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Abstract

We extend answer set programming (ASP) with, possibly infinite, open domains. Since
this leads to undecidable reasoning, we restrict the syntax of programs, while carefully
guarding knowledge representation mechanisms such as negation as failure and inequali-
ties. Reasoning with the resulting extended forest logic programs (EFoLPs) can be reduced
to finite answer set programming, for which reasoners are available.

We argue that extended forest logic programming is a useful tool for uniformly repre-
senting and reasoning with both ontological and rule-based knowledge, as they can capture
a large fragment of the OWL DL ontology language equipped with DL-safe rules. Fur-
thermore, EFoLPs enable nonmonotonic reasoning, a desirable feature in locally closed
subareas of the Semantic Web.
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1 Introduction

Answer set programming (ASP) [21] is a logic programming paradigm that cap-
tures knowledge by programs whose answer sets express the intended meaning of
this knowledge. The answer set semantics presumes that all relevant domain ele-
ments are present in the program. Such a closed domain assumption is problematic
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if one wishes to use ASP for ontological reasoning since ontologies describe knowl-
edge in terms of concepts and interrelationships between them, and are thus mostly
independent of constants.

E.g., consider the knowledge that managers drive big cars, that one is either a man-
ager or not, and that Felix is definitely not a manager. This is represented by the
program P :

bigCar(X ) ← Manager(X )

Manager(X ) ∨ not Manager(X ) ←
¬Manager(felix ) ←

Grounding with the only present constant, felix , yields the program

bigCar(felix ) ← Manager(felix )

Manager(felix ) ∨ not Manager(felix ) ←
¬Manager(felix ) ←

which has a single answer set {¬Manager(felix )} such that one wrongfully con-
cludes that there are never managers that drive big cars: the conclusions of the
program depend on the present instance data.

We resolve this by introducing, possibly infinite, open domains. Under the open
answer set semantics the example has an open answer set

(H = {felix , heather},
M = {¬Manager(felix ),Manager(heather), bigCar(heather)}) ,

where H is a universe for P that extends the constants present in P and M is an
answer set of P grounded with H. One concludes that it is possible that there are
persons that are managers and thus drive big cars, corresponding to the intended
semantics of the program. The open answer set semantics enables data independent
reasoning: an ontology engineer does not need to introduce all significant con-
stants in the program, which allows her to concentrate on modeling the ontological
knowledge only. Note the use of disjunction and negation as failure in the head of
Manager(X ) ∨ not Manager(X ) ← . Such rules will be referred to as free rules
since they allow for the free introduction of literals; answer sets are, consequently,
not subset minimal.

The support for the presence of anonymous individuals, i.e., elements that are not
constants in the program, allows to bridge the semantics of logic programming and
description logics [5]: open answer set programming enables both a nonmonotonic
semantics (typical for logic programming paradigms) and the use of open domains,
one of the key features for conceptual modeling, as present in classical logics.
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The catch is that reasoning, i.e., satisfiability checking of a predicate, with open
domains is, in general, undecidable. In order to regain decidability, we restrict
the syntax of programs while retaining useful knowledge representation tools such
as negation as failure and inequality. Moreover, the result, (local) extended forest
logic programs (EFoLPs), ensures a reduction of reasoning to finite, closed, ASP by
virtue of the forest-model property and the bounded finite model property. EFoLPs
are thus amenable for reasoning with existing answer set solvers such as DLV [41]
and SMODELS [50].

Reasoning with both ontological knowledge, in the form of a description logic (DL)
[5] knowledge base, and rule-based knowledge has recently gained in interest in the
Semantic Web community. The purpose of adding rules to ontological knowledge
is to have additional expressiveness. E.g., [45] extends a DL knowledge base with
DL-safe rules, i.e., Horn clauses where variables must appear in non-DL-atoms
in the body of rules. DL-safe rules can express triangular knowledge that is not
expressible with DLs alone: uncle(a, c) ← brother(a, b), parent(b, c). Note that
DL-safe rules can contain variables but, by DL-safeness, the rules correspond to
their grounded version where the grounding is done w.r.t. the present constants and
nominals in the rules and DL knowledge base. It does not take into account anony-
mous domain elements, which is a serious limitation. On the other hand allowing
for a grounding with anonymous elements would immediately yield undecidability.

Reasoning with DL knowledge bases and DL-safe rules is monotonic. However,
nonmonotonic reasoning may be useful in applications that involve well-defined
closed subareas of the Semantic Web, as illustrated in the following example. As-
sume a business is setting up its website for processing customer feedback. It de-
cides to commit to an ontology O which defines that if there are no complaints for
a product, it is a good product.

good product(X ) ← not complaint(X )

The business has its particular business rules, e.g.,

i : invest(tps , 10K )← not good product(tps)

saying that if its particular top selling product tps cannot be shown to be a good
product, then the business has to invest 10K in tps . Finally, the business maintains
a repository of dynamically changing knowledge, originating from user feedback
collected on the site, e.g., at a certain time the repository contains

R1 ≡ {complaint(tps)← } ,

with a complaint for tps .

If the business wants to know whether to invest more in tps it needs to check O ∪
{i} ∪ R1 |= invest(tps , 10K ), i.e., whether the ontology, combined with its own
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business rules, and the information repository, demand for an investment or not.

One can use extended forest logic programming (EFoLP) to express the above
knowledge. Intuitively, any model ofO∪{i}∪R1 , must verify complaint(tps), and
good product(X ) ← not complaint(X ) will not trigger and good product(tps)
will be false, which in turn, with rule i, allows to conclude that the business should
indeed invest.

Evaluating the same query with an updated repository

R2 ≡ {complaint(tps)← , good product(tps)← }
containing a survey result saying that tps is a good product, no matter what com-
plaints of individual users there may be, leads to

O ∪ {i} ∪R2 �|= invest(tps , 10K ) ,

such that no further investments are necessary. Adding knowledge thus invalidates
previous conclusions making reasoning nonmonotonic; similar scenarios can easily
be imagined in any well-defined environment with dynamically changing knowl-
edge.

EFoLPs are defined as pairs (Q,R) consisting of, on the one hand, a forest logic
program (FoLP) Q capable of expressing conceptual knowledge, as in, e.g., DL
knowledge bases, and, on the other hand, a finite arbitrary program R which al-
lows to relate constants/individuals in arbitrary ways. An EFoLP answer set of
such a (Q,R) is defined as an open answer set of Q ∪ R′, where R′ is the pro-
gram R grounded with constants from Q ∪ R. On the semantical level, an EFoLP
corresponds to a FoLP with a finite set of ground arbitrary rules. Syntactically,
however, the pair notation allows for a more compact representation. Intuitively, an
EFoLP consists of a syntactically restricted part allowing open domain reasoning
and an arbitrary part where reasoning is on the present constants only. In particular,
EFoLPs can simulate reasoning in the DL ALCHOQ(�,	), a DL closely related
to OWL [9], equipped with DL-safe rules, Moreover, EFoLPs are capable, as indi-
cated above, of nonmonotonic reasoning as well, since they allow for negation as
failure both in the FoLP part as in the arbitrary rule part.

Note that, although we allow for negation as failure, (E)FoLPs still have to satisfy
rather strict syntactical restrictions to ensure the forest-model property. E.g., the
above uncle relationship cannot be expressed with variables that can be ground
by anynomous elements. We do allow for arbitrary rules in EFoLPs, however, their
variables must be grounded with constants (either from the program or from the DL
knowledge base), which makes their usefulness rather limited. The alternative, i.e.,
loosening up the syntactical restrictions or allowing grounding with anonymous
elements in the arbitrary rules, easily leads to undecidability.

The remainder of the paper is organized as follows. In Section 2, we extend ASP
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with open domains, and in Section 3, we define (local) EFoLPs, reduce reasoning
to normal ASP, and establish complexity results. In Section 4, we show the EFoLP
simulation of an expressive class of DLs equipped with DL-safe rules. Section 5
relates other work to our approach. Finally, Section 6 contains conclusions and
directions for further research.

2 Open Answer Set Programming

In Subsection 2.1, we introduce the open answer set semantics; Subsection 2.2
argues the undecidability of reasoning under the open answer set semantics, and
Subsection 2.3 defines the class of acyclic programs, which will be useful for the
simulation of DLs in Section 4.

2.1 Basic Definitions and Results

A term is either a constant or a variable, and is denoted by a string of letters where
a constant starts with a lower-case letter and a variable with an upper-case letter. An
atom is of the form a(t) or f(s, t) where a is a unary predicate name, f is a binary
predicate name, and s and t are terms. A literal is an atom or an atom preceded
with the classical negation symbol ¬. We assume ¬¬a ≡ a for an atom a; for a set
of literals α, ¬α ≡ {¬l|l ∈ α}.

An extended literal is a literal or a literal preceded by the negation as failure (naf)
symbol not. We will often denote a set of unary extended literals, ranging over a
common term s, as α(s), e.g., {a(s), not b(s)} may be denoted as {a, not b}(s).
A set of binary extended literals can be similarly denoted as α(s, t). The positive
part of a set of extended literals β is β+ ≡ {l | l ∈ β, l literal}, the negative part is
β− ≡ {l | not l ∈ β}, e.g., for β = {a, not ¬b, not c}, we have that β+ = {a} and
β− = {¬b, c}. Furthermore, we assume the existence of a binary predicate �=, with
the usual interpretation.

A disjunctive extended logic program (DLP) is a countable set of rules α ← β
where α and β are finite sets of extended literals and |α+| ≤ 1; as usual, α is
supposed to be a disjunction of extended literals and β a conjunction. In contrast
to the DLP we define here, classical DLP allows for α to be an arbitrary set of
extended literals; our extra condition ensures that the GL-reduct, defined below, is
disjunction-free, which avoids the use of an extra NP oracle in satisfiability check-
ing, see Section 3.3. If α = ∅, we call the rule a constraint. The set α is the head
of the rule while β is called the body, denoted, for a rule r, as head(r) and body(r)
respectively. As usual, atoms, (extended) literals, rules, and programs that do not
contain variables are ground. A set of ground literalsX is consistent ifX∩¬X = ∅.
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Note that programs with not in the head can be rewritten as equivalent programs
without not in the head [39]. Since the former programs have a non-minimal se-
mantics, useful for introducing the types in conceptual models, while the latter pro-
grams have not, they are more appropriate in the context of conceptual knowledge
representation.

For a DLP P , letHP be the constants in P . A (possibly infinite) non-empty count-
able set of constants H such that HP ⊆ H, is called a universe for P . We denote
PH the ground program obtained from P by substituting every variable in P by
every possible constant in H such that the inequalities are true (and subsequently
removed). For a program P and its constantsHP , we will denote PHP

often simply
as ground(P).

Example 1 The program P

sel(I , S ) ∨ not sel(I , S ) ← av(i) ←
av(I ) ← sel(I , S )

expresses that an item is sold by a seller or not, an item is available if it has a seller,
and we have a particular available item i. The constants in P areHP = {i}; some
of the universes for P areH1 = {i, s} or an infiniteH2 = {i, x1, x2, . . .}.

Let LP be the set of literals that can be formed from a grounded program P ,
preds(P ) are the predicate names in P , and upreds(P ) and bpreds(P ) the unary
and binary predicate names respectively; unless specified otherwise, ¬p, for a pred-
icate name p, is also considered to be a predicate name.

An interpretation I of a ground P is any consistent subset of LP . For a ground
literal l, we write I |= l, if l ∈ I , which extends to I |= not l if I �|= l, and, for a
set of ground extended literals X , I |= X if I |= x for every x ∈ X . A ground rule
r : α ← β is satisfied w.r.t. I , denoted I |= r, if I |= l for some l ∈ α whenever
I |= β, i.e., r is applied whenever it is applicable. A ground constraint ← β is
satisfied w.r.t. I if I �|= β. For a ground program P , I is a model of P if I satisfies
every rule in P . We define the GL-reduct [42] w.r.t. I as P I , where P I contains
α+ ← β+ for α ← β in P , β− ∩ I = ∅ and α− ⊆ I . I is an answer set of a
ground P if I is the subset minimal model of P I . An open interpretation of P is
a pair (H,M) where H is a universe for P and M is an interpretation of PH . An
open answer set of P is then an open interpretation (H,M) with M an answer set
of PH . We denote this as (H,M) |= P .

Example 2 Considering the program P from Example 1, we have that, with a uni-
verse H = {i, s, x} for P , (H,M1 = {av(i), sel(x , s), av(x )}) and (H,M2 =
{av(i)}) are some open answer sets of P . Since M1 contains a literal sel(x , s), the
GL-reduct PM1

H contains sel(x , s) ← , which motivates the presence of sel(x , s)
in M1. On the other hand, since sel(x , s) �∈ M2, sel(x , s) ∨ not sel(x , s) ← is
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satisfied and is not in the GL-reduct. Intuitively, sel(I , S ) ∨ not sel(I , S ) ← can
be used to freely introduce sel -literals, provided no other rules prohibit this, e.g., a
constraint ← sel(x , s) would make sure that no answer set contains sel(x , s). We
call a predicate f free if f (X ,Y ) ∨ not f (X ,Y )← or f (X ) ∨ not f (X )← is in
the program, or is silently assumed to be in it, for a binary or unary f respectively.
Similarly, a ground literal l is free if we have l ∨ not l ← .

In the following, we usually omit the “open” qualifier and assume that programs are
finite unless they are the result of grounding with an infinite universe. A program
P is consistent if it has an answer set. For a unary predicate p, appearing in P , p is
satisfiable w.r.t. P if there exists an answer set (H,M) of P such that p(a) ∈ M
for some a ∈ H. Consistency checking can be reduced to satisfiability checking
by introducing some new predicate: for a program P and a program P ′ = P ∪
{p(X ) ∨ not p(X )← } with p not appearing in P , we have that P is consistent iff
p is satisfiable w.r.t. P ′. For a ground literal α, we have P |= α if for all answer sets
(H,M) of P , α ∈M . Checking whether P |= α is called query answering. We can
reduce query answering to consistency checking, i.e., P |= α iff P ∪ {not α ← }
is not consistent.

There are programs such that a predicate is only satisfiable w.r.t. that program by
an infinite open answer set.

Example 3 The program

r1 : restore(X ) ← crash(X ), y(X ,Y ), backSucc(Y )

r2 : backSucc(X ) ← ¬crash(X ), y(X ,Y ), not backFail(Y )

r3 : backFail(X ) ← not backSucc(X )

r4 : ← y(Y1 ,X ), y(Y2 ,X ),Y1 �= Y2

r5 : y(X ,Y ) ∨ not y(X ,Y ) ←
r6 : crash(X ) ∨ not crash(X ) ←
r7 : ¬crash(X ) ∨ not ¬crash(X ) ←

represents the knowledge that a system that has crashed on a particular day, can
be restored on that day if a backup of the system on the day before succeeded.
Backups succeed, if the system does not crash and it cannot be established that the
backups at previous dates failed. Rules r1, r2, and r3 express the above knowledge,
and r4 ensures that for a particular today there can be only one tomorrow (y stands
for yesterday). Every open answer set (H,M) of this program that makes restore
satisfiable, i.e., such that there is a restore(x ) ∈ M for x ∈ H, must be infinite. An
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example of such an answer set M is (we omitH if it is clear from M)

{restore(x), crash(x), backFail(x), y(x, x1),

backSucc(x1),¬crash(x1), y(x1, x2)

backSucc(x2),¬crash(x2), y(x2, x3), . . .}

One sees that every backSucc literal with element xi enforces a new y-successor
xi+1 since none of the previously introduced universe elements can be used without
violating rule r4.

Although we allow for infinite universes, we can finitely motivate the presence of
literals in answer sets. We express the motivation of a literal more formally by an
immediate consequence operator T that computes the closure of a set of literals
w.r.t. a GL-reduct. For a DLP P and an interpretation (H,M) of P , TPM

H
: LPM

H
→

LPM
H

is defined as T (B) ≡ B ∪ {a|a ← β ∈ PM
H ∧ β ⊆ B}, where we omit-

ted the subscript from TPM
H

. Additionally, we have T 0(B) ≡ B, and T n+1(B) ≡
T (T n(B)). We usually write T n instead of T n(∅).

Theorem 4 Let P be a DLP and (H,M) an open answer set of P . Then, ∀a ∈M ·
∃n <∞ · a ∈ T n.

PROOF. Assume ∃a1 ∈M · ∀n <∞·a1 �∈ T n. One can then construct an infinite
sequence {a1, a2, . . .} ⊆ M such that ∀i · ∀n <∞ · ai �∈ T n. The constructed
answer set M ′ ≡ M \{a1, a2, . . .} is a model of PM

H , contradicting the minimality
of M . �

More detail than the T -operator is provided by the support of a literal a in an answer
set (H,M), which explicitly indicates the literals that support the presence of a in
the answer set. For the least n such that a ∈ T n, we inductively define the support
S k(a) on a certain level 1 ≤ k ≤ n as Sn(a) ≡ {a} and S k(a) ≡ {β | b ←
β ∈ PM

H , β ⊆ T k, β �⊆ T k−1, b ∈ S k+1(a)}, 1 ≤ k < n. The support for a is
S (a) ≡ ∪nk=1S

k(a).

Example 5 For Example 3, {crash(x ), y(x , x1 ),¬crash(x1 ), y(x1 , x2 )} ⊆ T 1,
backSucc(x1 ) ∈ T 2, and restore(x ) ∈ T 3, such that

S (restore(x)) = S 3(restore(x)) ∪ S 2(restore(x)) ∪ S 1(restore(x))

= {restore(x )} ∪ {crash(x ), y(x , x1 ), backSucc(x1 )}
∪ {¬crash(x1 ), y(x1 , x2 )} .

indicates which literals were responsible for the presence of restore(x ) in the an-
swer set.
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2.2 Undecidability

Satisfiability checking for DLPs under the open answer set semantics is undecid-
able since the undecidable domino problem [6] can be reduced to it. In the domino
problem, one has a finite set of domino types D = {D1, . . .Dm} and two re-
lations indicating which domino types may be placed side by side horizontally,
H ⊆ D × D, and vertically, V ⊆ D × D. The domino problem is the search for
a tiling, compatible with H and V , of the plane N × N, i.e., a t : N × N → D s.t.
(t(m,n), t(m+ 1, n)) ∈ H and (t(m,n), t(m,n + 1)) ∈ V for every m,n ∈ N.

We omit the detail of the reduction but note the representation of the plane since
this already unveils an important source of undecidability. The plane N × N can
be represented by predicates h and v , where h(X, Y ) and v(X, Y ) indicate that Y
is X + 1 for X along the horizontal (resp. vertical) axis. Every tile has only one
h-successor, such that we have a← h(X, Y1), h(X, Y2), Y1 �= Y2, and every tile has
at least one such successor: h1(X)← h(X, Y ) and← not h1(X). The same holds
for v. Furthermore, taking one step in the vertical direction followed by a horizontal
step should be the same as the opposite action: seq(X ,Z ) ← h(X ,Y ), v(Y ,Z );
seq(X ,Z )← v(X ,Y ), h(Y ,Z ); ← seq(X ,Z1 ), seq(X ,Z2 ),Z1 �= Z2 .

Checking for a compatible tiling can then be done by introducing unary predicates
for each domino type, checking the compatibility locally at each tile, and making
sure that each tile can be reached. The main problem, however, are the 2 seq-rules
which express composition of binary predicates; without those, we would have a
DLP for which satisfiability checking is decidable.

2.3 Acyclic Programs

For the translation of description logics to open answer set programming in Sec-
tion 4, we need the additional terminology of acyclic programs, i.e., programs that
do not allow recursion through positive literals.

Formally, a dependency graph DGP for a DLP P is defined by edges between
predicates a and b such that a → b iff there is a rule α ← β ∈ P such that a is
a predicate from α+ and b is a predicate from β+. A DLP P is positively acyclic,
acyclic for short, if DGP does not contain cycles. An important distinction with
stratified programs [7] is that recursion through negated literals is still allowed.

A useful property of acyclic programs, as we will see in Section 4, is that they can
be rewritten such that there appear no positive unary literals in the body anymore;
one replaces them by a double negation. Formally, for an acyclic program P , we
define φ(P ) as the program P with rules r : α ← β, γ, for α �= ∅ and β the unary
literals of body(r), replaced by α ← not β ′, γ and b ′(X ) ← not b(X ), for all
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b′(X) ∈ β ′ where β′ = {b′(X) | b(X) ∈ β}.

Theorem 6 Let P be an acyclic program and p ∈ upreds(P ). p is satisfiable w.r.t.
P iff p is satisfiable w.r.t. φ(P ).

PROOF. For the “only if” direction, assume p is satisfiable w.r.t. P , i.e., there is
an open answer set (H,M) of P such that p(a) ∈ M . One can show that (H,M ′)
with M ′ = M ∪ {b′(x) | b(x) �∈M, b′ ∈ φ(P )} is an answer set of φ(P ).

For the “if” direction, assume p is satisfiable w.r.t. φ(P ), i.e., there is an open an-
swer set (H,M) of φ(P ) such that p(a) ∈ M . Define M ′ = M \{b′(x)}, then
(H,M ′) is an answer set of P and p(a) ∈M ′. �

Example 7 Take the program P

a(X ) ← b(X ), f (X ,Y ), not c(Y )

b(X ) ∨ not b(X ) ←
f (X ,Y ) ∨ not f (X ,Y ) ←

The dependency graph of this program is {a → b, a → f} such that P is acyclic.
The translation φ(P ) is then

a(X ) ← not b ′(X ), f (X ,Y ), not c(Y )

b ′(X ) ← not b(X )

b(X ) ∨ not b(X ) ←
f (X ,Y ) ∨ not f (X ,Y ) ←

which has, among others, the answer set ({x, y}, {a(x), b(x), f(x, y), b′(y)}), cor-
responding to an answer set ({x, y}, {a(x), b(x), f(x, y)}) of P .

Theorem 6 is in general not valid for programs that are not acyclic.

Example 8 Consider the program P

a(X )← a(X )

This is not an acyclic program and φ(P ) is the program

a(X ) ← not a ′(X )

a ′(X ) ← not a(X )
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with an answer set ({x}, {a(x)}), which does not correspond to any answer set of
P .

3 Extended Forest Logic Programs

In Subsection 3.1, we introduce the forest-model property and define a syntactically
restricted class of programs, forest logic programs (FoLPs) [28], satisfying this
property. We show in Subsection 3.2 that a particular type of FoLPs, FoLPs with
the local model property, has the bounded finite model property, which enables a
reduction to finite ASP. Subsection 3.3 identifies an upper bound for the complexity
of reasoning. Finally, in Subsection 3.4, we extend FoLPs with an arbitrary finite set
of rules that can only be grounded with constants present in the program, resulting
in EFoLPs [29], and show that properties such as the forest-model property and the
bounded finite model property remain valid.

3.1 Forest-model Property

As seen in the previous section, open answer set programming is rather powerful,
even to the extent that satisfiability checking in the general case is undecidable. As
in modal logics, the so-called tree-model property will prove to be a critical factor
in showing decidability of satisfiability checking [53]. Roughly, a program has the
tree-model property if one has that if there are answer sets that make a predicate
satisfiable there must also be answer sets with a tree-structure that make the pred-
icate satisfiable. A generalization of this property is the forest-model property: if
there is an answer set that makes a predicate satisfiable, then there is an answer set
that has the form of a set of trees, a forest. A similar property arises for DLs that
include nominals, e.g., SHOQ(D)[34].

For a x ∈ N
∗
0, i.e., a finite sequence of natural numbers, we denote the concatenation

of a number c ∈ N to x as x · c, or, abbreviated, as xc. Formally, a (finite) tree T is
a (finite) subset of N

∗
0 such that if x · c ∈ T for x ∈ N

∗
0 and c ∈ N0, we have that

x ∈ T . Elements of T are called nodes and the empty word ε is the root of T . For
a node x ∈ T we call x · c ∈ T , c ∈ N0, successors of x. By convention, x · 0 = x
and (x · c) · −1 = x (ε · −1 is undefined). If every node x in a tree has k successors
we say that the tree is k-ary. E.g. T1 = {ε, ε1, ε2, ε11} is a finite tree with root
ε, two successors ε1 and ε2, and ε11 a successor of ε1; T1 will also be written as
{ε, 1, 2, 11}. A labeled tree over an alphabet Σ is a tuple (T, t) where T is a tree
and t : T → Σ is a labeling function; usually we will identify the tree (T, t) with
t and we will write tx for trees where the root is identified with x: if the root in
T1 is a constant a, we write it as {a, a1, a2, a12}, and a labeling function for T1 is
denoted as ta. A forest F is a finite multi-set {tx1, . . . , txn}, with each txi

: Txi
→ Σ
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a labeled tree such that Txi
and Txj

are mutually disjoint for txi
�= txj

.

Example 9 Consider the program P representing the knowledge that a company
can be trusted for doing business with if it has the ISO 9000 quality certificate and
at least two different trustworthy companies are doing business with it:

trust(C ) ← t bus(C ,C1 ), t bus(C ,C2 ),C1 �= C2 , qual(C , iso9000 )

← t bus(C ,D), not trust(D)

with t bus and qual free predicates, and iso9000 a constant. The first rule states
a sufficient condition on the trust of some C: if different C1 and C2 are doing trust-
worthy business with C (t bus(C ,C1 ), t bus(C ,C2 )) and C has the ISO 9000
quality certificate (qual(C , iso9000 )), then C can be trusted as well (trust(C )).
Moreover, using the minimality of open answer sets, this single rule also expresses
that in order for C to be trusted it should be doing trustworthy business with differ-
ent companies and have the ISO 9000 quality label. 1 The constraint encodes the
inherent property of t bus (doing trustworthy business) that if C is doing trustwor-
thy business with D, then D must be a trusted company.

An answer set, e.g.,

M = {trust(x1 ), t bus(x1 , x2 ), t bus(x1 , x3 ),

qual(x1 , iso9000 ), trust(x2 ), . . .}

is such that for every trusted company xi in M , i.e., trust(xi ) ∈ M , there must
be t bus(xi , xj ), t bus(xi , xk) and trust(xj ), trust(xk ) with xj �= xk; additionally,
every trusted company has the iso9000 quality label. This particular answer set
has a forest shape, as can be seen from Fig. 1: we call it a forest-model. The forest
in Fig. 1 consists of two trees, one with root x1 and one, a single node tree, with
root iso9000 . The labels of a node x in a tree, e.g., {trust} for x2, encode which
literals are in the corresponding answer set, e.g., trust(x2 ) ∈M , while the labeled
edges indicate relations between domain elements. The dashed arrows, describing
relations between anonymous domain elements x ∈ H\HP , and constants, appear
to be violating the forest structure; their labels can, however, be stored in the la-
bel of the starting node, e.g., qual(x2 , iso9000 ) can be kept in the label of x2 as
qual iso9000 . Since there are only a finite number of constants, the number of differ-
ent labels in a forest is still finite. In particular, we have that the roots of the trees in
a forest-model may be arbitrarily interconnected. To be formally correct, the forest

1 Note that adding extra rules with trust as the head predicate may change the meaning of
trust, i.e., the body of the current rule is not necessarily applied (one could apply the body
of an added rule). This differs from other Knowledge Representation formalisms such as
Description Logics, where one can express modular sufficient and necessary conditions (by
equivalence axioms). Such a modular expression does not seem to be possible with (open)
answer set programming.
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should not have any labeled edges; we solve this by keeping the label on an edge
from x to y in the label of y, and assume that binary predicates in labels refer to
edge labels from the predecessor node to the current node, e.g., for t bus(x1 , x2 )
we keep t bus in the label of x2.

Definition 10 A p ∈ upreds(P ) is forest-satisfiable w.r.t. P if there exists an open
answer set (H,M) and a forest F = {tε} ∪ {ta | a ∈ HP} where the tx :
Hx ≡ dom(tx) → 2preds(P )∪{fa|a∈HP∧f∈bpreds(P )} are labeled trees with bounded
arity such thatH = ∪xHx and p ∈ tε(ε). Furthermore, z · i ∈ Hx, i > 0, iff there
is some f(z, z · i) ∈M . For y ∈ Hx, q ∈ upreds(P ), f ∈ bpreds(P ), we have that

• q(y) ∈M iff q ∈ tx(y), and
• f(y, u) ∈M iff (u = y · i ∧ f ∈ tx(u)) ∨ (u ∈ HP ∧ fu ∈ tx(y)).

We call (H,M) a forest-model and a DLP P has the forest-model property if the
following property holds: if p ∈ upreds(P ) is satisfiable w.r.t. P then p is forest-
satisfiable w.r.t. P . The label of a node z ∈ Hx is L(z) = {q | q ∈ tx(z), q ∈
upreds(P )}; for nodes z and u we have that z < u if z is some prefix of u, ≤ is
defined as usual.

Example 11 The forest-model of Example 9, drawn according to Definition 10, is
then as in Fig. 2.

In effect, a forest-model is a set of trees, with arbitrary connections from elements
to constants. As a consequence, the connections between constants, i.e., the roots
of the trees, may form an arbitrary graph. A particular class of programs with this
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forest-model property are forest logic programs (FoLPs).

Definition 12 A FoLP is a DLP such that a rule is of one of the following types:

• free rules l ∨ not l ← for a literal l, which allow for the free addition of the
literal l, if not prohibited by other rules,

• unary rules a(s)← β(s),∪mγm(s , tm),∪mδm(tm),∪i �=j ti �= tj , such that, if
γm �= ∅ then γ+

m �= ∅, and, in case tm is a variable: if δm �= ∅ then γm �= ∅,
• binary rules f (s , t)← β(s), γ(s , t), δ(t) with γ+ �= ∅ if t is a variable,
• constraints ← a(s).

where i and j are within the range of m.

We write unary rules, for compactness, as

a(s)← β(s), γm(s , tm), δm(tm), ti �= tj ,

with variables assumed to be pairwise different.

The program in Example 9 is a FoLP, while the seq-rules from Subsection 2.2 are
not FoLP rules, which is consistent with the undecidability of the domino sim-
ulation and the decidability of (local) FoLPs, cf. infra. Intuitively, the syntacti-
cal restrictions on the rules in a FoLP are designed to ensure the forest-model
property, and, to a lesser extent, the bounded finite model property (cf. infra),
while ensuring a high degree of expressiveness, e.g., to simulate expressive DLs,
see Section 4. E.g., q(s) ← not f (s , t),¬q(t) is not allowed, since one cannot
transform an answer set to a forest-model: assuming ¬q is free, we have that
({x, y}, {q(x),¬q(y)}) is an answer set, however, it is impossible to make a tree
out of this, since we need at least two domain elements, but we do not have a binary
predicate to connect them. A similar reason makes q(s)← ¬q(t) impossible if t is
variable. However, when t is a constant, one does not need an explicit connection
between the s-node and t-node since t is the root of its own tree, and thus not part of
the tree for s. The latter implies that q(X ) ← f (X ,Y ), p(Y ), e(a) for a constant
a is allowed.

Moreover, f (X ,Y ) ← v(X ) is not allowed, since this may impose connections
between x and y without y being a successor of x, f (X , a)← v(X ) for a constant
a on the other hand is allowed. The idea of ensuring such connectedness of models
in order to have desirable properties, like decidability, is similar to the motivation
behind the guarded fragment of predicate logic [3].

We can ease the syntactical restrictions on FoLPs by allowing for more general bod-
ies, e.g., by unfolding them, resulting in bodies with a tree-like structure. Compli-
cated constraints ← β can be simulated by a unary rule a(s)← β and a constraint
← a(s).

A unary rule r : a(s) ← β(s), γm(s , tm), δm(tm), ti �= tj is a live rule if there is a
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γm �= ∅ with tm a variable. A unary predicate a is live if there is a live rule r with
a in head(r) and a is not free. The intuition behind a live predicate a is that a new
individual y might need to be introduced in order to make a(x) true for an existing
x. We denote the set of live predicates for a program P with live(P ). A degree for
the liveliness of a rule r, i.e., how many new individuals might need to be intro-
duced to make the head true, is degree(r) = |{m | γm �= ∅ ∧ tm a variable}|. The
degree of a live predicate a in P is degree(a) = max{degree(r) | a ∈ head(r)}.
E.g., if we only have a rule r : a(X ) ← f (X ,Y1 ), g(X , c) then a is live and
degree(r) = degree(a) = 1.

FoLPs indeed have the forest-model property.

Theorem 13 Forest logic programs have the forest-model property.

PROOF. Take a FoLP P and p ∈ upreds(P ) s.t. p is satisfiable, i.e., there exists
an open answer set (H,M) with p(u) ∈ M . Let n =

∑
a∈live(P ) degree(a), i.e., the

sum of the degrees of the live predicates. We will define θx : {x}·{1, . . . , n}∗ →H
as functions from the full tree with branching n and root x ∈ {ε} ∪ HP if u �∈ HP

and x ∈ HP else. The labeled trees tx : dom(θx) → 2preds(P )∪{fa|a∈HP∧f∈bpreds(P )}

are then defined by tx(z · i) = {q | q(θx(z · i)) ∈ M} ∪ {f | f(θx(z), θx(z · i)) ∈
M} ∪ {fa | f(θx(z · i), a) ∈M}.

Initially, we assume dom(θx) = ∅, i.e., θx is not defined anywhere. The function θx
is constructed as follows: take θx(x) = x if x �= ε and else θx(x) = u ∈ H\HP , and
assume we have already considered, as in [54], every member of {x} · {1, . . . , n}k,
as well as z ·1, . . . , z ·(m−1) for z ∈ {x}∪{1, . . . , n}k and z ∈ dom(θx). For every
live q ∈ tx(z), we have that q(θx(z)) ∈ M and q(θx(z)) ∈ T n, and since M is an
answer set we have that there is a q(θx (z )) ← β+(θx (z )), γ+

m(θx (z ), ym), δ+
m(ym),

with the body true in M and in T n−1. If for all i either γi = ∅ or yi ∈ HP , i.e., we
do not have a live rule, then we continue with the next q ∈ tx(z), otherwise, for i,
γi �= ∅ and yi �∈ HP , if there is a zj ∈ {z · 1, . . . , z · (m − 1)} with θ(zj) = yi
then θ remains undefined on z · (m + i), otherwise θ(z · (m + i)) = yi. Note that
tx(z) �= ∅, since θx is defined on z.

One can show that (∪xdom(tx), {q(z) | q ∈ tx(z)} ∪ {f(z, z · i) | f ∈ tx(z · i)} ∪
{f(z, a) | fa ∈ tx(z)}) is an open answer set of P such that F = ∪x{tx} is a forest
satisfying the conditions from Definition 10. �

3.2 Bounded Finite Model Property

Satisfiability checking w.r.t. the FoLPs in [31] was shown to be decidable by a
reduction to two-way alternating tree automata [54]. However, the current definition
of FoLPs includes constants, which were not allowed in [31], such that the automata
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reduction cannot be readily applied. Moreover,while automata provide an elegant
characterization, there are few implementations available, e.g., [32] implements a
specific type, looping alternating automata, using a translation to description logics.

An alternative approach is to identify a particular class of FoLPs, satisfying the
local model property, that allow for satisfiability checking with existing answer
set solvers such as DLV [41] or SMODELS [50], since they have the bounded finite
model property. This property enables the transformation of an (infinite) answer
set into a finite one, and, more specifically, it establishes a bound on the number of
domain elements that are needed for such a construction.

FoLPs with the local model property are such that they are satisfiable by forest-
models where the presence of each literal in such a model is locally motivated by
the involved node, a successor of the node, and/or a constant.

Definition 14 Let P be a FoLP and for a literal l, HS(l) the domain elements in
S (l), the support of l. A forest-model (H,M) of P is locally supported if
∀l = q(x) ∈M ∨ l = f(x, y) ∈M ·
(HS(l) ⊆ {x, xi} ∪ HP ) ∧ (∀f(z, a) ∈ S (l), a ∈ HP · z �= xi), i.e., the support for
a literal involves only the domain element x under consideration, successors x·i, or
constants. p ∈ upreds(P ) is locally satisfiable w.r.t. P if there is a locally supported
forest-model, a local model for short, (H,M) such that p(ε) ∈ M for a root ε in
H. A FoLP P has the local model property if the following holds: if p ∈ upreds(P )
is satisfiable w.r.t. P then it is locally satisfiable.

In the above definition, the extra condition, ∀f(z, a) ∈ S (l), a ∈ HP ·z �= xi, makes
sure that constants do not sneak around the locality by providing support for a literal
at x via xi. As we will indicate below, cutting a tree at an ximay remove f(xi, a). If
f(xi, a) were then in the support of a literal in x, that literal would end up without
support in the cut tree.

Example 15 Take the program from Example 9. The forest-model in Fig. 1 is a
locally supported forest-model, e.g., a support

S (trust(x1)) = {trust(x1), t bus(x1, x2), t bus(x1, x3), qual(x1 , iso9000 )}

such that no other domain elements than the domain element under consideration,
its immediate successors or constants motivate the presence of a literal.

Infinite forest-models can be turned into finite answer sets: cut every path in the
forest from the moment there are duplicate labels and copy the connections of the
first node in such a duplicate pair to the second node of the pair. Intuitively, when we
reach a node that is in a state we already encountered, we proceed as that previous
state, instead of going further down the tree. This cutting is similar to the blocking
technique for DL tableaux [5], but the minimality of answer sets makes it non-trivial
and only valid for FoLPs with the local model property, as we indicate below.
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Fig. 3. Bounded Finite Model

Example 16 Considering the forest-model in Fig. 1, we can cut everything below
x2 and x3 since they have the same label as x1. Furthermore, since t bus(x1 , x2 ),
t bus(x1 , x3 ), and qual(x1 , iso9000 ), we have that t bus(xi , x2 ), t bus(xi , x3 ),
and qual(xi , iso9000 ) for i = 2 and i = 3, resulting in the answer set depicted
in Fig. 3.

Formally, a FoLP P has the bounded finite model property if the following holds:
if p ∈ upreds(P ) is satisfiable w.r.t. P then there is a finite answer set (H,M) of
P and a nonnegative integer k, defined as a function of P , such that p(x) ∈ M and
|H| < k. The bounded finite model property is similar to the small model property
found in the temporal logic CTL [19] where a CTL formula is satisfiable iff it is
satisfiable by a model that has a number of states at most exponential in the length
of the formula.

Theorem 17 Let P be a FoLP with the local model property. Then, P has the
bounded finite model property.

PROOF. Assume p is satisfiable w.r.t. P . Since P has the local model property,
there is a locally supported forest-model (H,M) with p(ε) ∈ M . H is a multi-set
of trees ∪xHx with roots x, for x ∈ {ε} ∪ HP , where possibly ε is some a ∈ HP .
Let m be the number of different labels in the forest-model. For a path P of length
at least m + 1 in a Hx, define zP ∈ Hx as the minimal node (w.r.t. the prefix
relation <) s.t. ∃y < zP · y �∈ HP ∧ L(y) = L(zP). Denote this unique y with
zP . Since we have a finite number m of different labels, we must have that for
every path P of length m there are two nodes with the same label, moreover, in
the worst case we only need a path of length m + 1 to make sure that zP is not a
constant. Note that zP nor zP can be a constant, since constants may be introduced
by rules containing no variables in the head, which, consequently, cannot be used to
motivate the presence of literals at anonymous nodes: it might be that a rule t(a)←
introduces t in the label of some constant a, however, such a rule cannot be used
to motivate the presence of t lower in the tree. Below the root, we would not have
this problem as t there would be motivated by a rule with head t(X), which can be
matched against any lower node.

Define H′
x = {z ∈ Hx | (z ∈ P ∧ |P| > m ⇒ z ≤ zP}, i.e., cut the tree Hx
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at zP for every path P that has length at least m + 1, and let H′ = ∪xH′
x. Define

M ′ = {q(z) | z ∈ H′, q(z) ∈ M} ∪ {f(z, y) | z ∈ P ⇒ z < zP , f(z, y) ∈
M} ∪ {f(zP , y) | f(zP , y) ∈M}.

From Theorem 13, we have that the branching of aHx is at most

n ≡ ∑

a∈live(P )

degree(a) ,

such that the number of nodes inH′
x is at most

∑m+1
i=0 ni. We have thatH′ contains

at most c + 1 trees H′
x, where c ≡ |HP |, such that the cardinality of H′ is at most

(c+ 1)
∑m+1
i=0 ni. Note that m ≤ 2u with u = |upreds(P )| such that the cardinality

ofH′ is at most

k ≡ (c+ 1)
2u+1∑

i=0

ni , (1)

where k is calculated as a function of P only.

Further note that p(ε) ∈ M ′, such that it only remains to show that (H′,M ′) is an
answer set. �

The local model property is a necessary property, i.e., the described cutting tech-
nique does not work for arbitrary FoLPs.

Example 18 Consider rules a(X ) ← f (X ,Y ), a(Y ) and a(X ) ← b(X ) with b
and f free predicates. A forest-model of this program is

{a(ε), f(ε, 1), a(1), f(1, 11), a(11), b(11)} .

Since ε and 1 have the same label we cut the tree at 1. In the resulting structure
{a(ε), f(ε, 1), a(1), f(1, 1)}, a(ε) nor a(1) are motivated, as b(11) is no longer
present. The resulting structure is thus not minimal.

FoLPs with the local model property solve this by making sure that a literal a(x )
is always motivated by x itself, successors y of x, or constants, such that, upon
cutting, no motivating literals for literals higher up in the tree are cut away.

Satisfiability checking w.r.t. FoLPs with the local model property can then be done
by standard answer set solvers. Intuitively, we introduce a large enough number of
constants, such that every bounded finite model, that is guaranteed to exist by the
local model property, can be mapped to these constants.

Theorem 19 Let P be a FoLP with the local model property. p ∈ upreds(P ) is sat-
isfiable w.r.t. P iff there is a 0 ≤ h ≤ k and an answer set M of ψh(P ) containing
a p-atom, where k is as in (1) and ψh(P ) ≡ P ∪ {cte(xi)← | 1 ≤ i ≤ h}.
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PROOF. For the “only if” direction, assume p is satisfiable w.r.t. P , such that, by
Theorem 17, there is an open answer set (H′,M ′) of P , with |H′| ≤ k. Define h ≡
|H′| − |cts(P )|, i.e., the number of anonymous elements in H′. Define a bijection
F : H′ → Hψh(P ) such that F (a) = a for a ∈ HP . Define M ≡ {a(F (x)) | a(x) ∈
M ′} ∪ {f(F (x), F (y)) | f(x, y) ∈ M ′} ∪ {cte(xi) | 1 ≤ i ≤ h}. Intuitively,
we identify the forest H′ with the constants in ψh(P ). One can show that M is an
answer set of ψh(P ).

For the “if” direction, assume there exists an answer set M of ψh(P ) containing a
p-atom. DefineH′ ≡ Hψh(P ), one can show that (H′,M ′ ≡ M\{cte(xi) | 1 ≤ i ≤
h}) is an open answer set of P . �

Note that standard answer set solvers such as DLV or SMODELS do not allow nega-
tion as failure in the head, but this can be solved with the transformation of such
programs to programs without not in the head [39] .

The local model property is a semantic property which makes Theorem 19 non-
trivial to use. However, a particular syntactic class of FoLPs that have the local
model property are local FoLPs.

Definition 20 A local FoLP is a FoLP where rules

a(s)← α(s), γm(s , tm), βm(tm), ti �= tj

and
f (s , t)← α(s), γ(s , t), β(t)

are such that for every b ∈ β+
(m), either b(t(m)) ∨ not b(t(m))←∈ P or for all rules

r : b(s)← body(r), body(r)+ = ∅.

Example 21 The program from Example 9 is a local FoLP while the program from
Example 18 is not. Note that the latter example does not have the local model
property either; in Example 23, we give a non-local program that does have the
local model property.

Intuitively, local FoLPs can motivate an a(s) (f(s, t)) in an answer set, by descend-
ing at most one level in the tree, where one can locally prove a(s) (f(s, t)), i.e.,
without the need to go further down the tree. Of course, in the level below s one
may need to check more literals which could amount to going further down the
tree, but whilst doing this one does not need to remember which literals need to
be proved above in the tree. In a way a local FoLP has limited memory: it only re-
members the previous (predecessor) state. A similar intuition applies to algorithms
that check satisfiability of certain modal logics. E.g., [27] (Theorem 6.11) defines
a PSPACE algorithm for checking satisfiability of the modal logic Kn, based on a
marking that assigns satisfiable to a state depending solely on the label of that state
and the marking of the successors. Such an algorithm makes the decision to mark
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a state satisfiable in a local way. Analogously, predicates in the label of a node in
a forest-model are motivated by looking at the label of the node and labels of the
successor nodes. Note that the algorithm in [27] is an extension for Kn (a modal
logic with n agents) of the modal logic K (for one agent) in [40].

Theorem 22 Every forest-model of a local FoLP is locally supported, and, as a
consequence, local FoLPs have the local model property.

There are FoLPs with the local model property that are not local FoLPs, making
the syntactical restriction less expressive than the semantical characterization.

Example 23 Take the FoLP

a(X ) ← f (X ,Y ), b(Y )

a(X ) ← c(X )

b(X ) ← c(X )

← b(X )

with f and c free. This program is not local as b in the first rule does not satisfy the
necessary conditions. However, every predicate is satisfiable by a locally supported
forest-model such that the program has the local model property. Intuitively, the
first rule, which is problematic for syntactical locality, will never be applicable in
an open answer set since the constraint ← b(X ) prohibits this. The example sug-
gests that finding a syntactical characterization that corresponds to the semantical
characterization (local iff local model property) is not trivial: the local supported-
ness of the forest-model is guaranteed by non-applicability of certain rules, which
seems hard to enforce syntactically in general.

3.3 Complexity

Let P be a FoLP. We verify the complexity of checking whether there exists an
answer set M of ψh(P ) for some 0 ≤ h ≤ k where k and ψh(P ) are as in Theorem
19. We distinguish between two cases:

• If FoLP rules have a degree bounded by m, independent of a particular FoLP,
then the size of ground(ψh(P)) is polynomial in the size of ψh(P ), since every
rule in ψh(P ) introduces at most O(|Hψh(P )|m+1) rules in ground(ψh(P)). In-
deed, each FoLP rule then contains at mostm+1 variables, each of which can be
instantiated with a constant from ψh(P ). Since checking whether there exists an
answer set M of ψh(P ) is in NP in the size of ground(ψh(P)) [14,7], we have
that checking whether there exists an answer set M of ψh(P ) is in NP in the size
of ψh(P ) as well.
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• If the degree is not bounded, we use a result from [16] to state that checking
whether M is an answer of ψh(P ) is in ΣP

2 w.r.t. the size of ψh(P ). 2 Indeed, the
arities of predicates in ψh(P ) are bounded by 2 since FoLPs allow only for unary
and binary predicates.

Thus, for a fixed h, checking whether ψh(P ) has an answer set is in NP for a FoLP
with bounded degree and in ΣP

2 in general.

Satisfiability checking of a predicate w.r.t. P can then be done by starting with
h = 0 and checking whether ψh(P ) has an answer set containing a p-atom. If
this is the case, we are done (by Theorem 19), otherwise, we repeat the check for
h = 1, and so on. If finally h = k has been checked, i.e., ψh(P ) had no answer
sets containing a p-atom, one can conclude, by Theorem 19, that the predicate is
not satisfiable. This procedure thus involves at most k+ 1 calls to an NP oracle for
FoLPs with bounded degree or to an ΣP

2 oracle in general.

We have that

k = (c+ 1)
2u+1∑

i=0

ni = (c+ 1)
(1− n2u+2)

(1− n)
,

with u = |upreds(P )|, c = |cts(P )|, and n the rank of P such that k is double
exponential in the size of P and the above procedure to check satisfiability runs in
2-EXPTIME NP for FoLPs with bounded degree and the local model property or in
2-EXPTIMEΣP

2 for arbitrary FoLPs with the local model property.

Theorem 24 Let P be a FoLP with the local model property. Satisfiability check-
ing w.r.t. P is in 2-EXPTIMEΣP

2 for a non-bounded degree of FoLP rules or in
2-EXPTIME NP otherwise.

3.4 Extended Forest Logic Programs

Consider a FoLP defining when one cheats one’s spouse, i.e., if one is married
to someone that is different than the person one is dating. We have a specialized
rule saying when one is cheating one’s spouse with the spouse’s friend Jane. Fur-
thermore, some justice is introduced by a constraint ensuring that cheaters date
cheaters.

cheats(X ) ← marr(X ,Y1 ), dates(X ,Y2 ),Y1 �= Y2

cheats j (X ) ← marr(X ,Y ), friend(Y , jane), dates(X , jane),Y �= jane

← cheats(X ), dates(X ,Y ), not marr(X ,Y ), not cheats(Y )

2 Recall that ΣP
2 = NPNP.
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Fig. 4. Forest-Model

with marr , friend and dates free predicates. An (infinite) answer set of this pro-
gram that satisfies cheats j is depicted in Fig. 4. One sees that x cheats his spouse
with Jane since x dates Jane but is married to x1. Furthermore, by the constraint,
we must have that Jane is also a cheater, and thus, by minimality of answer sets,
we must have that Jane is married to some jane1 and dates jane2, who in turn
must be cheating, resulting in an infinite answer set. In many cases, there is in-
teresting knowledge that cannot be captured within the rather strict tree format of
FoLP rules. For example, in addition, we may have a rule representing that if Leo is
married to Jane, Jane dates Felix, and Leo himself is not cheating, then Leo dislikes
Felix: dislikes(leo, felix ) ← marr(leo, jane), dates(jane, felix ), not cheats(leo).
This ground rule does not have a tree structure, but relates the three constants in
an arbitrary graph-like manner. We extend FoLPs by allowing for a component
with arbitrary DLP rules that may only be grounded with the combined program’s
constants.

Definition 25 An extended forest logic program (EFoLP) P is a pair (Q,R) where
Q is a FoLP and R is a finite DLP. We denote Q with clp(P ) and R with e(P ). An
EFoLP answer set of (Q,R) is an open answer set of Q ∪ RH(Q∪R)

. Satisfiability
checking and query answering w.r.t. (Q,R) are modified accordingly.

To avoid confusion with EFoLP answer sets and open answer sets, we assume an
EFoLP P is a FoLP Q extended with a ground DLP R, i.e., P = Q ∪ R, under an
open answer set semantics. It is easy to see that the EFoLP answer set semantics
of an EFoLP can be reduced to the open answer set semantics of a FoLP with an
arbitrary ground part.

Note that e(P ) can be full-fledged DLP, i.e., with negation as failure. Moreover,
predicates in e(P ) may be defined in the FoLP clp(P ), as is the case for marr ,
dates and cheats . Vice versa, we may have predicates appearing in the FoLP part
that are defined in the ground rule part, e.g., dislikes could appear in the FoLP part
as a dislikes(X ,Y ) literal.

EFoLPs still have the forest-model property, since, intuitively, graph-like connec-
tions between constants are allowed in a forest, which is all the ground part e(P )
of an EFoLP P can ever introduce. Proofs in this subsection are adaptations from
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their FoLP counterparts and have been omitted.

Theorem 26 Extended forest logic programs have the forest-model property.

The forest-model of the cheats example is depicted in Fig. 5. The cutting of infinite
answer sets to finite ones, as defined in Subsection 3.2, cannot be applied to arbi-
trary EFoLPs. As in the FoLP case, we need a local model property. Unfortunately,
the local model property as defined for FoLPs will not do. Take, for example, a rule

doesnt care(felix ) ← marr(leo, jane), dates(jane, felix ), cheats(leo)

where Felix does not care about dating the married Jane if her husband Leo is
cheating as well. Together with the cheats rule from the cheating example, one has
that doesnt care(felix ) is in an answer set if marr(leo, jane), dates(jane, felix ),
cheats(leo), marr(leo, leo1 ), and dates(leo, leo2 ) for successors leo1 and leo2 of
leo are in the answer set. Thus, although the cheats rule in itself does not violate
the local model property, adding a ground rule does so, since supports may also
involve successors of constants whereas the local model property definition for
FoLPs allows only the constants themselves in the support.

Although the local model property for FoLPs is not suitable, it can be safely relaxed
by allowing also successors of constants in the support. Indeed, cutting of forest-
models never removes any successors of constants and, moreover, a successor of
a constant is never considered as a candidate for the second node in a duplicate
pair since, by definition, the root in a constant tree is not taken into account as a
candidate for the first node in a duplicate pair. Thus the successors of constants
remain unmodified in the cut forest.

Definition 27 A forest-model (H,M) of an EFoLP P is locally supported if
∀l = q(x) ∈M ∨ l = f(x, y) ∈M ·
(HS(l) ⊆ {x, xi} ∪ {a, ai | a ∈ HP})∧
(∀f(z, a) ∈ S (l), a ∈ HP · z �= xi), p ∈ upreds(P ) is locally satisfiable w.r.t. P
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if there is a locally supported forest-model, a local model for short, (H,M) such
that p(ε) ∈ M for a root ε in H. An EFoLP P has the local model property if the
following holds: if p ∈ upreds(P ) is satisfiable w.r.t. P then it is locally satisfiable.

EFoLPs with the local model property then have the desired bounded finite model
property.

Theorem 28 Let P be an EFoLP with the local model property. Then, P has the
bounded finite model property.

Thanks to this property we can reduce reasoning with EFoLPs to normal answer
set programming by introducing a sufficiently large bound.

Theorem 29 Let P be an EFoLP with the local model property. p ∈ upreds(P )
is satisfiable w.r.t. P iff there is a 0 ≤ h ≤ k and an answer set M of ψh(P )
containing a p-atom, where k and ψh(P ) are as in Theorem 19.

The other direction is trivial: there is a normal answer set M of a program P con-
taining a p(a) ∈ HP iff p is satisfiable w.r.t. to the EFoLP (∅, P ). Indeed, by defini-
tion of EFoLPs, the second component in the pair has a normal answer set seman-
tics. By [14,7], the normal answer set semantics for DLPs is NEXPTIME-complete.
Furthermore, (∅, P ) has the local model property such that we have the following
lower complexity bound.

Theorem 30 Let P be an EFoLP with the local model property. Satisfiability check-
ing w.r.t. P is NEXPTIME-hard.

A lower EXPTIME bound for reasoning with FoLPs will be established in Section 4.
Similar to the complexity upper bound for FoLPs with the local model property, one
can deduce the following upper bounds for EFoLPs with the local model property
(where extra complexity is due to the unbounded grounding of the arbitrary rule
part).

Theorem 31 Let P be an EFoLP with the local model property. Satisfiability check-
ing w.r.t. P is in 2-EXPTIME NEXPTIME.

As was the case for FoLPs, the local model property for EFoLPs is a semantical
characterization, which makes it non-trivial to recognize EFoLPs satisfying this
property. We identify a class of EFoLPs, based on their syntactic structure, that
have the local model property.

Definition 32 A local EFoLP P is an EFoLP where clp(P ) is a local FoLP.

Local EFoLPs have the local model property, i.e., the arbitrary rules have no influ-
ence on the locality.

Theorem 33 Local EFoLPs have the local model property.
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4 Nonmonotonic Ontological and Rule-based Reasoning with Extended For-
est Logic Programs

In Subsection 4.1, we simulate reasoning in an expressive DL with FoLP; Subsec-
tion 4.2 shows that the extension of this DL with DL-safe rules can be simulated
by EFoLP, and discusses some of the advantages of EFoLPs for representing and
reasoning with conceptual and rule-based knowledge.

4.1 Ontological Reasoning with FoLPs

Description logics (DLs) [5] play an important role in the deployment of the Se-
mantic Web, as they provide the formal semantics of (part of) ontology languages
such as OWL [9]. Using concept and role names as basic building blocks, termi-
nological and role axioms in such DLs define subset relations between complex
concept and role expressions respectively. The semantics of DLs is given by inter-
pretations I = (ΔI , ·I) where ΔI is a non-empty domain and ·I is an interpretation
function.

ALCHOQ(�,	) is a particular DL with syntax and semantics as in Table 1; con-
cept names A are the base concept expressions, P is a role name, establishing the
base role expression, and o is an individual. D and E are arbitrary concept ex-
pressions, and R and S are arbitrary role expressions. Individuals are interpreted
as elements in ΔI , concept expressions as subsets of ΔI and role expressions as
binary relations on ΔI . DLs are named according to their constructs:AL is the ba-
sic DL [49], and ALCHOQ(�,	) adds negation of concept expressions (C), role
hierarchies (H), individuals (or nominals) (O), qualified number restrictions (Q),
and conjunction (	) and disjunction (�) of roles.

The unique name assumption – if o1 �= o2 then oI1 �= oI2 – ensures that different
individuals are interpreted as different domain elements. Note that OWL does not
have the unique name assumption [51], and thus different individuals can point
to the same resource. However, the open answer set semantics gives an Herbrand
interpretation to constants, i.e., constants are interpreted as themselves, and for
consistency we assume that also DL nominals are interpreted this way. Thus, from
a Semantic Web point of view, we assume all individuals are URI’s that point to a
unique resource.

For concept expressions D and E, terminological axioms D � E are satisfied by
an interpretation I if DI ⊆ EI . Role axioms R � S are interpreted similarly. An
axiom X ≡ Y stands for X � Y and Y � X . A knowledge base Σ is a set of
terminological and role axioms; I is a model of Σ if I satisfies every axiom in Σ.
A concept expression C is satisfiable w.r.t. Σ if there exists a model I of Σ such
that CI �= ∅.
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Table 1
Syntax and Semantics ALCHOQ(�,	)

concept names AI ⊆ ΔI

role names PI ⊆ ΔI ×ΔI

individuals {o}I = {oI} ⊆ ΔI

conjunction of concepts (D 	 E)I = DI ∩ EI

disjunction of concepts (D � E)I = DI ∪ EI

conjunction of roles (R 	 S)I = RI ∩ SI

disjunction of roles (R � S)I = RI ∪ SI

existential restriction (∃R.D)I = {x|∃y : (x, y) ∈ RI ∧ y ∈ DI}
universal restriction (∀R.D)I = {x|∀y : (x, y) ∈ RI ⇒ y ∈ DI}

qualified number restriction (≤ n R.D)I = {x|#{y|(x, y) ∈ RI ∧ y ∈ DI} ≤ n}
(≥ n R.D)I = {x|#{y|(x, y) ∈ RI ∧ y ∈ DI} ≥ n}

As an example, the human resources department has an ontology specifying the
company’s structure: (a) Personnel consists of Management , Workers and john,
(b) john is the boss of some manager, and (c) managers only take orders from other
managers and they are the boss of at least three Workers . This corresponds to the
followingALCHOQ(�,	) knowledge base Σ:

Personnel ≡ Manag �Workers � {john}
{john} � ∃boss .Manag

Manag � (∀t orders .Manag) 	 (≥ 3 boss .Workers)

A model of this Σ is I = ({j, w1, w2, w3, m}, ·I), with ·I defined by WorkersI =
{w1, w2, w3}, ManagI = {m}, {john}I = {j}, PersonnelI = {j, w1, w2, w3, m},
bossI = {(j,m), (m,w1), (m,w2), (m,w3)}, t ordersI = ∅.

We can rewrite Σ as an equivalent FoLP P . The axioms in Σ correspond to the
constraints

← Personnel(X ), not (Manag �Workers � {john})(X )

← (Manag �Workers � {john})(X ), not Personnel(X )

← {john}(X ), not (∃boss .Manag)(X )

← Manag(X ), not ((∀t orders .Manag) 	 (≥ 3 boss .Workers))(X )

in P , where the concept expressions are used as predicates, and indicating, in
case of the first constraint, that if the answer set contains some Personnel(x ) then
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it must also contain (Manag �Workers � {john})(x ). Those constraints are the
kernel of the translation; we still need, however, to simulate the DL semantics by
rules that define the different DL constructs.

The predicate (Manag �Workers � {john}) is defined by rules

(Manag �Workers � {john})(X ) ← Manag(X )

(Manag �Workers � {john})(X ) ← Workers(X )

(Manag �Workers � {john})(X ) ← {john}(X )

and thus, by minimality of answer sets, if (Manag �Workers � {john})(x ), there
must either be a Manag(x ), a Workers(x ), or a {john}(x ). The other way around,
if one has a Manag(x ), a Workers(x ), or a {john}(x ), one must have
(Manag �Workers � {john})(x ). This behavior is exactly what is required by the
�-construct.

The predicate (∃boss .Manag) is defined by

(∃boss .Manag)(X )← boss(X ,Y ),Manag(Y )

such that, if the literal (∃boss .Manag)(x ) is in the answer set, there is a y such that
boss(x , y) and Manag(y) are in the answer set and vice versa.

The predicate ((∀t orders .Manag) 	 (≥ 3 boss .Workers)) is defined by

((∀t orders .Manag) 	 (≥ 3 boss .Workers))(X )←
(∀t orders .Manag)(X ), (≥ 3 boss .Workers)(X )

and the body predicates by the rules

(∀t orders .Manag)(X ) ← not (∃t orders .(¬Manag))(X )

(≥ 3 boss .Workers)(X ) ← boss(X ,Y1 ), boss(X ,Y2 ), boss(X ,Y3 ),

Workers(Y1 ),Workers(Y2 ),Workers(Y3 ),

Y1 �= Y2 ,Y2 �= Y3 ,Y1 �= Y3

and

(∃t orders .(¬Manag))(X ) ← t orders(X ,Y ), (¬Manag)(Y )

(¬Manag)(X ) ← not Manag(X )

Finally, we need to introduce free rules for all concept and role names. Intuitively,
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concept names and roles names are types and thus contain some instances or not.

Workers(X ) ∨ not Workers(X ) ←
Personnel(X ) ∨ not Personnel(X ) ←

Manag(X ) ∨ not Manag(X ) ←
boss(X ,Y ) ∨ not boss(X ,Y ) ←

t orders(X ,Y ) ∨ not t orders(X ,Y ) ←

The individual {john} is taken care of by introducing a constant john in the pro-
gram with the rule {john}(john)← . The only possible value ofX in a {john}(X )
is then john.

The DL model I corresponds to the open answer set (H,M) with H = (ΔI \
{j}) ∪ {john} and M = {C(x) | C ∈ upreds(P ), x ∈ CI} ∪ {R(x, y) | R ∈
bpreds(P ), (x, y) ∈ RI}, with a slight abuse of notation, i.e., using C and R as
predicates and DL expressions. Formally, we define the closure clos(C,Σ) of a
concept expression C and a knowledge base Σ as the smallest set satisfying the
following conditions:

• for every concept (role) expression D (R) in {C} ∪ Σ, we have that D(R) ∈
clos(C,Σ),

• for every D in clos(C,Σ), we distinguish the following cases:

D = ¬D1 ⇒ D1 ∈ clos(C,Σ)

D = D1 �D2 ⇒ {D1, D2} ⊆ clos(C,Σ)

D = D1 	D2 ⇒ {D1, D2} ⊆ clos(C,Σ)

D = ∃R.D1 ⇒ {R,D1} ⊆ clos(C,Σ)

D = ∀R.D1 ⇒ {D1, ∃R.¬D1} ⊆ clos(C,Σ)

D = (≤ n Q.D1) ⇒ {(≥ n+ 1 Q.D1)} ⊆ clos(C,Σ)

D = (≥ n Q.D1) ⇒ {Q,D1} ⊆ clos(C,Σ)

• for R � S ∈ clos(C,Σ), {R, S} ⊆ clos(C,Σ),
• for R 	 S ∈ clos(C,Σ), {R, S} ⊆ clos(C,Σ).

The FoLP Φ(C,Σ) that simulates satisfiability checking of C w.r.t. Σ is then con-
structed by introducing for concept names A, role names P , and individuals o in
clos(C,Σ), rules A(X ) ∨ not A(X ) ← , P(X ,Y ) ∨ not P(X ,Y ) ← , and facts
{o}(o) ←. For every other construct B ∈ clos(C,Σ), we introduce, depending on
the particular construct, a rule with B in the head as in Table 2.

This completes the simulation of ALCHOQ(�,	) using FoLP.
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Table 2
FoLP Translation Φ(C,Σ)

(¬D)(X) ← not D(X) (D 	 E)(X) ← D(X), E(X)

(D � E)(X) ← D(X) (D � E)(X) ← E(X)

(∃R.D)(X) ← R(X,Y ),D(Y ) (∀R.D)(X) ← not ∃R.¬D(X)

(R � S)(X,Y ) ← R(X,Y ) (R 	 S)(X,Y ) ← R(X,Y ), S(X,Y )

(R � S)(X,Y ) ← S(X,Y ) (≤ n R.D)(X) ← not (≥ n + 1 R.D)(X)

(≥ n R.D)(X) ← R(X,Y1), . . . , R(X,Yn),D(Y1), . . . ,D(Yn), Y1 �= Y2, . . .

Theorem 34 An ALCHOQ(�,	) concept expression C is satisfiable w.r.t. a
knowledge base Σ iff C is satisfiable w.r.t. Φ(C,Σ).

Proof Sketch. For the “only if” direction, take C satisfiable w.r.t. Σ, i.e., there
exists a model I = (ΔI , ·I) with CI �= ∅. We rename the element oI from ΔI by
o, which is possible by the unique name assumption. We then construct the answer
set (H,M) withH = ΔI andM = {C(x) | x ∈ CI , C ∈ clos(C,Σ)}∪{R(x, y) |
(x, y) ∈ RI , R ∈ clos(C,Σ)}. One can show that (H,M) is an answer set of
Φ(C,Σ).

For the “if” direction, we have an open answer set (H,M) that satisfies C, i.e.,
C(x) ∈ M for some x ∈ H. Define an interpretation (ΔI , ·I), with ΔI = H, and
AI = {y | A(y) ∈ M}, for concept names A, P I = {(y, z) | P (y, z) ∈ M}, for
role names P , and oI = o, for o ∈ HΦ(C,Σ). I is defined on concept expressions
and role expressions as in Table 1, and we can show that I is a model of Σ such
that CI �= ∅. �

Note that, in general, the resulting FoLP Φ(C,Σ) is not local: (∃R.(A	B)) is trans-
lated as rules (∃R.(A 	 B))(X ) ← R(X ,Y ), (A 	 B)(Y ) and (A 	 B)(X ) ←
A(X ),B(X ), such that there is a positive (A 	 B)-atom that is not free in a body
and there is a rule with (A 	 B) in the head and a body that has a non-empty
positive part. Φ(C,Σ) has, however, the convenient property that it is acyclic. It is
sufficient to note that the body of a rule in Φ(C,Σ) is structurally “smaller” than
the head, e.g., (A 	 B) is smaller than (∃R.(A 	 B)). This permits us to replace
the rule with (∃R.(A 	 B)) in the head by the two rules (∃R.(A 	 B))(X ) ←
R(X ,Y ), not (A 	 B)′(Y ); (A 	 B)′(X ) ← not (A 	 B)(X ): we negate (A 	
B)(Y ) twice. The resulting FoLP is now local and satisfiability checking w.r.t.
Φ(C,Σ) can be reduced to this replacement, as a consequence of Theorem 6.

From the reduction of reasoning with ALCHOQ(�,	) to reasoning with local
FoLPs, we can deduce a lower complexity bound for reasoning with the latter.
Indeed, since satisfiability checking of the sublanguageAL w.r.t. a set of axioms is
EXPTIME-complete [5], we have the following theorem.
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Theorem 35 Let P be a FoLP with the local model property. Satisfiability checking
w.r.t. P is EXPTIME-hard.

The ALCHOQ(�,	) simulation shows the feasibility of Semantic Web reason-
ing with FoLPs, as ALCHOQ(�,	) is an expressive DL related to the OWL DL
ontology language. Formally, OWL DL corresponds to the DL SHOIN (D) [37],
which differs from ALCHOQ(�,	) in that SHOIN (D) additionally allows for
inverted roles (I), data types (D) and transitivity of roles (which distinguishes S
fromALC). However,SHOIN (D), and thus OWL DL, does not support qualified
number restrictions, i.e., it only allows for unqualified number restrictions such as
(≥ n R) instead of qualified ones (≥ n R.D)(X). Furthermore, ALCHOQ(�,	)
adds the role constructs � and 	.

Putting this in perspective, the loss of transitivity inALCHOQ(�,	) weighs heav-
ier than having qualified number restrictions and role constructors. Indeed, there is
actually no reason why OWL DL should not include qualified number restrictions
(corresponding to the DL SHOIQ(D)). We needed to omit transitivity in order
to be able to translate to EFoLPs with the bounded finite model property. OWL
DL does not have this limitation, i.e., there are concept expressions that have only
infinite models. Note that adding transitivity to ALCHOQ(�,	) without restrict-
ing the allowed roles in qualified number restrictions (they cannot be transitive nor
can they have transitive subroles), one immediately has undecidability of reason-
ing [35]. Further note that OWL DL does not make the unique name assumption,
while EFoLPs do. Since the unique name assumption can be asserted in OWL DL,
EFoLPs are strictly weaker in this respect.

4.2 Combined Ontological and Rule-based Reasoning with EFoLPs

The ontology layer for the Semantic Web is becoming a reality with languages such
as OWL DL, and the rule layer, which provides additional inferencing capabilities
on top of DL reasoning, is gaining interest in the Semantic Web community. For
example, in [45], integrated reasoning of DLs with DL-safe rules was introduced.
DL-safe rules are unrestricted Horn clauses where only the communication be-
tween the DL knowledge base and the rules is restricted; they enable one to express
knowledge inexpressible with DLs alone, e.g., triangular knowledge such as [45]

BadChild(X ) ← GrChild(X ), parent(X ,Y ), parent(Z ,Y ), hates(X ,Z )

saying that a grandchild that hates its sibling is a bad child.

We introduce DL-safe rules as in [45]. For a DL knowledge base Σ let NC and NR

be the concept and role names in Σ and NP is a set of predicate symbols such that
NC∪NR ⊆ NP . A DL-atom is an atom of the formA(s) orR(s, t) forA ∈ NC and
R ∈ NR. A DL-safe rule is a rule of the form a ← b1 , . . . , bn where a, bi are atoms
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and every variable in the rule appears in a non-DL-atom in the rule body. A DL-safe
program is a finite set of DL-safe rules. Let cts(Σ, P ) be the set of nominals in Σ
and constants in P .

The semantics of the combined (Σ, P ) for a knowledge base Σ and a DL-safe pro-
gram P is given by interpreting Σ as a first-order theory π(Σ), see, e.g., [12], every
DL-safe rule a ← b1 , . . . , bn as the clause a∨¬b1∨ . . .∨¬bn, and then considering
the first-order interpretation of π(Σ) ∪ P . The main reasoning procedure in [45] is
query answering, i.e., checking whether a ground atom α is true in every first-order
model of π(Σ) ∪ P , denoted as (Σ, P ) |= α.

We provide an alternative semantics based on DL interpretations as in [33] rather
than on first-order interpretations. However, both semantics are compatible as in-
dicated in [45]. For (Σ, P ) and an interpretation I = (ΔI , ·I) of Σ we extend
·I for NP and HP such that for unary predicates p ∈ NP , pI ⊆ ΔI , for binary
predicates f ∈ NP , fI ⊆ ΔI × ΔI , and oI ∈ ΔI for o ∈ HP ; such an ex-
tended interpretation is, by definition, an interpretation of (Σ, P ). Furthermore, we
impose the unique name assumption such that if o1 �= o2, then oI1 �= oI2 , for el-
ements o ∈ cts(Σ, P ). A binding for an interpretation I of (Σ, P ) is a function
σ : vars(P ) ∪ cts(Σ, P ) → ΔI with σ(o) = oI for o ∈ cts(Σ, P ); it maps con-
stants/nominals and variables to domain elements. A unary atom a(s) is then true
w.r.t. σ and I if σ(s) ∈ aI , and a binary atom f(s, t) is true w.r.t. σ and I if
(σ(s), σ(t)) ∈ fI . A rule r is satisfied by I iff for every binding σ w.r.t. I that
makes the atoms in the body true, the head is also true. An interpretation of (Σ, P )
is a model if it is a model of Σ and it satisfies every rule in P . Query answering
(Σ, P ) |= α amounts then to checking whether for every model I of (Σ, P ), the
ground atom α is true in I.

In Subsection 4.1, we reducedALCHOQ(�,	) satisfiability checking to FoLP sat-
isfiability checking. We can reduce query answering w.r.t.ALCHOQ(�,	) knowl-
edge bases extended with DL-safe rules to query answering w.r.t. EFoLPs. We first
provide some intuition with an example. Take a knowledge base Σ

∃manuf in.Co 	 ∃has price � Product ,

expressing that if something is manufactured in some country and it has a price
then it is a product (∃has price is shorthand for ∃has price.�, where �I ≡ ΔI

for every interpretation I). We have some facts in a DL-safe program P about the
world we are considering:

is product of (p, c1 ) ← manuf in(p, japan) ←
is product of (p, c2 ) ← Co(japan) ←

saying that p is a product of company c1 and company c2, that p is manufac-
tured in Japan and that Japan is a country. Those facts are trivially DL-safe since
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they do not contain variables. Additionally, we have a DL-safe rule in P saying
that if a product is a product of 2 companies, those companies are competitors 3 ,
r1 : competitors(C1, C2)← Product(P ), is product of(P,C1),
is product of(P,C2). Note that this is indeed a DL-safe rule since every vari-
able occurs in a is product of atom, which is a non-DL-atom in the body of
the rule. The only DL-atom in the rule is Product(P). A model I of (Σ, P ) is
I = ({japan, c1 , c2 , p, x}, ·I) 4 with ·I : CoI = {japan}, ProductI = {p},
manuf inI = {(p, japan)}, has priceI = {(p, x )},
is product of I = {(p, c1 ), (p, c2 )}, competitorsI = {(c1 , c2 )}.

We translate (Σ, P ) now to an EFoLP: the DL axiom is translated to the con-
straint ← (∃manuf in.Co 	 ∃has price)(X ), not Product(X ), where we intro-
duce predicates corresponding to the concept expressions. Furthermore, we define
these predicates by the rules

(∃manuf in.Co 	 ∃has price)(X ) ← (∃manuf in.Co)(X ), (∃has price)(X )

(∃manuf in.Co)(X ) ← manuf in(X ,Y ),Co(Y )

(∃has price)(X ) ← has price(X ,Y )

Furthermore, we introduce the concept and role names by means of free rules,
indicating that a domain element (or a pair of domain elements) is of a certain type
or not.

Product(X ) ∨ not Product(X ) ←
Co(X ) ∨ not Co(X ) ←

manuf in(X ,Y ) ∨ not manuf in(X ,Y ) ←
has price(X ,Y ) ∨ not has price(X ,Y ) ←

This concludes the FoLP part of the translation of (Σ, P ). Formally, we define
Φ(Σ) as the Φ(C,Σ) from Subsection 4.1 where C is some arbitrary concept from
Σ. The arbitrary DLP part of the EFoLP includes the DL-safe rules.

Since DL-safe rules have a first-order interpretation it may be that

(c1, c2) ∈ competitorsI

for a model I of (Σ, P ) without any justification in I: the body of r1 in P does
not need to be satisfied in order to have (c1, c2) ∈ competitorsI . The answer set
semantics, however, only deduces competitors(c1 , c2 ) in an answer set if the body

3 Actually, to correspond entirely with the desired semantics, we would need to indicate
that C1 and C2 are different companies. This seems to be not possible with the DL-safe
rules in [45], however, it is with EFoLPs using �=.
4 We take oI = o, o ∈ cts(Σ, P ), for ease of notation.
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of r1 is satisfied in that answer set, since otherwise the answer set would not be
minimal (one could omit competitors(c1 , c2 ) and still have an answer set).

To solve this, we introduce for each head a of a DL-safe rule, a rule a ∨ not a ← ,
competitor(C1 ,C2 ) ∨ not competitor(C1 ,C2 ) ← , such that one has always a
motivation for competitor(C1 ,C2 ), mimicking the first-order semantics.

Formally, we define χ(P ) for a DL-safe program P as the DLP P with free rules

head(r) ∨ not head(r)← ,

for each r ∈ P .

Theorem 36 For an ALCHOQ(�,	) knowledge base Σ and a DL-safe program
P , we have (Σ, P ) |= α iff (Φ(Σ), χ(P )) |= α.

In [45] the DL SHOIN (D) is considered in the definition of DL-safe rules in-
stead of ALCHOQ(�,	). Decidability of query answering is shown for the DL
SHOIN (i.e., without data types) 5 . Using EFoLPs instead of a DL knowledge
base with DL-safe rules on top has the further advantage of nonmonotonicity by
means of negation as failure in both the FoLP part and the DLP part, whereas both
DLs and DL-safe rules are monotonic (DL-safe rules are Horn clauses and thus do
not allow for negation as failure).

Example 37 Add a rule to the company example ontology, expressing that if John
is not married, he works late at the office:

works late(john) ← not married(john)

Adding such a rule to our knowledge will have the effect that every open answer
set includes the literal works late(john), i.e., John always works late. However,
consecutively adding the newly acquired knowledge that John is actually married
with a rule

married(john) ←
will make sure that John never works late in answers to our current knowledge.

This type of nonmonotonicity is one of the main strengths of logic programming
paradigms for knowledge representation and is thus useful in Semantic Web rea-
soning as well; it was, e.g., identified in [13] as one of the requirements on a logic
for reasoning on the Web. DLs lack this feature and are monotonic, e.g., one could
try to translate the above rule as the following DL axiom.

¬Married 	 {john} � Works late 	 {john}

5 Note that the proof of this decidability does not use a reduction to disjunctive Datalog;
in order to use such a reduction [45] restricts itself to SHIQ(D).
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However, it is clear that interpretations satisfying this axiom have a choice in
making John work later or not, such that adding that John is married would not
invalidate any previously concluded facts.

Besides the previously illustrated nonmonotonicity, FoLPs are more articulate than
DLs in other aspects.

Example 38 E.g., representing the knowledge that a team must at least 6 consist
of a technical expert, a secretary, and a team leader, where the leader and the
technical expert are not the same, can be done by

team(X )← member(X ,Y1 ), tech(Y1 ),member(X ,Y2 ), secret(Y2 ),

leader(X ,Y3 ), Y1 �= Y3

Note that in order for the rule to correspond to our informal definition of a team we
assume no other rules with a head predicate team exist, i.e., we implicitly use the
minimality of open answer sets. This is clearly not ideal. However, using only satis-
faction of rules to conclude that, if x is team, then it should satisfy the listed prop-
erties, seems impossible to express with (open) answer set programming. Compare
the rule with, e.g., the rule for number restrictions in Table 2. In number restric-
tions (≥ n R.C) one indicates that there are more than n R-successors that are of
type C, while FoLPs can constrain different successor relationships (member and
leader) instead of just one (R). Moreover, FoLPs can be very specific about which
successors should be different and which ones may be equal (Y1 may be equal to Y2,
but should be different from Y3), or to which different types the successors belong
(tech and secret) instead of one type (C).

Representing such generalized number restrictions using DLs would be signifi-
cantly harder while arguably less succinct.

Finally, consider some EFoLP (Q,R) where R is the ground rule

f (a, c)← f (a, b), f (b, c)

Although this rule does not have a tree structure, its groundness suggests that one
can replace it by a DL axiom using nominals:

{a} 	 ∃f .({b} 	 ∃h.{c}) � {a} 	 ∃f .{c}

If (a, b) ∈ fI and (b, c) ∈ fI for a model I (and assuming a, b, and c are the
elements of {a}I , {b}I , and {c}I respectively), the DL axiom enforces (a, c) ∈ f I .
The DL axiom does not capture the rule’s semantics exactly: open answer sets have
to be minimal such that an open answer set cannot contain f(a, c) without applying
the body of the rule fromR. It seems that the satisfaction of ground rules can indeed

6 Note that other entities than team could have these properties, e.g., a club – in the exam-
ple clubs and teams would then be the same.
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be simulated by DL axioms, however, the minimality of open answer sets cannot
be captured as such. Note that DL-safe rules are not interpreted by such a minimal
model semantics such that it is more likely that they actually could be captured as
DL axioms (provided the particular DL allows for nominals). This is subject for
further research. Writing non-ground DL-safe rules directly as DL axioms seems
to be more intricate, if possible at all.

It is still up to a knowledge engineer to decide whether the minimality property is
required to represent the domain under consideration.

5 Related Work

In [22], the language L0 of a program P is expanded with an infinite sequence of
new constants c1, . . . , ck, . . . such that Lk is the expansion of L0 with c1, . . . , ck. A
pair 〈k,B〉 for a nonnegative integer k and a set of ground literalsB in Lk is then a
k-belief set of P iff B is an answer set of Pk, where Pk is the grounding of P in the
language Lk. Our definition of open answer sets is more general in the sense that
also infinite universes are allowed, while a k-belief set is always finite. Nonetheless,
the other direction is valid: every k-belief set can be written as an open answer set.

Defining k-belief sets, or open answer sets for that matter, easily leads to unde-
cidability as was argued for k-belief sets in [48]. Interestingly, [48] shows that
reasoning becomes decidable again under the well-founded semantics . Since for
stratified programs this semantics coincides with the answer set semantics, one has
decidability of reasoning for k-belief sets of stratified programs. However, trying to
extend the language of stratified programs with an extra stratum below all others,
containing disjunctions of positive literals, leads to undecidability again [48]. Con-
sidering, in this light, Φ(C,Σ), which basically consists of a stratified part, defining
the DLs constructors, and a disjunctive part, the free rules, we have, however, still
decidability, emphasizing the importance of the forest-model property.

Another approach to infinite reasoning, besides infinite open domains, is presented
in [11], where function symbols are included in the language. Finitary programs
are identified as a class for which ground query answering is decidable, and lead to
elegant formulations of, e.g., plans with unbounded planning length. Formally, they
are defined as programs that are finitely recursive, i.e., every ground atom may only
depend on a finite number of other ground atoms, and such that only a finite number
of odd-cycles may occur in the grounded program. Neither conditions are neces-
sary for FoLPs: the local FoLP containing rules a(X) ← f(X, Y ), not b(Y ) and
b(X) ← a(X), when grounded with an infinite universe, is not finitely recursive
and contains infinitely many odd-cycles. Since not all finitary programs are FoLPs,
both classes of programs are not directly related, and the forest-model property ap-
pears to be an alternative indication of “finitary” reasoning with possibly infinite
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knowledge. While ground query answering with finitary programs is decidable,
unground query answering is only semi-decidable [11]. Since both are decidable
for FoLPs, FoLPs are arguably more suited for checking consistency of, e.g., on-
tologies. Moreover, checking whether a program is finitary is itself undecidable, in
contrast with FoLPs, which are a syntactic restriction of DLPs.

There are basically two lines of research that try to reconcile description logics with
logic programming. The approaches in [10,24,44,2,38,52] simulate DLs with LP,
possibly with a detour to FOL, while [15,47,17] attempt to unite the strengths of
DLs and LP by letting them coexist and interact.

In [10], the simulation of a DL with acyclic axioms in open logic programming is
shown. An open logic program is a program with possibly undefined predicates and
a FOL-theory; the semantics is the completion semantics, which is only complete
for a restrictive set of programs. The opennes lies in the use of undefined predicates,
which are comparable to free predicates with the difference that free predicates can
be expressed within the FoLP framework. More specifically, open logic program-
ming simulates reasoning in the DL ALCN , N indicating the use of unqualified
number restrictions, where terminological axioms consist of non-recursive concept
definitions;ALCN is a subclass of ALCHOQ(�,	).

[24] imposes restrictions on the occurrence of DL constructs in terminological
axioms to enable a simulation using Horn clauses. E.g., axioms containing dis-
junction on the right hand side, as in D � C � D, universal restriction on the
left hand side, or existential restriction on the right hand side are prohibited since
Horn clauses cannot represent them. Moreover, neither negation of concept ex-
pressions nor number restrictions can be represented. So-called Description Logic
Programs are thus incapable of handling expressive DLs; however, [24]’s forte lies
in the identification of a subclass of DLs that make efficient reasoning through LPs
possible. [44] extends the work in [24], for it simulates non-recursive ALC on-
tologies with disjunctive deductive databases. Compared with, possibly recursive,
ALCHOQ(�,	), those are still rather inexpressive.

In [2], the DL ALCQI is successfully translated into a DLP. However, to take into
account infinite interpretations [2] presumes, for technical reasons, the existence of
function symbols, which leads, in general, to undecidability of reasoning.

[38] and [52] simulate reasoning in DLs with a LP formalism by using an inter-
mediate translation to first-order clauses. In [38], SHIQ− knowledge bases, i.e.,
SHIQ knowledge bases with the requirement that roles S in (≤ nS.C) have no
subroles, are reduced to first-order formulas, on which basic superposition calcu-
lus is then applied. The result is transformed into a function-free version which is
translated to a disjunctive Datalog program. Note that [38] can deal with transitive
roles which is a clear advantage over our approach in the context of DL simulation.

[52] translatesALCQI concepts to first-order formulas, grounds them with a finite
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number of constants, and transforms the result to a logic program. One can use a
finite number of constants by the finite-model property for ALCQI-concept ex-
pressions; in the presence of terminological axioms this is no longer possible. The
resulting program is, however, not declarative anymore such that its main contri-
bution is that it provides an alternative reasoner for DLs, whereas FoLPs can be
used both for reasoning with DLs and for a direct and elegant expression of knowl-
edge. Furthermore, FoLPs are also interesting from a pure LP viewpoint since they
constitute a decidable class of DLPs under the open answer set semantics.

Along the second line of research, an AL-log [15] system consists of two subsys-
tems: a DL knowledge base and a Datalog program, where in the latter variables
may range over DL concept instances, thus obtaining a flow of information from
the structural DL part to the relational Datalog part. This is extended in [47] for
disjunctive Datalog and the ALC DL. A further generalization is attained in [17]
where the particular DL can be the expressive SHOIN (D). The DL knowledge
base is considered as a black box that can be queried from the rules. Moreover,
inferences made by rules can serve as input to the DL knowledge base as well,
leading to a bidirectional flow of information. A disadvantage of this approach, as
was remarked in [45], is that, since one considers only consequences of the DL
knowledge base, i.e., atoms that are true in all models, some more fine-grained in-
ferences will not be made by the rules. Since reasoning with FoLPs can be reduced
to finite ASP, it can be trivially reduced to the approach in [17] with an empty DL
knowledge base. In [18] the approach of [17] was adapted for the well-founded
semantics instead of the answer set semantics.

In [4], one builds a nonmonotonic rule system on top of the ontology language
DAML+OIL [8], a predecessor of OWL. More specifically, they use defeasible
logic [46] to express rule-based knowledge and argue its use for E-commerce appli-
cations on the Semantic Web. Another approach that combines DAML+OIL with
rules can be found in [25], where situated courteous logic programs in the rule
markup language RuleML [1] provide for the nonmonotonic rule system.

A notable approach, which cannot be categorized in one of the two lines of research
described above, although it tends towards the coexisting approach, is the SWRL
[36] initiative. SWRL is a Semantic Web Rule Language and extends the syntax and
semantics of OWL DL with unary/binary Datalog RuleML [1], i.e., Horn-like rules.
This extension is undecidable [33] but lacks, nevertheless, interesting knowledge
representation mechanisms such as negation as failure.

[23] explains how reasoning with SWRL [36], can be done by iteratively calling
the DL reasoner RACER [26] and the rule-based reasoner Jess [20], each feeding
the other with the inferences it made. Since SWRL is undecidable, and such an
iterative procedure is thus incomplete, it shows that intractable worst-case com-
plexity (or even undecidability) should not hold one back to device practical and
useful combined reasoners. On the other hand, the approach in [23] is quite ad hoc
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and not formally proved to be correct. A similar iterative angle is taken in [43]
where SWRL is extended with negation as failure and equipped with an answer set
semantics, resulting in a nonmonotonic but undecidable system.

6 Conclusions and Directions for Further Research

We extended the semantics of answer set programming with support for open do-
mains. This extension led to an increase in expressiveness, but also to undecid-
ability of reasoning. This was remedied by syntactically restricting the types of
allowed rules in logic programs, resulting in extended forest logic programs. We
further restricted EFoLPs to local EFoLPs that have the bounded finite model prop-
erty. Lower and upper bounds for the complexity of reasoning were established.

Furthermore, we showed how EFoLPs can simulate reasoning in a DL that is related
to the OWL DL ontology language together with DL-safe rules. A disadvantage of
the EFoLP approach, however, compared to state-of-the-art DLs, is the inability to
express transitive roles as in, e.g., the DL SHIQ: we restrict ourselves to EFoLPs
with the local model property in order to ensure a bounded finite model property, a
restricting property that SHIQ does not have.

Since EFoLP is a logic programming paradigm, with, e.g., negation as failure and
the consequential nonmonotonic reasoning, we believe that EFoLPs may be useful
for reasoning with both rules and ontologies on the Semantic Web, and this in
such a way that both types of knowledge are fully integrated. We concluded with a
description of related work.

It would be interesting to look for further extensions of the forest-model property of
EFoLPs. Other syntactical classes of open answer set programming, e.g., guarded
programs [30], can be identified, based on other decidability vehicles like, e.g.,
fixed point logic.

Acknowledgements

Davy Van Nieuwenborgh is supported by the Flemish Fund for Scientific Research
(FWO-Vlaanderen).

References

[1] The Rule Markup Initiative. http://www.ruleml.org.

38



[2] G. Alsaç and
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