C C D. Two concepts C and D are
called equivalent (wrt. aKB K) iff for any model Z of K it holdsthat CZ(0) = D% (o)
for all o € AZ. Two concepts C' and D are called digoint (wrt. a KB K) iff for any
model Z of K it holds that there does not exists an o € AZ such that C% (o) > 0 and
D7 (0) > 0. A concept C iscalled satisfiable (wrt. aKB K) iff there existsamodel Z of
T such that CZ (o) > 0 for someo € AZ. Further, one might want to compute the truth
value bounds for a given ABox assertion o wrt. K to determine the possibility interval
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that is enforced for a by the background knowledgein C: The greatest lower bound of
a wrt. K is defined as gib(a, K) := sup{d| K |= (o > d)} and the least upper bound
of o wrt. K is defined as lub(«, K) := inf{d| K £ (« < d)} (where sup ) = 0 and
inf 0 = 1). Computing glb(a, K) and lub(c, K) is usualy called the best truth value
bounds (BTVB) problem.

One of the most fundamental reasoning problems is to determine whether a given
fuzzy KB K is satisfiable. A lot of other reasoning tasks (e.g., checking for concept
satisfiability wrt. a TBox or the BTVB problem) can be reduced to KB satisfiability
checking [17] and therefore solved by a respective decision procedure. For this reason,
we consider KB satisfiability as the reasoning problem to be solved.

3 Complexity of Reasoning with Knowledge Bases

Deciding the satisfiability of KBs in AILC where the TBox 7 is restricted to axioms
of thefoom A C C or A = C (for concept names A € C and concept expressions
C € C(X)) such that any concept name A occurs at most once on the left-hand side and
the TBox does not contain any cyclic dependencies between concept namesis known to
be a PSpacE-complete problem [17]. For the general case of unrestricted terminologies
(alowing arbitrary GCls C' C D), we are not aware of any worst-case complexity
characterization. We show that determining the satisfiability of aKB inthe general case
is EXPTIME-complete (which correspondsto the situation in the classical variant ALC).
Detailed proofs are omitted here but can be found in [6].

EXPTIME-Hardness. We show EXPTIME-hardness by a polynomial-time (many-one)
reduction of concept satisfiability wrt. general terminologies in the classical DL ALC
whichisknownto be an ExPTIME-hard problem[1, Chapter 3]. We definethe necessary
reduction function as follows:

Definition 1 (Reduction). Let T denote a finite set of GCls and C' € C(X) be any
concept expression. Then we define the reduction 7 (T, C) of the terminology T and the
concept expression C as7(T, C) := K where X = (7, A) isthe ALC knowledge base
consisting of the TBox 7 := TUT*withT* :={T C -DUD|D e sub(TU{C})}
and the ABox A := {(i : C > 1)} for some new individual namej.

The intention of the additional TBox components 7 * ensures that any model of
7T (and hence = (T, C)) assigns only possibility degreesin {0, 1} to any concept (sub-
)expression occurring somewhere in T or C. In particular, any such model aways as-
signsclassical truth valuesto any concept name A € C and any concept expression that
is constructed fromarole R € R (but not necessarily to theroles R € R themselves).
Since for possibility degreesin {0, 1} the (fuzzy) semantics of concept constructorsin
ALLC coincides with the classical semanticsin ALC, we know that a fuzzy interpre-
tation that satisfies 7 can be modified (easily) into a classical (i.e. crisp) model of T.
By the sameline of argumentation, .A ensuresthat in any model of 7(T, C) (and hence
T) the input concept C' is ALC-satisfiable. The implication in the other direction is
immediate since any crisp interpretation isamodel of the additional TBox components
T*:
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Proposition 1. C issatisfiablewrt. T in ALC iff 7(T, C) issatisfiablein ALC.

It is straightforward to see that the many-one reduction #(T, C') can be computed
in linear time (wrt. the size of T and C) for each finite set T of GCls and concept
expressions C' € C(X'). As animmediate consequence we get the following corollary:

Corollary 1 (ExPTIME-Hardness of KB Satisfiability). The problem of deciding the
satisfiability of KBsin AILLC is ExPTIME-hard if GCls are allowed.

EXPTIME-Membership. KB satisfiability in ALC isin EXPTIME since [18] shows that
checking KB satisfiability in AILC can be reduced (in polynomial time) to checking
KB satisfiability in ALC which is known to be in EXPTIME, since KB satisfiability is
in EXPTIME even for an extension of ALC, i.e. the more expressive DL SHZQ [21,
Corollary 6.30].

Theorem 1 (ExPTIME-Completeness of KB Satisfiability). The problem of deciding
the satisfiability of KBsin ALLC is ExPTIME-complete if GCls are allowed.

Besides KB satisfiahility, one can show that aso the following reasoning problems
are EXPTIME-complete: L = C = D, K E C C D, concept digointness wrt. /C,
concept satisfiability wrt. K, L = (0: C>n), K= (0: C <n),andK = (0: C =
ny; we refer the reader for more details to [6].

4 A Decision Procedure based on Fuzzy Type Elimination

We present a decision procedure for KB satisfiability in AILC which does not rely on
systematic search in the first place (as e.g. tableau-based methods), but instead con-
structsacanonical interpretation by means of afixpoint construction. The so-constructed
(canonica) interpretation (if non-empty) satisfiesthe TBox of aKB and allowsto derive
amodel for the given knowledge base /C iff K is satisfiable. In contrast to tableau-based
procedures a canonical interpretation is in genera not tree-shaped. Further, it can be
shown that the number of iterations required to reach a fixpoint is linear in the modal
depth of K.

Preprocessing. Without loss of generality, we can restrict ourselves to normalized
knowledge bases [16], i.e. knowledge bases which contain only fuzzy ABox assertions
of theform (o > d), by applying the following equivalent transformation fuzzy ABox
axioms: (i : C < dy ~ (i:=2C>1—-dyand (i : C =d) ~ (i : C > d), (i :
—C' > 1 — d). Further, we can assume that al axiomsin K are in box normal form
(BNF) [10] (i.e. the only negative concept subexpressions are of the form =VR.C or
negated atomic concept names —C'), by exhaustively applying the following equivalent
transformation to concept expressions. —=(C'MD) ~» ~ClU-D, ~(CUD) ~» =CM-D,
and -—C ~ C. These preprocessing steps can be performed altogether in linear time
wrt. the size of the input KB.
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4.1 Basic Notionsand Intuition

Types. Let £ = (7, A) denoteanormalized ALC knowledgebasein BNF. Theclosure
of aknowledge base cl(KC) isdefined as the smallest set of concept expressions such that
for al C' € sub(K), if C is not of the form =D, then {C,-C} C cl(K). Further, let
PossDeg(KC) denote the set of all relevant possibility degrees that can be derived from
K, i.e. PossDeg(K) = {0,0.5,1} U {d|{e > d) € A} U{l —d|{a > d) € A}.
It has been shown in [17,18] that if K is satisfiable, then there is as well a model of
K which assigns possibility degreesin PossDeg(K) only. Hence, for our purposes we
do not need to consider arbitrary possibility degrees d € [0, 1], but only the finite set
PossDeg(KC) that can be derived from .

We can then introduce the notion of atype, which allows to represent individual s of
an interpretation in a syntactic way:

Definition 2 (Fuzzy K-Type). Afuzzy K-typer isamaximal subset of cl(K) x PossDeg(K)
such that the following conditions are satisfied: 1. if (C,d) € 7 and (C,d’) € 7 then
d=d 2.ifC = -C"then (C,d) € 7iff (C',1—-d) € 73.ifC = C"11C" then
(C,d)y e Tiff (C',d") € Tand (C”,d") € T andd = min(d’,d") 4.if C = C'u C”
then (C,d) € 7iff (C',d") € 7 and (C”,d") € 7 and d = max(d’,d") 5. for all
CCC eT:if(C,d)y e rand(C’,d") e Tthend < d' 6.ifC =T then (C,1) € 7.

Since cl(K) and PossDeg(KC) are both finite sets, there are at most 2/¢/(P)I-|PossDeg(X)|
different IC-types. Each type 7 can be seen as an individual and syntactically represents
all (fuzzy) properties that can be observed about that individual: (C,d) € 7 indicates
that the individual 7 belongs to C' with the possibility degree d. Hence, the set of all
KC-types (or simply types) provides enough vocabulary to let us describe al kinds of
interpretations for 1 simply by fixing how to interconnect individuals (and therefore

types).

Canonical Model. It turnsout that it is possible to connect typesin afixed (or canon-
ical) way, such that the interconnection defined is consistent with almost all properties
specified syntactically in the type. The interconnections can be derived from the types
themselves:

For aset of typesT we can define for each role R a canonical accessibility relation
Ap : T x T — PossDeg(K) that “maximally” interconnects types 7,7’ € T with
possibility degree d € PossDeg(K): let 6(d,d’) :=1ifd < d’ando(d,d’) := 1 — dif
d > d'. Then, we can define A g by

Ag(t,7") == min{é(d,d")|(VR.C,d) € 7,(C,d') € 7'}

if VR.C € cl(K) forsomeC € C,and Ag(7,7") := 1 otherwise.

Thisway, we can construct a canonical interpretation Z for any given set of types
T using the canonical interconnection of types by A  asfollows: Zr = (T, -Z7) with
(i) for any concept name C' in K andany 7 € T weset CZ7(7) = dif (C,d) € T, and
(i) RTr (1,7") = Ag(7,7") forany role R in K and any 7, 7' € T. Please note, that
by our definition of IC-types, Z1 is well-defined for any concept name or role name.
However, our definition deliberately |eaves open the interpretation of individuals. We
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therefore definein fact aclass of canonical interpretations, each of which fixes aspecific
way of how to interpret the individualsin aKB K.

The canonical interconnection in Z is chosen in such away that al assignments
of possibility degrees to concepts of the form C = VR.C' € 7 are lower bounds for
the possibility degreesthat arein fact assigned by a canonical interpretation Z . Hence,
such a canonical interpretation is almost immediately a (canonical) model for the ter-
minology 7, i.e. it satisfies that

CIr(r) =diff (C,d) e T (*)

foralmost al C € cl(K) andthereforeZr = C C C’ fordl C C C’ € T by clause (5)
in our definition of /C-types. That (x) is satisfied by Z is straightforward for the cases
of concept names C, or complex concepts of thefoomC = C’'nC”,C = C'uC”,
C = -C’ and the C*7 (1) > d case for C = VR.C by our definition of types and
the definition of Agr. The only cases where (x) can be violated by Z is for types
7 containing universally role restricted concepts VR.C that are assigned a possibility
degree which is too small (wrt. the R-successor types 7/ in Z7) to properly reflect the
semantics of VR.C' in ALC, i.e. to coincide with the greatest lower bound of the set

{max(1 — RIr (1,7, ctr (TN | eT}

Types T in which the possibility degreeassigned d to VR.C istoo small to be consis-
tent with the semantics of AILC are called bad types. Bad types + € T can be detected
easly, since they satisfy that there exist R € R,C € C(X),d € PossDeg(K) st.
(VR.C,d) € Tandforal 7' € T:if (C,d’) € 7’ thenmax(1 — Ar(7,7),d’) > d.

This suggests the following simple algorithm (which uses a fuzzy type elimination
process at its core): in order to compute a maximal interpretation that satisfies all ter-
minological axioms, we start off with the maximal set of types (i.e al K-types) and
iteratively fix all problemsthat prevent («) from being satisfied by removing bad types.
Thisway, we must eventually reach afixpoint after finitely many steps. If the resulting
set of types is non-empty, we know that (x) must hold (since al problems have been
fixed) and therefore we can be certain that the corresponding canonical interpretation
satisfies 7 (and covers all other possible models of 7 at the same time). Hence, we
eventually need to check if all ABox axioms are satisfied by the canonical interpreta-
tion. If thisisthe case, we have found amodel for 1, otherwise, we know that there can
not be any interpretation that satisfies both 7 and A at the same time. In other words,
KC is not satisfiable.

4.2 Algorithm

The type elimination process sketched above can be formalized as shown in Algo-
rithm 1. Note that the emptiness test for the fixpoint 7' is covered implicitly: if the
fixpoint T" is empty, then the test in the if-statement fails trivially.

Thetermination, soundness, and compl eteness of our algorithm can be provenformally
(cf. [6] for full proofs):
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procedur e satisfiable(K): boolean
T:={r|risak-type };

repeat

T =T,

T :=T"\ badtypes(T');
until T =17 ;

if thereexistsatotal function 7 : Inda — T st. (C,d’) € m(o) andd < d’ for each
(0:C >d) e A, and Ar(n(0),m(0")) > dfor each (R(0,0") > d) € Athen
| returntrue;
end
return false;

function badtypes(T) : 27
return {r € T{VR.C,d) € T andforal ' € T:if (C,d') € 7’ then
max(l — Agr(r,7'),d’) > d};

Algorithm 1: The Type Elimination-based Decision Procedure FixIt(ALC)

Theorem 2 (Termination). For any ALC knowledge base C = (7, .A) the algorithm
FixIt(ALC) terminates after finitely many steps with either true or false as return
value.

The following lemma is a key element of the soundness and completeness proof and
shows that by successively removing bad types we can indeed ensure that types encode
possibility degree assignments to concepts that coincide with the canonical interpreta-
tion, and that any such canonical interpretation is amodel of the 7.

Let T bethe set of typesthat is computed asthe fixpoint in the algorithm FixIt (ALC),
i.e. badtypes(T) = () andlet Zp= (T, -7 ) beacanonical interpretation for 7" as defined
above.

Lemma 1. For each KC-type 7, concept C' € cl(K) and d € PossDeg(K) it holds that
CIr () = diff (C,d) € 7. Further, Iy = 7.

Theorem 3 (Soundness). If FixIt(ALC) returnstruefor a ALC knowledgebase K =
(7, A), then K is satisfiable.

A second key element for the completeness proof is the following lemmathat shows
that our canonical way of interconnecting types (in the fixpoint set) is maximal or the
strongest possible one in the following sense: the interconnection R of individualso, o’
defined by any model 7 of K is covered by the canonical interconnection A i of the
respectivetypes (o), 7(o") representing o, o’ inZ.

Lemma2. LetZ = (A%, .T) beany model of K = (7, .A). For eachindividual o € AT
we define its corresponding type 7(o0) := {(C, d) € cl(K) x PossDeg(K)|C% (o) = d}.
Then, Ag(7(0),7(0")) > R%(0,0) for all 0,0’ € AZ.

Theorem 4 (Completeness). If an ALC knowledge base K = (7, .A) is satisfiable,
then FixIt(ALC) returnstrue for /C.
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This leads to the main result, which is an immediate consequence of Theorems 3,
4,and 2:

Corollary 2. ThealgorithmFixIt(ALC) isa sound and complete decision procedure
for knowledge base satisfiability in ALC.

4.3 Runtime and Space Requirements

We now analyze the runtime and space requirements of our algorithm based on a naive
implementation model to derive upper bounds. The considered implementation works
directly on types and explicit representations of sets of types.

In the following we assume that the number p of different possibility degrees that
can occur in any KB K is fixed. This assumption seems realistic and does not restrict
applicationsof FDLsin practice, i.e., we can assume alimited (numerical) resolution of
sensors and algorithms (or humans) assigning possibility degreesto individual observa-
tions. Further, we consider the computation of the basic functions min, maz, 1 — d and
comparisonsd < d’ as atomic operations with unit costs.

Representation. Accordingto Def. 2, aK-typer isafunction : cl(K) — PossDeg(K)
that satisfies a particular consistency property. Fix sometotal order (C'1, Co, ..., Ck) on
the subset cl; () of cl(K) that consists of all positive concept expression C; € cl(K).
Then, we can represent atype 7 by a sequence of pairs

T = <d17d_1>; <d2;d_2>;- S <dk7d_]<'>

with k£ = |l (K)| € O(|K]), where d; represents the possibility degree assigned to
a positive concept subexpression C; € cl(K) and d; represents the possibility degree
assigned to a negative concept subexpression —-C; € cl(K). There are only finitely
many relevant possibility degrees. Assuming a binary encoding (-) ,, : PossDeg(KC) —
{0, 1} of possibility degrees, each such sequencerequiresat most 2-k-log2(p) € O(k)
bits. Clearly, not each such sequence represents a /C-type. However, for any sequence
checking the consistency requirements from Def. 2 can be done time O(k - |7) and
space O(1): property (1) is satisfied aready by our encoding, properties (2)-(3) and (6)
can each be decided in O(k), property (5) requiresO(k - |7 |) computation steps. In any
case, we need only O(1) additional space for the computation.

The algorithm can be separated into three different phases: the initialization step, the
fixpoint computation, and the final test. We analyze all of these steps one-by-one.

Initialization Phase. To compute the set of al KC-types, we generate any sequence
(dy,dy), (do,ds), . .., {dy,dy) st. d;,d;, € PossDeg(K). For each sequence this re-
quires at most 2k steps. Testing if such a generated sequence satisfies the consistency
requirements, takes at most O(k - |7|) steps and only constant additional space. Any
sequence that satisfies the consistency requirementsis stored in alinked list. During the
initialization phase, we need to check p2* sequence, which requires O(p2* - k - |T)
computation steps and O(p2* - k) space.
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Fixpoint Computation. The current set of types T" in the fixpoint computation is rep-
resented as linked list from which elements are removed during this phase. Clearly,
the function §(d, d’) can be computed in constant time. The computation of A g(7, 7")
therefore can be performed in O(k?) computation steps and constant additional space
for any two given types 7, /. Given atype r € T', we can then determine if 7 is a bad
type (wrt. T) in O(k - (|T'| - k2)) = O(k® - |T'|) basic computation steps using constant
space only. Thistest has to be performed for all |T'| typesin T in order to compute 7"’.
Removing a bad type from the current list of types T requires O(|T'|) time and constant
additional space. To find out if we reached a fixpoint after an iteration, we can simply
use a boolean variable, which is set to false at the beginning of each loop and set to
true if atypeisremoved from the list. This requiresat most O(|T'|) additional assign-
ments and one boolean comparison during each iteration and constant additional space.
Hence, each iteration of the loop (to compute T'’) requires O((k3 + 1) - |T|?> + |T|)
computation steps and constant additional space.

Let ¢ denote the size of theinitial set of typesT'. Since we need at most ¢ iterations
to reach a fixpoint, we can compute the fixpoint in at most O((k3 + 1) - t3 + t) steps
using O(t) additional memory units. Sincet < p2*, we can derive O((k3 + 1) - p%% +
p?*) as an upper bound on the number of computation steps performed for the fixpoint
computation and O (p2*) as an upper bound for the additionally required space.

Final Test. We can represent atotal total mapping 7 : Ind 4 — T as amapping from
Ind 4 to the index of an element in the list T. This requires, O(i - log2(t)) additional
memory unitswith ¢ = |Ind 4| and lookups for values of 7 can be performedin O(%)
time using a hashing function and a subsequent iteration over the list representing 7.
Given such a mapping m, we can therefore determine if the required property in the if-
statement in Algorithm 1 is satisfied by 7 inat most O(a- (t-k?)) steps (wherea = |A|)
using O(1) additional memory only. We can generate any such mapping = : Ind 4 — T
inat most O(i-loga(t)) steps. Further, thereareat most ¢* different such mapping, which
we can generate and test one-by-one. Hence, we can implement that final test using at
most O(t* - (i - loga(t) +a- (t - k%)) = O(p** - (i - k - loga(p) + a - (p** - k?))) steps
and O(i - k - log2(p)) additional memory units.

Overall runtime and space bounds. For an upper bound on the overall execution of the
algorithm, we can sum up the runtime and space bounds for the three different phases
above: In regard of runtime, the algorithm requiresno morethan O(p 2% - k- |T | + (k® +
1)-p% 4 p?* + (p?¥ - (i - k-loga(p) +a- (p** - k?)))) computation steps. In regard of the
space, the algorithm requiresno morethan O(p2* - k4 p?* 4-i- k- logs(p) + |K|) space.
Since k,i € O(]K|) and since we assume that p is a constant (and hence independent
fromasize of aKB K), thealgorithm requires at most exponentially many computations
steps and an exponential amount of memory in regard of the size of the input KB .

This means that (under the realistic assumptions) our algorithm can be implemented
in away that is worst-case optimal in regard of the runtime of the agorithm, since
by Theorem 1 the problem of determining the satisfiability of a KB in ALC requires
exponential time (wrt. the size of the input KB) in the worst case. Further, note that ap-
plying a standard tableau-based decision procedure (e.g. [1]) to (crisp) equisatisfiable
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ALC-reduction of a general ALLC KB usually yields only a NEXPTIME-upper-bound
on the runtime of such an (indirect) decision procedure. Therefore, indirect reasoning
approaches by reduction to classical tableau-based methods usually can only give sub-
stantially worse runtime guarantees.

Consequently, the major obstacles when using the algorithm in practice are (i) the
exponential space requirement and (ii) the necessity to consider all typesint € T
during each loop one-by-one. These problems are mainly based on the fact that we
use explicit representations of set of types. A potential solution to these problems is
known from the area of Symbolic Model Checking [8] and has aready been success-
fully applied for the implementation of the XBDD procedurein [10]: the use implicit
(or declarative) representations of sets of types by means of formulae and to implement
set-theoretic operations by formula modifications and (un)satisfiability tests. In partic-
ular, set-theoretic operations on sets can be implemented as set-at-a-time operations
instead of element-at-a-time operations which can speed up computation significantly.

5 Discussion: Reasoning with Terminologies in Fuzzy
Tableau-based M ethods

Tableau-methods can be used to determine the satisfiability of KBs. In order to detect
the satisfiability statusof agivenKB K = (7, A), they construct tree-structured labeled
graphs (i.e. completion graphs). The nodes in a completion graph represent individuals
in an interpretation Z for X and the edges capture the interrelation of individuals via
roles in K. Node labels capture (bounds on) the degree to which the individua rep-
resented by the node is a member of a concept, edge labels specify (bounds on) the
degree of interrelation of the connected individualswrt. roles. The completion graphis
initialized to represent the ABox .A. Then, it is stepwise extended by analyzing concept
labels of nodes and interrelations. An expansion can create new labels for nodes and
edges and insert new nodes and edges into the graph. The extension process follows a
set of so-called completion rules which are exhaustively applied. During the comple-
tion process non-deterministic choices can appear: there might be more than one way to
extend the graph further, but we can not tell which of these extensions will eventually
lead to a successful construction of a model for IC (if there is one). In order to stay
complete, all possible choices (for any node and any node label) need to be considered
aslong as no model has been constructed yet. Thelatter can be determined by checking
labels for elementary contradictions (in regard of the specified bounds on membership
degrees). If no completion rules are applicable anymore and there are no |abel s to nodes
and edges which contain an elementary contradiction (i.e. we have afully-expanded and
clash-free completion graph), then we found in fact a (witness for a) model for /C. If no
such graph can be constructed at all, C is unsatisfiable.

Example. Consider the ABox A = {(i : VR.-BU3R.(BNC(C) <0.4), (i : VR.C >
0.7)}. The completion process starts with the completion graph
Lo = {(VR=BU3R.(BNC) <0.4), (YR.C >0.7)}
°
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Since i can beamember of VR.—B U 3R.(BMC) only up to degree 0.4, we can derive
upper bounds on the possibility degreefor : wrt. VR.—B and 3R.(BMC) directly from
the semantics of the concept constructor LI and update the label by two new constraints

Ly = Lo U{(VR.~B < 0.4), (3R.(BNC) < 0.4)}
°
i

To satisfy (VR.—B < 0.4), weintroduce anew R-successor node j, aconstraint on the
degree of R-interrelation betweeni and 7, and a constraint on the degree of membership
of j in—=B. Both constraintsfollow immediately from the semantics of the universal role
restrictionin ALLC:

I Ly ={(-B <04)}

o——{(R>06)}———@

I J
To satisfy the constraint (VR.C' > 0.7) € L; weadd (C' > 0.7) to L. Further, in ALC
(—B < 0.4) € L, canberewrittenas (B > 0.6)

L Ly ={({B >0.6),(C >0.7)}
o————{(R>06)}————>@
i j
Finally, the only constraint that we did not consider yet is (3R.(BT1 C) < 0.4) € Ly.
To ensure the satisfaction of this concept expression, we need to add (B M C' < 0.4)
(since the edge constraint (R > 0.6) and the upper bound (R < 0.4) are inconsistent
with each other):

Ly Ly =L/ U{(BNC <0.4)}
o ((R>06)}— »eo
i j

Considering the semantics of the concept intersectionin ALC, (BNC' < 0.4) issatisfied
iff (B < 0.4) or (B < 0.4) are satisfied. Hence, we face a non-deterministic choice
point in the completion process. Since al possible extensions lead to an unsatisfiable
constraint systems node j in the completion graph, we can conclude that the given
ABox A is unsatisfiable.

Tableau-based implementations deal with (or) non-deterministic choice points by
backtracking. Since for any choice, an unsatisfiable node might be detected only after
alot of node label and graph extension steps, backtracking can become a very costly
operation.

Integration of GClIs. In order to integrate GCls into the completion graph extension
process sketched above, standard tableau-based methods (e.g. [16], and similarly [7])
exploit thefollowing observation: AninterpretationZ satisfiesthe GCI C C D (i.e. 7 =
C C D) iff for dl (relevant) possibility degrees n € PossDeg(K) and all individuals
i € AT either (i : C < n)or(i: D > n) holds.

To reflect this property in the tableau completion process, a non-deterministic rule
for the extension of node labels is added to the inference system: for each node i in the
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completion graph, each GCI C C D inthe TBox, and each (relevant) possibility degree
n, we either insert the constraint (i : C' < n) or (i : D > n) into the current node |abel.

It is obvious that using this new inference rule GCls essentially become the major
source of hon-determinism for tableau-based inference procedures: for each node ¢ ap-
pearing (somewhen) in the compl etion graph, we have a distinct alternative for each rel-
evant possibility degreen € PossDeg(K) and each GCI C' C D € 7. Hence, for each
node ¢ on a path of length [ in the completion graph, we get up to |PossDeg(KC)| - |7 |
different alternatives. This makes up to {1PossPee()'|7] distinct cases that need to be
considered during the compl etion process in the worst-case. It is further known [1] that
when supporting GCls, the maximal path length in the completion graph can be limited
only by an upper bound that is (itself) exponentia in the size of the input ABox A (us-
ing atechnique called blocking). This gives a doubly-exponential runtime for tableau-
based methods in the worst case, such that without clever implementation techniques
and good heuristics for guiding the backtracking search, a tableau-based reasoner in-
tegration GCls as described above might not be usable even in rather small practical
scenarios.

In this paper, we present a method that does not suffer from this problem, i.e. no
non-deterministic choice-points are introduced.

6 Redated Work

Our method FixIt(ALC) generalizesthe principle (i.e. atype elimination process) un-
derlying the top-down variant of the B DD procedure proposed in [10] for the modal
logic K to the (more expressive) FDL AILC. Further, our method integrates (fuzzy)
ABoxesand TBoxesin theinference process both of which are not dealt within CBDD.

Inference Algorithms for FDLs and Reasoning with GCls. So far, reasoning in Fuzzy
DLs has been mostly based on tableau-methods (e.g., [17, 16, 7,15]). Most of these
methods do not support reasoning with general terminologies as it is possible with
FixIt(ALLC). The first method ever to integrate GCls into FDL reasoning is [16]. A
very similar approach is presented in [7] for the fuzzy variant of amore expressive DL,
namely SHZ. Very recently, [20] proposed a novel and elegant method for reasoning
with GCls (under amore general semanticsthan here) whichisinspired by earlier works
on tableau-based reasoning in multi-valued logics. The method combines a tableau-
construction procedure with a Mixed Integer Linear Programming (MILP) solver that
serves as an oracle to the FDL tableau procedure. To the best of our knowledgethereis
no other approach to deal with GClsin FDLs available at present. FixIt(ALC) there-
forerepresents an interesting enrichment of inference cal culi toolbox for FDLSs, sinceno
non-determinismisintroduced by considering GCls. A similar effectisachievedin[20]
by the substantial modification of a standard tableau-based method and an extension
with an MILP oracle: the tableau-expansion process does not become non-deterministic
by introducing GCls. However, depending on the solution techniques applied inside the
MILP solver, non-determinism might simply be shifted from the tableau-construction
process into the MILP oracle. In such cases, respective computational inefficiencies
would then simply be hidden in then MILP oracle, but not actually resolved. A very
similar approach that is not fixed to a specific semanticsis presented in [3].
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Further, [18] demonstrates how to use inference procedures for classical DLs to
perform reasoning in (some) FDLs. This allows to use algorithmsthat have been devel -
oped for classical DLs in FDL reasoning (for some FDLS) in an indirect way. Please
note that the XBDD procedure can not be used in such an indirect way to perform ALC
reasoning, since both TBoxes and ABoxes are not supported.

[4,5] consider afuzzy version of ALC using arbitrary continuous t-norms (and the
corresponding residuated implications) to define the semantics of the concept construc-
tors and proposes a method for deciding ) = (C = D > 1) and the satisfiability
of (C C D > 1) by mapping to a (decidable) propositional fuzzy logic. The gener-
ated propositional problems can be exponentially bigger than the FDL input problem.
Although, the semantics considered in [4, 5] is more general than here (but differs for
universal role restrictions), the proposed decision procedures cover more limited rea
soning tasks, i.e. no background knowledge K is considered.

7 Conclusions and Future Work

We presented a novel procedure FixIt(ALC) for deciding knowledge base (KB) sat-
isfiability in the FDL ALC, introducing a new class of inference procedures into FDL
reasoning. Besides the tableau-based methods [16, 7, 20, 3], it is the only (and the first
non-tableau-based) approach to integrate general terminologiesin FDL reasoning that
we are aware of .

Additionally, we clarified the worst-case complexity of the reasoning problem that
is solved by the algorithm and showed that deciding the satisfiability of a KB in ALC
is an EXPTIME-complete problem. A discussion of a (straigthforward) implementation
of the algorithm based on explicit representations of types shows that our algorithm can
be implemented in away that is worst-case optimal wrt. its runtime.

The main research questions that we want to address next are as follows: we will
study means of implicit representation of sets of fuzzy types known from Symbolic
Model Checking [8], in particular their implementation by means of Ordered Binary
Decision Diagrams (OBDDs) [2] similar to [10], therefore addressing the main obstacle
to apply the procedurein practice. A major question concerning optimization is clearly
how toimplement thefinal test of the algorithm efficiently, e.g. by heuristic search using
the information in the ABox effectively to find the required mapping. The integration
of optimizations such as full vs. lean representations or particle vs. types as discussed
in [10] should be straightforward. We want to evaluate the effectiveness of the method
by an implementation and comparison to tableau-based systems for FDLs. Moreover,
we believe that it is interesting to study a bottom-up variant of XBDD in the context
of FDLs too, and to check if the integration of ABoxes can be done more efficiently
in such a variant. Finally, we would like to see to what extend the method can cover
other semantics for FDLs (e.g. other t-norms) and extended constructs, such as fuzzy
modifiers and concrete domains.
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