
Fuzzy Description Logic Reasoning using a
Fixpoint Algorithm�

Uwe Keller1 and Stijn Heymans2

1 Semantic Technology Institute (STI) Innsbruck, University of Innsbruck, Austria.
uwe.keller@sti2.at

2 Knowledge-based Systems Group, Institute of Information Systems, Vienna University of
Technology, Austria.

heymans@kr.tuwien.ac.at

Abstract. We present FixIt(ALC), a novel procedure for deciding knowledge
base (KB) satisfiability in the Fuzzy Description Logic (FDL) ALC. FixIt(ALC)
does not search for tree-structured models as in tableau-based proof procedures,
but embodies a (greatest) fixpoint-computation of canonical models that are not
necessarily tree-structured, based on a type-elimination process. Soundness, com-
pleteness and termination are proven and the runtime and space complexity are
discussed. We give a precise characterization of the worst-case complexity of
deciding KB satisfiability (as well as related terminological and assertional rea-
soning tasks) in ALC in the general case and show that our method yields a
worst-case optimal decision procedure (under reasonable assumptions). To the
best of our knowledge it is the first fixpoint-based decision procedure for FDLs,
hence introducing a new class of inference procedures into FDL reasoning.

1 Introduction

Description Logics (DLs) [1] are a popular family of formally well-founded and de-
cidable knowledge representation languages. DLs have a wide range of applications,
e.g., they form the basis for Semantic Web (SW) ontology languages used such as
OWL [11]. Fuzzy Description Logics (FDLs) [17] extend DLs to represent vague con-
cepts and relations, and as such are very well suited to cover for representing and reason-
ing with uncertainty, a requirement that naturally arises in many practical applications
of knowledge-based systems, in particular the SW; FDLs for instance fit very well to
the problem of multimedia information retrieval [9]. Another feature that makes FDLs
specifically interesting for the SW is a basic form of para-consistency, i.e. a statement
and its negation are possible to hold at the same time (to a certain extent). This al-
lows knowledge providers on the SW to disagree on the basic properties of data objects
and their interrelation without causing the (uninformative) explosion of the deductive
closure as in classical DLs.

So far, reasoning in Fuzzy DLs is mainly based on tableau-methods (e.g. [17, 16,
7, 15, 20, 3]). Further, [18] demonstrates how to use inference procedures for classical

� This work has been partially funded by the European Commission under the LarKC project
(FP7 - 215535). Stijn Heymans is supported by the Austrian Science Fund (FWF) under
projects P20305 and P20840.

2 Uwe Keller and Stijn Heymans

DLs to perform reasoning in (some) FDLs. Still, reasoning in FDLs is at least as hard as
reasoning in classical (crisp) DLs. Even in DLs of modest expressivity (e.g. ALC [17,
18, 16] the fuzzy variant of the DL ALC [14]) the worst-case complexity of reasoning
is significant (cf. Section 3) even in restricted cases [17]. Therefore, it is clear that there
can not be a single inference method that works well on all problems.

Consequently, our goal is to enrich the range of available methods for reasoning
with FDLs with a fundamentally different approach. In practical applications of DLs
(and hence FDLs) a particularly important feature for representing domain models is
the support of so-called general terminologies (see e.g. [16]), i.e., the possibility to cap-
ture (potentially recursive) interdependencies between complex concepts in a domain
model. However, besides the tableau-based methods for DLs (e.g [16, 7, 20, 3]) there are
at present no other FDL inference methods which can deal with general terminologies.
We want to provide an alternative to tableau-based methods that can deal with general
terminologies.
The main contributions of the paper are as follows:
− We present a novel procedure FixIt(ALC) (cf. Section 4.2) for deciding knowl-

edge base (KB) satisfiability in the FDL ALC (cf. Section 2).
− We clarify the worst-case complexity of the reasoning task addressed by our algo-

rithm and show formally that the problem is EXPTIME-complete. From this result,
we can further establish EXPTIME-completeness for a range of related terminolog-
ical and assertional reasoning tasks (cf. Section 3).

− We formally prove soundness, completeness and termination of the algorithm (cf.
Section 4.2) and show that the runtime behavior of the proposed algorithm is worst-
case optimal (cf. Section 4.3).

− FixIt(ALC) generalizes a type-elimination-based decision procedure [12] for the
(classical) modal logic K (i.e. KBDD [10]) to the FDL ALC. Additionally we
integrate (fuzzy) ABoxes and general TBoxes which are not dealt with in KBDD.

− To the best of our knowledge it is the first fixpoint-based decision procedure that
has been proposed for FDL introducing a new class of inference procedures into
FDL reasoning.

− Besides the tableau-based methods in [16, 7, 20, 3], it is the only approach to inte-
grate general terminologies in FDL reasoning and the first non-tableau-based one
that we are aware of. General terminologies are handled in a fundamentally differ-
ent way than in standard tableau-based method such as [16, 7].

Our method is interesting especially regarding the last aspect since the handling of
general terminologies in standard tableau-based methods (e.g. [16, 7]) is a major source
of non-determinism (cf. Section 5) and thus computational inefficiency. In our case no
non-deterministic choice is introduced by terminologies.

2 Preliminaries

We introduce ALC [17], the fuzzy variant of the Description LogicALC [14] (the latter
can be seen as a syntactic variant of the multi-modal logic K (m) [13]). ALC provides
the starting point for more expressive FDLs [19] that have been proposed to fuzzify
major fragments of OWL [11].

Fuzzy Description Logic Reasoning using a Fixpoint Algorithm 3

Syntax. Concept expressions are constructed from a signature Σ = (C,R, I) with
concept names C, role names R, and individual names I. The set of concept expres-
sions C(Σ) over Σ is defined as the smallest set of expressions that contains C, �
and is closed under the application of the concept constructors C � D (intersection),
C � D (union), ¬C (complement), and ∀R.C (universal role restriction) for R ∈ R
and C, D ∈ C(Σ) . We allow expressions ∃R.C for C ∈ C(Σ), R ∈ R and ⊥ and
treat them as shortcuts for ¬∀R.¬C and ¬� respectively. A TBox axiom (or general
concept inclusion axiom (GCI)) is an expression of the form C 	 D s.t. C, D ∈ C(Σ).
A terminology (or TBox) T is a finite set of TBox axioms. Syntactically, the vagueness
of descriptions becomes explicit only when describing specific instances and their inter-
relations: a (fuzzy) ABox axiom is either a 〈i : C �� d〉 or a 〈R(i, i ′) ≥ d〉 s.t. i, i′ ∈ I,
d ∈ [0, 1], and ��∈ {≤,≥, =}. An ABox A is a finite set of ABox axioms. Finally, a
knowledge base K = (T ,A) consists of a TBox T and an ABox A. Let IndA ⊆ I de-
note the individual names that occur in A. We denote the set of all concept expressions
that occur as subexpressions in K by sub(K).

Semantics. Semantically, vagueness is reflected in the use of fuzzy sets and relations
when interpreting concepts and roles: an interpretation I = (ΔI , ·I) consists of a non-
empty set ΔI called the domain, and a function ·I which maps each concept name
C ∈ C to a fuzzy set CI : ΔI → [0, 1], each role name R ∈ R to a fuzzy relation
RI : ΔI × ΔI → [0, 1] and each individual name i ∈ I to an element iI ∈ ΔI . The
interpretation function ·I is extended to arbitrary concept expressions C ∈ C(Σ) as fol-
lows: 1. (C � D)I(o) = min(CI(o), DI(o)) 2. (C � D)I(o) = max(CI(o), DI(o))
3. (¬C)I(o) = 1 − CI(o) 4. (∀R.C)I(o) = inf o′∈ΔI{max(1 − RI(o, o′), CI(o′))}
5. �I(o) = 1 for all o ∈ ΔI , C, D ∈ C(Σ), R ∈ R. Note that, in contrast to classical
DLs, it does not hold that (C � ¬C)I = �I for all interpretations I, hence the need to
add � (or ⊥) to the language explicitly.

An interpretation I satisfies a TBox axiom α = C 	 D iff for all o ∈ ΔI it
holds that CI(o) ≤ DI(o), i.e. C is a fuzzy subset of D. I satisfies an ABox axiom
α = 〈i : C �� d〉 iff CI(iI) �� d. I satisfies an ABox axiom α = 〈R(i, i′) ≥ d〉 iff
RI(iI , i′I) ≥ d. In all these cases, we write I |= α. I satisfies a TBox T (or is a model
of T) iff I |= α for all α ∈ T . I satisfies an ABox A (or is a model of A) iff I |= α
for all α ∈ A. Finally, I satisfies a knowledge base K = (T ,A) (or is a model of K)
iff I |= T and I |= A.

Reasoning in ALC. Given a fuzzy KBK = (T ,A), fuzzy ABox axioms or GCIs α and
concept expressions C, D ∈ C(Σ), we can analyze particular semantic characteristics
and interdependencies: We say that K is satisfiable (or consistent) iff there is a model
I for K. K entails α (denoted as K |= α) iff all models I of K satisfy α. Concept C
is subsumed by concept D (wrt. a KB K) iff K |= C 	 D. Two concepts C and D are
called equivalent (wrt. a KB K) iff for any model I of K it holds that C I(o) = DI(o)
for all o ∈ ΔI . Two concepts C and D are called disjoint (wrt. a KB K) iff for any
model I of K it holds that there does not exists an o ∈ ΔI such that CI(o) > 0 and
DI(o) > 0. A concept C is called satisfiable (wrt. a KB K) iff there exists a model I of
T such that CI(o) > 0 for some o ∈ ΔI . Further, one might want to compute the truth
value bounds for a given ABox assertion α wrt. K to determine the possibility interval

4 Uwe Keller and Stijn Heymans

that is enforced for α by the background knowledge in K: The greatest lower bound of
α wrt. K is defined as glb(α,K) := sup{d | K |= 〈α ≥ d〉} and the least upper bound
of α wrt. K is defined as lub(α,K) := inf {d | K |= 〈α ≤ d〉} (where sup ∅ = 0 and
inf ∅ = 1). Computing glb(α,K) and lub(α,K) is usually called the best truth value
bounds (BTVB) problem.

One of the most fundamental reasoning problems is to determine whether a given
fuzzy KB K is satisfiable. A lot of other reasoning tasks (e.g., checking for concept
satisfiability wrt. a TBox or the BTVB problem) can be reduced to KB satisfiability
checking [17] and therefore solved by a respective decision procedure. For this reason,
we consider KB satisfiability as the reasoning problem to be solved.

3 Complexity of Reasoning with Knowledge Bases

Deciding the satisfiability of KBs in ALC where the TBox T is restricted to axioms
of the form A 	 C or A ≡ C (for concept names A ∈ C and concept expressions
C ∈ C(Σ)) such that any concept name A occurs at most once on the left-hand side and
the TBox does not contain any cyclic dependencies between concept names is known to
be a PSPACE-complete problem [17]. For the general case of unrestricted terminologies
(allowing arbitrary GCIs C 	 D), we are not aware of any worst-case complexity
characterization. We show that determining the satisfiability of a KB in the general case
is EXPTIME-complete (which corresponds to the situation in the classical variantALC).
Detailed proofs are omitted here but can be found in [6].

EXPTIME-Hardness. We show EXPTIME-hardness by a polynomial-time (many-one)
reduction of concept satisfiability wrt. general terminologies in the classical DL ALC
which is known to be an EXPTIME-hard problem [1, Chapter 3]. We define the necessary
reduction function as follows:

Definition 1 (Reduction). Let T denote a finite set of GCIs and C ∈ C(Σ) be any
concept expression. Then we define the reduction π(T, C) of the terminology T and the
concept expression C as π(T, C) := K where K = (T ,A) is the ALC knowledge base
consisting of the TBox T := T ∪ T ∗ with T ∗ := {� 	 ¬D �D |D ∈ sub(T ∪ {C})}
and the ABox A := {〈i : C ≥ 1〉} for some new individual name i.

The intention of the additional TBox components T ∗ ensures that any model of
T (and hence π(T, C)) assigns only possibility degrees in {0, 1} to any concept (sub-
)expression occurring somewhere in T or C. In particular, any such model always as-
signs classical truth values to any concept name A ∈ C and any concept expression that
is constructed from a role R ∈ R (but not necessarily to the roles R ∈ R themselves).
Since for possibility degrees in {0, 1} the (fuzzy) semantics of concept constructors in
ALC coincides with the classical semantics in ALC, we know that a fuzzy interpre-
tation that satisfies T can be modified (easily) into a classical (i.e. crisp) model of T.
By the same line of argumentation,A ensures that in any model of π(T, C) (and hence
T) the input concept C is ALC-satisfiable. The implication in the other direction is
immediate since any crisp interpretation is a model of the additional TBox components
T ∗:

Fuzzy Description Logic Reasoning using a Fixpoint Algorithm 5

Proposition 1. C is satisfiable wrt. T in ALC iff π(T, C) is satisfiable in ALC.

It is straightforward to see that the many-one reduction π(T, C) can be computed
in linear time (wrt. the size of T and C) for each finite set T of GCIs and concept
expressions C ∈ C(Σ). As an immediate consequence we get the following corollary:

Corollary 1 (EXPTIME-Hardness of KB Satisfiability). The problem of deciding the
satisfiability of KBs in ALC is EXPTIME-hard if GCIs are allowed.

EXPTIME-Membership. KB satisfiability in ALC is in EXPTIME since [18] shows that
checking KB satisfiability in ALC can be reduced (in polynomial time) to checking
KB satisfiability in ALC which is known to be in EXPTIME, since KB satisfiability is
in EXPTIME even for an extension of ALC , i.e. the more expressive DL SHIQ [21,
Corollary 6.30].

Theorem 1 (EXPTIME-Completeness of KB Satisfiability). The problem of deciding
the satisfiability of KBs in ALC is EXPTIME-complete if GCIs are allowed.

Besides KB satisfiability, one can show that also the following reasoning problems
are EXPTIME-complete: K |= C ≡ D, K |= C 	 D, concept disjointness wrt. K,
concept satisfiability wrt. K, K |= 〈o : C ≥ n〉, K |= 〈o : C ≤ n〉, and K |= 〈o : C =
n〉; we refer the reader for more details to [6].

4 A Decision Procedure based on Fuzzy Type Elimination

We present a decision procedure for KB satisfiability in ALC which does not rely on
systematic search in the first place (as e.g. tableau-based methods), but instead con-
structs a canonical interpretation by means of a fixpoint construction. The so-constructed
(canonical) interpretation (if non-empty) satisfies the TBox of a KB and allows to derive
a model for the given knowledge base K iff K is satisfiable. In contrast to tableau-based
procedures a canonical interpretation is in general not tree-shaped. Further, it can be
shown that the number of iterations required to reach a fixpoint is linear in the modal
depth of K.

Preprocessing. Without loss of generality, we can restrict ourselves to normalized
knowledge bases [16], i.e. knowledge bases which contain only fuzzy ABox assertions
of the form 〈α ≥ d〉, by applying the following equivalent transformation fuzzy ABox
axioms: 〈i : C ≤ d〉 � 〈i : ¬C ≥ 1 − d〉 and 〈i : C = d〉 � 〈i : C ≥ d〉, 〈i :
¬C ≥ 1 − d〉. Further, we can assume that all axioms in K are in box normal form
(BNF) [10] (i.e. the only negative concept subexpressions are of the form ¬∀R.C or
negated atomic concept names ¬C), by exhaustively applying the following equivalent
transformation to concept expressions:¬(C�D)� ¬C�¬D, ¬(C�D)� ¬C�¬D,
and ¬¬C � C. These preprocessing steps can be performed altogether in linear time
wrt. the size of the input KB.

6 Uwe Keller and Stijn Heymans

4.1 Basic Notions and Intuition

Types. LetK = (T ,A) denote a normalized ALC knowledge base in BNF. The closure
of a knowledge base cl(K) is defined as the smallest set of concept expressions such that
for all C ∈ sub(K), if C is not of the form ¬D, then {C,¬C} ⊆ cl(K). Further, let
PossDeg(K) denote the set of all relevant possibility degrees that can be derived from
K, i.e. PossDeg(K) = {0, 0.5, 1} ∪ {d|〈α ≥ d〉 ∈ A} ∪ {1 − d|〈α ≥ d〉 ∈ A}.
It has been shown in [17, 18] that if K is satisfiable, then there is as well a model of
K which assigns possibility degrees in PossDeg(K) only. Hence, for our purposes we
do not need to consider arbitrary possibility degrees d ∈ [0, 1], but only the finite set
PossDeg(K) that can be derived from K.

We can then introduce the notion of a type, which allows to represent individuals of
an interpretation in a syntactic way:

Definition 2 (FuzzyK-Type). A fuzzyK-type τ is a maximal subset of cl(K)×PossDeg(K)
such that the following conditions are satisfied: 1. if 〈C, d〉 ∈ τ and 〈C, d ′〉 ∈ τ then
d = d′ 2. if C = ¬C ′ then 〈C, d〉 ∈ τ iff 〈C ′, 1 − d〉 ∈ τ 3. if C = C ′ � C′′ then
〈C, d〉 ∈ τ iff 〈C′, d′〉 ∈ τ and 〈C ′′, d′′〉 ∈ τ and d = min(d′, d′′) 4. if C = C ′ � C′′

then 〈C, d〉 ∈ τ iff 〈C ′, d′〉 ∈ τ and 〈C ′′, d′′〉 ∈ τ and d = max(d′, d′′) 5. for all
C 	 C′ ∈ T : if 〈C, d〉 ∈ τ and 〈C ′, d′〉 ∈ τ then d ≤ d′ 6. if C = � then 〈C, 1〉 ∈ τ .

Since cl(K) and PossDeg(K) are both finite sets, there are at most 2 |cl(D)|·|PossDeg(K)|

different K-types. Each type τ can be seen as an individual and syntactically represents
all (fuzzy) properties that can be observed about that individual: 〈C, d〉 ∈ τ indicates
that the individual τ belongs to C with the possibility degree d. Hence, the set of all
K-types (or simply types) provides enough vocabulary to let us describe all kinds of
interpretations for K simply by fixing how to interconnect individuals (and therefore
types).

Canonical Model. It turns out that it is possible to connect types in a fixed (or canon-
ical) way, such that the interconnection defined is consistent with almost all properties
specified syntactically in the type. The interconnections can be derived from the types
themselves:

For a set of types T we can define for each role R a canonical accessibility relation
ΔR : T × T → PossDeg(K) that “maximally” interconnects types τ, τ ′ ∈ T with
possibility degree d ∈ PossDeg(K): let δ(d, d′) := 1 if d ≤ d′ and δ(d, d′) := 1 − d if
d > d′. Then, we can define ΔR by

ΔR(τ, τ ′) := min{δ(d, d′)|〈∀R.C, d〉 ∈ τ, 〈C, d′〉 ∈ τ ′}

if ∀R.C ∈ cl(K) for some C ∈ C, and ΔR(τ, τ ′) := 1 otherwise.
This way, we can construct a canonical interpretation IT for any given set of types

T using the canonical interconnection of types by ΔR as follows: IT = (T, ·IT) with
(i) for any concept name C in K and any τ ∈ T we set C IT (τ) = d if 〈C, d〉 ∈ τ , and
(ii) RIT (τ, τ ′) = ΔR(τ, τ ′) for any role R in K and any τ, τ ′ ∈ T . Please note, that
by our definition of K-types, IT is well-defined for any concept name or role name.
However, our definition deliberately leaves open the interpretation of individuals. We

Fuzzy Description Logic Reasoning using a Fixpoint Algorithm 7

therefore define in fact a class of canonical interpretations, each of which fixes a specific
way of how to interpret the individuals in a KB K.

The canonical interconnection in IT is chosen in such a way that all assignments
of possibility degrees to concepts of the form C = ∀R.C ∈ τ are lower bounds for
the possibility degrees that are in fact assigned by a canonical interpretation IT . Hence,
such a canonical interpretation is almost immediately a (canonical) model for the ter-
minology T , i.e. it satisfies that

CIT (τ) = d iff 〈C, d〉 ∈ τ (∗)

for almost all C ∈ cl(K) and therefore IT |= C 	 C′ for all C 	 C ′ ∈ T by clause (5)
in our definition of K-types. That (∗) is satisfied by IT is straightforward for the cases
of concept names C, or complex concepts of the form C = C ′ � C′′, C = C ′ � C′′,
C = ¬C′ and the CIT (τ) ≥ d case for C = ∀R.C by our definition of types and
the definition of ΔR. The only cases where (∗) can be violated by IT is for types
τ containing universally role restricted concepts ∀R.C that are assigned a possibility
degree which is too small (wrt. the R-successor types τ ′ in IT) to properly reflect the
semantics of ∀R.C in ALC, i.e. to coincide with the greatest lower bound of the set

{max(1 − RIT (τ, τ ′), CIT (τ ′)) | τ ′ ∈ T }

Types τ in which the possibility degree assigned d to ∀R.C is too small to be consis-
tent with the semantics of ALC are called bad types. Bad types τ ∈ T can be detected
easily, since they satisfy that there exist R ∈ R, C ∈ C(Σ), d ∈ PossDeg(K) s.t.
〈∀R.C, d〉 ∈ τ and for all τ ′ ∈ T : if 〈C, d′〉 ∈ τ ′ then max(1 − ΔR(τ, τ ′), d′) > d.

This suggests the following simple algorithm (which uses a fuzzy type elimination
process at its core): in order to compute a maximal interpretation that satisfies all ter-
minological axioms, we start off with the maximal set of types (i.e all K-types) and
iteratively fix all problems that prevent (∗) from being satisfied by removing bad types.
This way, we must eventually reach a fixpoint after finitely many steps. If the resulting
set of types is non-empty, we know that (∗) must hold (since all problems have been
fixed) and therefore we can be certain that the corresponding canonical interpretation
satisfies T (and covers all other possible models of T at the same time). Hence, we
eventually need to check if all ABox axioms are satisfied by the canonical interpreta-
tion. If this is the case, we have found a model for K, otherwise, we know that there can
not be any interpretation that satisfies both T and A at the same time. In other words,
K is not satisfiable.

4.2 Algorithm

The type elimination process sketched above can be formalized as shown in Algo-
rithm 1. Note that the emptiness test for the fixpoint T is covered implicitly: if the
fixpoint T is empty, then the test in the if-statement fails trivially.

The termination, soundness, and completeness of our algorithm can be proven formally
(cf. [6] for full proofs):

8 Uwe Keller and Stijn Heymans

procedure satisfiable(K): boolean
T := {τ |τ is a K-type };
repeat

T ′ := T ;
T := T ′ \ badtypes(T ′);

until T = T ′ ;
if there exists a total function π : IndA → T s.t. 〈C, d′〉 ∈ π(o) and d ≤ d′ for each
〈o : C ≥ d〉 ∈ A, and ΔR(π(o), π(o′)) ≥ d for each 〈R(o, o′) ≥ d〉 ∈ A then

return true;
end
return false;

function badtypes(T) : 2T

return {τ ∈ T |〈∀R.C, d〉 ∈ τ and for all τ ′ ∈ T : if 〈C, d′〉 ∈ τ ′ then
max(1− ΔR(τ, τ ′), d′) > d};

Algorithm 1: The Type Elimination-based Decision Procedure FixIt(ALC)

Theorem 2 (Termination). For any ALC knowledge base K = (T ,A) the algorithm
FixIt(ALC) terminates after finitely many steps with either true or false as return
value.

The following lemma is a key element of the soundness and completeness proof and
shows that by successively removing bad types we can indeed ensure that types encode
possibility degree assignments to concepts that coincide with the canonical interpreta-
tion, and that any such canonical interpretation is a model of the T .

Let T be the set of types that is computed as the fixpoint in the algorithm FixIt(ALC),
i.e. badtypes(T) = ∅ and let IT = (T, ·IT) be a canonical interpretation for T as defined
above.

Lemma 1. For each K-type τ , concept C ∈ cl(K) and d ∈ PossDeg(K) it holds that
CIT (τ) = d iff 〈C, d〉 ∈ τ . Further, IT |= T .

Theorem 3 (Soundness). If FixIt(ALC) returns true for a ALC knowledge baseK =
(T ,A), then K is satisfiable.

A second key element for the completeness proof is the following lemma that shows
that our canonical way of interconnecting types (in the fixpoint set) is maximal or the
strongest possible one in the following sense: the interconnection R of individuals o, o ′

defined by any model I of K is covered by the canonical interconnection Δ R of the
respective types τ(o), τ(o′) representing o, o′ in I.

Lemma 2. Let I = (ΔI , ·I) be any model of K = (T ,A). For each individual o ∈ ΔI

we define its corresponding type τ(o) := {〈C, d〉 ∈ cl(K)× PossDeg(K)|CI(o) = d}.
Then, ΔR(τ(o), τ(o′)) ≥ RI(o, o′) for all o, o′ ∈ ΔI .

Theorem 4 (Completeness). If an ALC knowledge base K = (T ,A) is satisfiable,
then FixIt(ALC) returns true for K.

Fuzzy Description Logic Reasoning using a Fixpoint Algorithm 9

This leads to the main result, which is an immediate consequence of Theorems 3,
4, and 2:

Corollary 2. The algorithm FixIt(ALC) is a sound and complete decision procedure
for knowledge base satisfiability in ALC.

4.3 Runtime and Space Requirements

We now analyze the runtime and space requirements of our algorithm based on a naive
implementation model to derive upper bounds. The considered implementation works
directly on types and explicit representations of sets of types.

In the following we assume that the number p of different possibility degrees that
can occur in any KB K is fixed. This assumption seems realistic and does not restrict
applications of FDLs in practice, i.e., we can assume a limited (numerical) resolution of
sensors and algorithms (or humans) assigning possibility degrees to individual observa-
tions. Further, we consider the computation of the basic functions min ,max , 1− d and
comparisons d ≤ d′ as atomic operations with unit costs.

Representation. According to Def. 2, aK-type τ is a function τ : cl(K) → PossDeg(K)
that satisfies a particular consistency property. Fix some total order 〈C1, C2, . . . , Ck〉 on
the subset cl+(K) of cl(K) that consists of all positive concept expression Ci ∈ cl(K).
Then, we can represent a type τ by a sequence of pairs

τ = 〈d1, d1〉, 〈d2, d2〉, . . . , 〈dk, dk〉

with k = |cl+(K)| ∈ O(|K|), where di represents the possibility degree assigned to
a positive concept subexpression Ci ∈ cl(K) and di represents the possibility degree
assigned to a negative concept subexpression ¬C i ∈ cl(K). There are only finitely
many relevant possibility degrees. Assuming a binary encoding 〈·〉 01 : PossDeg(K) →
{0, 1}p of possibility degrees, each such sequence requires at most 2·k ·log2(p) ∈ O(k)
bits. Clearly, not each such sequence represents a K-type. However, for any sequence
checking the consistency requirements from Def. 2 can be done time O(k · |T |) and
space O(1): property (1) is satisfied already by our encoding, properties (2)-(3) and (6)
can each be decided in O(k), property (5) requires O(k · |T |) computation steps. In any
case, we need only O(1) additional space for the computation.

The algorithm can be separated into three different phases: the initialization step, the
fixpoint computation, and the final test. We analyze all of these steps one-by-one.

Initialization Phase. To compute the set of all K-types, we generate any sequence
〈d1, d1〉, 〈d2, d2〉, . . . , 〈dk, dk〉 s.t. di, dk ∈ PossDeg(K). For each sequence this re-
quires at most 2k steps. Testing if such a generated sequence satisfies the consistency
requirements, takes at most O(k · |T |) steps and only constant additional space. Any
sequence that satisfies the consistency requirements is stored in a linked list. During the
initialization phase, we need to check p2k sequence, which requires O(p2k · k · |T |)
computation steps and O(p2k · k) space.

10 Uwe Keller and Stijn Heymans

Fixpoint Computation. The current set of types T in the fixpoint computation is rep-
resented as linked list from which elements are removed during this phase. Clearly,
the function δ(d, d′) can be computed in constant time. The computation of ΔR(τ, τ ′)
therefore can be performed in O(k 2) computation steps and constant additional space
for any two given types τ, τ ′. Given a type τ ∈ T , we can then determine if τ is a bad
type (wrt. T) in O(k · (|T | · k2)) = O(k3 · |T |) basic computation steps using constant
space only. This test has to be performed for all |T | types in T in order to compute T ′.
Removing a bad type from the current list of types T requires O(|T |) time and constant
additional space. To find out if we reached a fixpoint after an iteration, we can simply
use a boolean variable, which is set to false at the beginning of each loop and set to
true if a type is removed from the list. This requires at most O(|T |) additional assign-
ments and one boolean comparison during each iteration and constant additional space.
Hence, each iteration of the loop (to compute T ′) requires O((k3 + 1) · |T |2 + |T |)
computation steps and constant additional space.

Let t denote the size of the initial set of types T . Since we need at most t iterations
to reach a fixpoint, we can compute the fixpoint in at most O((k 3 + 1) · t3 + t) steps
using O(t) additional memory units. Since t ≤ p2k, we can derive O((k3 + 1) · p6k +
p2k) as an upper bound on the number of computation steps performed for the fixpoint
computation and O(p2k) as an upper bound for the additionally required space.

Final Test. We can represent a total total mapping π : IndA → T as a mapping from
IndA to the index of an element in the list T . This requires, O(i · log2(t)) additional
memory units with i = |IndA| and lookups for values of π can be performed in O(t)
time using a hashing function and a subsequent iteration over the list representing T .
Given such a mapping π, we can therefore determine if the required property in the if-
statement in Algorithm 1 is satisfied by π in at most O(a ·(t ·k2)) steps (where a = |A|)
using O(1) additional memory only. We can generate any such mapping π : IndA → T
in at most O(i·log2(t)) steps. Further, there are at most ti different such mapping, which
we can generate and test one-by-one. Hence, we can implement that final test using at
most O(ti · (i · log2(t) + a · (t · k2))) = O(p2ki · (i · k · log2(p) + a · (p2k · k2))) steps
and O(i · k · log2(p)) additional memory units.

Overall runtime and space bounds. For an upper bound on the overall execution of the
algorithm, we can sum up the runtime and space bounds for the three different phases
above: In regard of runtime, the algorithm requires no more than O(p 2k ·k · |T |+(k3 +
1) ·p6k +p2k +(p2ki ·(i ·k · log2(p)+a ·(p2k ·k2)))) computation steps. In regard of the
space, the algorithm requires no more than O(p2k ·k+p2k + i ·k · log2(p)+ |K|) space.
Since k, i ∈ O(|K|) and since we assume that p is a constant (and hence independent
from a size of a KB K), the algorithm requires at most exponentially many computations
steps and an exponential amount of memory in regard of the size of the input KB K.

This means that (under the realistic assumptions) our algorithm can be implemented
in a way that is worst-case optimal in regard of the runtime of the algorithm, since
by Theorem 1 the problem of determining the satisfiability of a KB in ALC requires
exponential time (wrt. the size of the input KB) in the worst case. Further, note that ap-
plying a standard tableau-based decision procedure (e.g. [1]) to (crisp) equisatisfiable

Fuzzy Description Logic Reasoning using a Fixpoint Algorithm 11

ALC-reduction of a general ALC KB usually yields only a NEXPTIME-upper-bound
on the runtime of such an (indirect) decision procedure. Therefore, indirect reasoning
approaches by reduction to classical tableau-based methods usually can only give sub-
stantially worse runtime guarantees.

Consequently, the major obstacles when using the algorithm in practice are (i) the
exponential space requirement and (ii) the necessity to consider all types in τ ∈ T
during each loop one-by-one. These problems are mainly based on the fact that we
use explicit representations of set of types. A potential solution to these problems is
known from the area of Symbolic Model Checking [8] and has already been success-
fully applied for the implementation of the KBDD procedure in [10]: the use implicit
(or declarative) representations of sets of types by means of formulae and to implement
set-theoretic operations by formula modifications and (un)satisfiability tests. In partic-
ular, set-theoretic operations on sets can be implemented as set-at-a-time operations
instead of element-at-a-time operations which can speed up computation significantly.

5 Discussion: Reasoning with Terminologies in Fuzzy
Tableau-based Methods

Tableau-methods can be used to determine the satisfiability of KBs. In order to detect
the satisfiability status of a given KBK = (T ,A), they construct tree-structured labeled
graphs (i.e. completion graphs). The nodes in a completion graph represent individuals
in an interpretation I for K and the edges capture the interrelation of individuals via
roles in K. Node labels capture (bounds on) the degree to which the individual rep-
resented by the node is a member of a concept, edge labels specify (bounds on) the
degree of interrelation of the connected individuals wrt. roles. The completion graph is
initialized to represent the ABox A. Then, it is stepwise extended by analyzing concept
labels of nodes and interrelations. An expansion can create new labels for nodes and
edges and insert new nodes and edges into the graph. The extension process follows a
set of so-called completion rules which are exhaustively applied. During the comple-
tion process non-deterministic choices can appear: there might be more than one way to
extend the graph further, but we can not tell which of these extensions will eventually
lead to a successful construction of a model for K (if there is one). In order to stay
complete, all possible choices (for any node and any node label) need to be considered
as long as no model has been constructed yet. The latter can be determined by checking
labels for elementary contradictions (in regard of the specified bounds on membership
degrees). If no completion rules are applicable anymore and there are no labels to nodes
and edges which contain an elementary contradiction (i.e. we have a fully-expanded and
clash-free completion graph), then we found in fact a (witness for a) model for K. If no
such graph can be constructed at all, K is unsatisfiable.

Example. Consider the ABox A = {〈i : ∀R.¬B � ∃R.(B � C) ≤ 0.4〉, 〈i : ∀R.C ≥
0.7〉}. The completion process starts with the completion graph

i

L0 = {〈∀R.¬B 	 ∃R.(B � C) ≤ 0.4〉, 〈∀R.C ≥ 0.7〉}

12 Uwe Keller and Stijn Heymans

Since i can be a member of ∀R.¬B �∃R.(B �C) only up to degree 0.4, we can derive
upper bounds on the possibility degree for i wrt. ∀R.¬B and ∃R.(B�C) directly from
the semantics of the concept constructor � and update the label by two new constraints

i

L1 = L0 ∪ {〈∀R.¬B ≤ 0.4〉, 〈∃R.(B � C) ≤ 0.4〉}

To satisfy 〈∀R.¬B ≤ 0.4〉, we introduce a new R-successor node j, a constraint on the
degree of R-interrelation between i and j, and a constraint on the degree of membership
of j in¬B. Both constraints follow immediately from the semantics of the universal role
restriction in ALC:

i

L1

j

L′
0 = {〈¬B ≤ 0.4〉}

{〈R ≥ 0.6〉}

To satisfy the constraint 〈∀R.C ≥ 0.7〉 ∈ L1 we add 〈C ≥ 0.7〉 to L′
0. Further, in ALC

〈¬B ≤ 0.4〉 ∈ L′
0 can be rewritten as 〈B ≥ 0.6〉

i

L1

j

L′
1 = {〈B ≥ 0.6〉, 〈C ≥ 0.7〉}

{〈R ≥ 0.6〉}

Finally, the only constraint that we did not consider yet is 〈∃R.(B � C) ≤ 0.4〉 ∈ L0.
To ensure the satisfaction of this concept expression, we need to add 〈B � C ≤ 0.4〉
(since the edge constraint 〈R ≥ 0.6〉 and the upper bound 〈R ≤ 0.4〉 are inconsistent
with each other):

i

L1

j

L′
2 = L′

1 ∪ {〈B � C ≤ 0.4〉}
{〈R ≥ 0.6〉}

Considering the semantics of the concept intersection in ALC, 〈B�C ≤ 0.4〉 is satisfied
iff 〈B ≤ 0.4〉 or 〈B ≤ 0.4〉 are satisfied. Hence, we face a non-deterministic choice
point in the completion process. Since all possible extensions lead to an unsatisfiable
constraint systems node j in the completion graph, we can conclude that the given
ABox A is unsatisfiable.

Tableau-based implementations deal with (or) non-deterministic choice points by
backtracking. Since for any choice, an unsatisfiable node might be detected only after
a lot of node label and graph extension steps, backtracking can become a very costly
operation.

Integration of GCIs. In order to integrate GCIs into the completion graph extension
process sketched above, standard tableau-based methods (e.g. [16], and similarly [7])
exploit the following observation: An interpretationI satisfies the GCI C 	 D (i.e. I |=
C 	 D) iff for all (relevant) possibility degrees n ∈ PossDeg(K) and all individuals
i ∈ ΔI either 〈i : C < n〉 or 〈i : D ≥ n〉 holds.

To reflect this property in the tableau completion process, a non-deterministic rule
for the extension of node labels is added to the inference system: for each node i in the

Fuzzy Description Logic Reasoning using a Fixpoint Algorithm 13

completion graph, each GCI C 	 D in the TBox, and each (relevant) possibility degree
n, we either insert the constraint 〈i : C < n〉 or 〈i : D ≥ n〉 into the current node label.

It is obvious that using this new inference rule GCIs essentially become the major
source of non-determinism for tableau-based inference procedures: for each node i ap-
pearing (somewhen) in the completion graph, we have a distinct alternative for each rel-
evant possibility degree n ∈ PossDeg(K) and each GCI C 	 D ∈ T . Hence, for each
node i on a path of length l in the completion graph, we get up to |PossDeg(K)| · |T |
different alternatives. This makes up to l |PossDeg(K)|·|T | distinct cases that need to be
considered during the completion process in the worst-case. It is further known [1] that
when supporting GCIs, the maximal path length in the completion graph can be limited
only by an upper bound that is (itself) exponential in the size of the input ABox A (us-
ing a technique called blocking). This gives a doubly-exponential runtime for tableau-
based methods in the worst case, such that without clever implementation techniques
and good heuristics for guiding the backtracking search, a tableau-based reasoner in-
tegration GCIs as described above might not be usable even in rather small practical
scenarios.

In this paper, we present a method that does not suffer from this problem, i.e. no
non-deterministic choice-points are introduced.

6 Related Work

Our method FixIt(ALC) generalizes the principle (i.e. a type elimination process) un-
derlying the top-down variant of the KBDD procedure proposed in [10] for the modal
logic K to the (more expressive) FDL ALC. Further, our method integrates (fuzzy)
ABoxes and TBoxes in the inference process both of which are not dealt with inKBDD.

Inference Algorithms for FDLs and Reasoning with GCIs. So far, reasoning in Fuzzy
DLs has been mostly based on tableau-methods (e.g., [17, 16, 7, 15]). Most of these
methods do not support reasoning with general terminologies as it is possible with
FixIt(ALC). The first method ever to integrate GCIs into FDL reasoning is [16]. A
very similar approach is presented in [7] for the fuzzy variant of a more expressive DL,
namely SHI . Very recently, [20] proposed a novel and elegant method for reasoning
with GCIs (under a more general semantics than here) which is inspired by earlier works
on tableau-based reasoning in multi-valued logics. The method combines a tableau-
construction procedure with a Mixed Integer Linear Programming (MILP) solver that
serves as an oracle to the FDL tableau procedure. To the best of our knowledge there is
no other approach to deal with GCIs in FDLs available at present. FixIt(ALC) there-
fore represents an interesting enrichment of inference calculi toolbox for FDLs, since no
non-determinism is introduced by considering GCIs. A similar effect is achieved in [20]
by the substantial modification of a standard tableau-based method and an extension
with an MILP oracle: the tableau-expansion process does not become non-deterministic
by introducing GCIs. However, depending on the solution techniques applied inside the
MILP solver, non-determinism might simply be shifted from the tableau-construction
process into the MILP oracle. In such cases, respective computational inefficiencies
would then simply be hidden in then MILP oracle, but not actually resolved. A very
similar approach that is not fixed to a specific semantics is presented in [3].

14 Uwe Keller and Stijn Heymans

Further, [18] demonstrates how to use inference procedures for classical DLs to
perform reasoning in (some) FDLs. This allows to use algorithms that have been devel-
oped for classical DLs in FDL reasoning (for some FDLs) in an indirect way. Please
note that the KBDD procedure can not be used in such an indirect way to perform ALC

reasoning, since both TBoxes and ABoxes are not supported.
[4, 5] consider a fuzzy version of ALC using arbitrary continuous t-norms (and the

corresponding residuated implications) to define the semantics of the concept construc-
tors and proposes a method for deciding ∅ |= 〈C 	 D ≥ 1〉 and the satisfiability
of 〈C 	 D ≥ 1〉 by mapping to a (decidable) propositional fuzzy logic. The gener-
ated propositional problems can be exponentially bigger than the FDL input problem.
Although, the semantics considered in [4, 5] is more general than here (but differs for
universal role restrictions), the proposed decision procedures cover more limited rea-
soning tasks, i.e. no background knowledge K is considered.

7 Conclusions and Future Work

We presented a novel procedure FixIt(ALC) for deciding knowledge base (KB) sat-
isfiability in the FDL ALC, introducing a new class of inference procedures into FDL
reasoning. Besides the tableau-based methods [16, 7, 20, 3], it is the only (and the first
non-tableau-based) approach to integrate general terminologies in FDL reasoning that
we are aware of.

Additionally, we clarified the worst-case complexity of the reasoning problem that
is solved by the algorithm and showed that deciding the satisfiability of a KB in ALC

is an EXPTIME-complete problem. A discussion of a (straigthforward) implementation
of the algorithm based on explicit representations of types shows that our algorithm can
be implemented in a way that is worst-case optimal wrt. its runtime.

The main research questions that we want to address next are as follows: we will
study means of implicit representation of sets of fuzzy types known from Symbolic
Model Checking [8], in particular their implementation by means of Ordered Binary
Decision Diagrams (OBDDs) [2] similar to [10], therefore addressing the main obstacle
to apply the procedure in practice. A major question concerning optimization is clearly
how to implement the final test of the algorithm efficiently, e.g. by heuristic search using
the information in the ABox effectively to find the required mapping. The integration
of optimizations such as full vs. lean representations or particle vs. types as discussed
in [10] should be straightforward. We want to evaluate the effectiveness of the method
by an implementation and comparison to tableau-based systems for FDLs. Moreover,
we believe that it is interesting to study a bottom-up variant of KBDD in the context
of FDLs too, and to check if the integration of ABoxes can be done more efficiently
in such a variant. Finally, we would like to see to what extend the method can cover
other semantics for FDLs (e.g. other t-norms) and extended constructs, such as fuzzy
modifiers and concrete domains.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge

Fuzzy Description Logic Reasoning using a Fixpoint Algorithm 15

University Press, 2003.
2. R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM

Comput. Surv., 24(3):293–318, 1992.
3. V. Haarslev, H. Pai, and N. Shiri. Uncertainty Reasoning for Ontologies with General TBoxes

in Description Logic. In P. C. G. Costa, C. D’Amato, N. Fanizzi, K. B. Laskey, K. Laskey,
T. Lukasiewicz, M. Nickles, and M. Pool, editors, Uncertainty Reasoning for the Semantic
Web I, LNAI. Springer, 2008.

4. P. Hájek. Making fuzzy description logic more general. Fuzzy Sets and Systems, 154(1):1–
15, 2005.

5. P. Hájek. What does Mathematical Fuzzy Logic offer to Description Logic?, chapter in Fuzzy
Logic and the Semantic Web. Capturing Intelligence. Elsevier, 2006.

6. U. Keller and S. Heymans. On Fixpoint-based Decision Procedures for Fuzzy De-
scription Logics I. Technical Report STI TR 2008-08-07, Semantic Technology In-
stitute (STI), University of Innsbruck, August 2008. Available for download at:
http://www.uwekeller.net/publications.html.

7. Y. Li, B. Xu, J. Lu, and D. Kang. Discrete Tableau Algorithms for FSHI. In Proceedings
of the International Workshop on Description Logics (DL), 2006.

8. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell, MA,
USA, 1993.

9. C. Meghini, F. Sebastiani, and U. Straccia. A model of multimedia information retrieval.
Journal of the ACM, 48(5):909–970, 2001.

10. G. Pan, U. Sattler, and M. Y. Vardi. BDD-based decision procedures for the modal logic K.
Journal of Applied Non-Classical Logics, 16(1-2):169–208, 2006.

11. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language Semantics
and Abstract Syntax. Candidate Recommendation 18 August 2003, W3C, 2003.

12. V. R. Pratt. A Near-Optimal Method for Reasoning about Action. J. Comput. Syst. Sci.,
20(2):231–254, 1980.

13. K. Schild. A correspondence theory for terminological logics: Preliminary report. In In
Proceedings of the International Joint Conference of Artificial Intelligence (IJCAI 1991),
pages 466–471, 1991.

14. M. Schmidt-Schauß and G. Smolka. Attributive Concept Descriptions with Complements.
Artif. Intell., 48(1):1–26, 1991.

15. G. Stoilos, G. B. Stamou, J. Z. Pan, V. Tzouvaras, and I. Horrocks. Reasoning with very
expressive fuzzy description logics. J. Artif. Intell. Res. (JAIR), 30:273–320, 2007.

16. G. Stoilos, U. Straccia, G. Stamou, and J. Pan. General Concept Inclusions in Fuzzy De-
scription Logics. In Proceedings of the 17th Eureopean Conference on Artificial Intelligence
(ECAI-06), pages 457–461. IOS Press, 2006.

17. U. Straccia. Reasoning within Fuzzy Description Logics. Journal of Artificial Intelligence
Research, 14:137–166, 2001.

18. U. Straccia. Transforming Fuzzy Description Logics into Classical Description Logics. In
Proceedings of the 9th European Conference on Logics in Artificial Intelligence (JELIA-04),
number 3229 in Lecture Notes in Computer Science, pages 385–399, Lisbon, Portugal, 2004.
Springer Verlag.

19. U. Straccia. A Fuzzy Description Logic for the Semantic Web. In E. Sanchez, editor, Fuzzy
Logic and the Semantic Web, Capturing Intelligence, chapter 4, pages 73–90. Elsevier, 2006.

20. U. Straccia and F. Bobillo. Mixed integer programming, general concept inclusions and
fuzzy description logics. Mathware & Soft Computing, 14(3):247–259, 2007.

21. S. Tobies. Complexity results and practical algorithms for logics in Knowledge Representa-
tion. Phd thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany, 2001.

