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Abstract. We use extended answer set programming (ASP), a logic program-
ming paradigm which allows for the defeat of conflicting rules, to check satisfi-
ability of computation tree logic (CTL) temporal formulas via an intuitive trans-
lation. This translation, to the best of our knowledge the first of its kind for CTL,
allows CTL reasoning with existing answer set solvers.

Furthermore, we demonstrate how preferred ASP, where rules are ordered ac-
cording to preference for satisfaction, can be used for synthesizing synchroniza-
tion skeletons of processes in a concurrent program from a temporal specification.
We argue that preferred ASP is put to good use since a preference order can be
used to make explicit some of the decisions tableau algorithms make, e.g. declar-
atively specifying a preference for maximal concurrency makes synthesis more
transparent and thus less error-prone.

1 Introduction

Temporal logics [7] are widely used for expressing properties of nonterminating pro-
grams. Transformation semantics, such as Hoare’s logic are not appropriate here since
they depend on the program having a final state that can be verified to satisfy certain
properties. Temporal logics on the other hand have a notion of (infinite) time and may
express properties of a program along a time line, without the need for that program to
terminate. E.g., formulas may express that from each state a program should be able to
reach its initial state: AGEFinitial .

Two well-known temporal logics are linear temporal logic (LTL) [7,20] and compu-
tation tree logic (CTL) [7,9,4], which basically differ in their interpretation of time: the
former assumes that time is linear, i.e. for every state of the program there is only one
successor state, while time is branching for the latter, i.e. every state may have different
successor states, corresponding to nondeterministic choices for the program.

Another knowledge representation framework is answer set programming (ASP)
[11,3], a logic programming paradigm with a stable model semantics for negation as
failure. A logic program corresponds to knowledge one wishes to represent, or, more
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specifically, to an encoding of a particular problem, e.g. a planning problem [17,6]; the
answer sets of the program then provide its intentional knowledge, or the solutions of
the encoded problem, e.g. a plan for a planning problem.

Under the open answer set, there are some programs that do not have any solutions.
There are cases, however, where it is not a feasible strategy to have no answer sets at
all, e.g. in large modular programs where different modules are contributed by different
parties, there could be only 2 modules that contradict each other, although a majority
does not. One would then still like to deduce knowledge that is not related to this contra-
diction (if one module says a and another one says ¬a, but both say b, it is reasonable to
keep b as a conclusion, while being unsure about a or ¬a – the normal answer set seman-
tics, however, would yield no answers at all). The extended answer set semantics [24]
solves this by defeating rules with competing rules, and thus extracts as much knowl-
edge from the program as possible, while providing alternatives for conflicting rules.

We relate the temporal logic CTL to extended ASP by reducing satisfiability check-
ing of CTL formulas to satisfiability checking of predicates w.r.t. a logic program under
the extended answer set semantics. To the best of our knowledge, this is the first account
of a translation of CTL reasoning to answer set programming. The translation allows
for CTL reasoning through existing answer set solvers.

A related approach, i.e. reasoning with temporal logics through ASP, is taken in
[12], where bounded model checking of asynchronous concurrent systems is simulated
by computing (normal) answer sets of programs. These results are generalized in [13]
where bounded model checking for LTL is translated to ASP. Since LTL and CTL are
incomparable, i.e. there are LTL formulas for which no equivalent CTL formula exists,
and vice versa, the translation in [13] from LTL to ASP is not applicable to the CTL
case that we consider here. Another translation of LTL reasoning to ASP can be found
in [22,21] in the context of planning with, among others, temporal constraints or goals.

We take the application of ASP to temporal reasoning a step further by considering
ASP as a vehicle for the synthesis of synchronization skeletons of processes in concur-
rent programs, given a CTL specification. In the literature, synthesis from a temporal
logic specification is usually done by tableau-like algorithms, e.g. in [8,1] for a CTL
specification or in [18] for a LTL specification, or by a reduction to automata as in [16].
We argue that preferred ASP, i.e. ASP where there is a preference on the satisfaction of
rules as defined in [24], can make declaratively explicit some implicit decisions made
by those tableau algorithms, resulting in a more transparent synthesis method. More
specifically, we discuss how to obtain, using preferred ASP, concurrent programs that
are as concurrent as the temporal specification allows.

A preferred ASP approach to synthesis has the further advantage that an implemen-
tation is available: in order to illustrate the theoretical results, we use the OLPS solver
[19], available for download from http://tinf2.vub.ac.be/olp, to synthesize
the well-known mutual exclusion problem.

The remainder of the paper is organized as follows. In Section 2, we present the
extended and preferred answer set semantics. The simulation of CTL reasoning with
extended ASP, as well as its complexity, is discussed in Section 3. Before concluding
and giving directions for further research in Section 5, we present in Section 4 a syn-
thesis method from a CTL specification using preferred ASP.

http://tinf2.vub.ac.be/olp
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2 Preferred Answer Set Programming

We introduce the extended answer set semantics as in [24]. A term is a constant or a
variable, where the former will be written lower-case and the latter upper-case. An atom
is of the form p(t1, . . . , tn) where p is an n-ary predicate name and ti, 1 ≤ i ≤ n, are
terms. A literal is an atom a or a classically negated atom ¬a; an extended literal is a
literal l or a literal preceded with the negation as failure symbol not: not l. A program
is a finite set of rules α ← β where α is a set of literals with |α| ≤ 1, i.e. α is empty
or a singleton, and β is a finite set of extended literals. We usually denote a rule as
a ← β or ← β, and we call the latter a constraint. The positive part of the body
is β+ = {l | l ∈ β, l literal}, the negative part is β− = {l | not l ∈ β}, e.g. for
β = {a, not ¬b, not c}, we have that β+ = {a} and β− = {¬b, c}.

For compactness, we assume that the rule a({x1, . . . , xn}) ← is equivalent with
rules a(x1) ←, . . . , a(xn) ←. We may type arguments as in the rule p(a : t) ← which
stands for p(a) ← t(a).

A ground atom, (extended) literal, rule, or program does not contain variables. Sub-
stituting every variable in a program P with every possible constant in P yields the
ground program gr(P). All following definitions in this section assume ground pro-
grams and ground (extended) literals; to obtain the definitions for unground programs,
replace every occurrence of a program P by gr(P), e.g. an extended answer set of an
unground P is an extended answer set of gr(P).

The Herbrand Base BP of a program P is the set of all atoms that can be formed
using the language of P . For a set X of literals, we take ¬X = {¬l | l ∈ X} where
¬¬a is a; X is consistent if X ∩ ¬X = ∅. Let LP be the set of literals that can be
formed with P , i.e. LP = BP ∪ ¬BP . An interpretation I of P is any consistent subset
of LP . For a literal l, we write I |= l, if l ∈ I , which extends for extended literals
not l to I |= not l if I �|= l. In general, for a set of extended literals X , I |= X if
I |= x for every extended literal x ∈ X . A rule r : a ← β is satisfied w.r.t. I , denoted
I |= r, if I |= a whenever I |= β, i.e. r is applied whenever it is applicable. A con-
straint ← β is satisfied w.r.t. I if I �|= β. The set of satisfied rules in P w.r.t. I is the
reduct PI .

For a simple program P (i.e. a program without not), an interpretation I is a model
of P if I satisfies every rule in P , i.e. PI = P ; it is an answer set of P if it is a
minimal model of P , i.e. there is no model J of P such that J ⊂ I . For programs
P containing not, the GL-reduct w.r.t. an interpretation I is P I , where P I contains
α ← β+ for α ← β in P and β− ∩ I = ∅. I is an answer set of P if I is an answer
set of P I . A rule a ← β is defeated w.r.t. I if there is a competing rule ¬a ← γ that
is applied w.r.t. I , i.e. I |= {¬a} ∪ γ. An extended answer set I of a program P is
an answer set of PI such that all rules in P \PI are defeated. An n-ary predicate p is
satisfiable w.r.t. a program P iff there is an extended answer set M of P with some
p(x1, . . . , xn) ∈ M .

Example 1. The knowledge that one either likes karaoke or not (rules r1 and r2), that
the karaoke bar is on a boat (r3), that one is afraid of water (r4), unless there is a boat,
and that a boat is usually, but not necessarily, on the water (r5), can be represented by
the following program:
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r1 : karaoke ← not ¬karaoke r2 : ¬karaoke ← not karaoke
r3 : boat ← karaoke
r4 : ¬water ← r5 : water ← boat

We have the extended answer sets M1 = {karaoke, boat ,water}, M2 = {karaoke,
boat ,¬water}, M3 = {¬karaoke, ¬water}, with reducts PM1 = P \{r4}, PM2 =
P \{r5}, and PM3 = P . One sees that in M1 the rule r4 is defeated by r5.

Resolving conflicts by defeating rules leads to different alternative extended answer
sets, as in Example 1. Usually however, a user may have some particular preferences
on the satisfaction of the rules. As in [24], we impose a strict partial order1 < on the
rules in P , indicating these preferences, which results in an ordered logic program
(OLP) 〈P,<〉.This preferential ordering will induce an ordering � among the possi-
ble alternative extended answer sets as follows: for interpretations M and N of P , M
is “more preferred” than N , denoted M � N , if ∀r2 ∈ PN \PM · ∃r1 ∈ PM \PN ·
r1 < r2. Intuitively, for every rule that is satisfied by N and not by M , and which
thus appears to be a counterexample for M being better than N , there is a better
rule that is satisfied by M and not by N , i.e. M can counter the counterexample
of N . We have that M is “strictly better” than N , M � N , if M � N and not
N � M . An extended answer set is a preferred answer set of 〈P,<〉 if it is mini-
mal w.r.t. � among the extended answer sets. An n-ary predicate p is preferred sat-
isfiable iff there is a preferred answer set M of P with some p(x1, . . . , xn) ∈ M .

Example 2. Considering Example 1, the knowledge that one is afraid of water may
result in the preference relation, r4 < r5. We have then, using r4 < r5, that M2 � M1,
and M3 � M1 and M3 � M2 since M3 satisfies all rules, such that M3 is the preferred
answer set.

3 CTL Reasoning with Extended Answer Set Programming

Let AP be the finite set of available proposition symbols. Computation tree logic (CTL)
formulas are defined as follows:

– every proposition symbol P ∈ AP is a formula,
– if p and q are formulas, so are p ∧ q and ¬p,
– if p and q are formulas, then EXp, E(p U q), AXp, and A(p U q) are formulas.

The semantics of a CTL formula is given by (temporal) structures. A structure K is
a tuple (S,R,L) with S a countable set of states, R ⊆ S × S a total relation in S,
i.e. ∀s ∈ S · ∃t ∈ S · (s, t) ∈ R, and L : S → 2AP a function labeling states with
propositions. Intuitively, R indicates the permitted transitions between states and L
indicates which propositions are true at certain states.

A path π in K is an infinite sequence of states (s0, s1, . . .) such that (si−1, si) ∈ R
for each i > 0. For a path π = (s0, s1, . . .), we denote the element si with πi. For a
structure K = (S,R,L), a state s ∈ S, and a formula p, we inductively define when K
is a model of p at s, denoted K, s |= p:

1 A strict partial order on X is an anti-reflexive and transitive relation on X .
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– K, s |= P iff P ∈ L(s) for P ∈ AP ,
– K, s |= ¬p iff not K, s |= p.
– K, s |= p ∧ q iff K, s |= p and K, s |= q.
– K, s |= EXp iff there is a (s, t) ∈ R and K, t |= p,
– K, s |= AXp iff for all (s, t) ∈ R, K, t |= p,
– K, s |= E(p U q) iff there exists a path π in K with π0 = s and ∃k ≥ 0 · (K,πk |=

q ∧ ∀j < k · K,πj |= p),
– K, s |= A(p U q) iff for all paths π in K with π0 = s we have ∃k ≥ 0 · (K,πk |=

q ∧ ∀j < k · K,πj |= p).

K, s |= EXp (K, s |= AXp) can be read as “there is some neXt state where p holds” (“p
holds in all next states”), and K, s |= E(p U q) (K, s |= A(p U q)) as “there is some
path from s along which p holds Until q holds (and q eventually holds)” (“for all paths
from s, p holds until q holds (and q eventually holds)”).

Some common abbreviations for CTL formulas are EFp = E(true U p) (there is
some path on which p will eventually hold), AFp = A(true U p) (p will eventually
hold on all paths), EGp = ¬AF¬p (there is some path on which p holds globally), and
AGp = ¬EF¬p (p holds everywhere on all paths). Furthermore, we have the standard
propositional abbreviations p ∨ q = ¬(¬p ∧ ¬q), p ⇒ q = ¬p ∨ q, and p ⇔ q = (p ⇒
q) ∧ (q ⇒ p).

A structure K = (S,R,L) satisfies a CTL formula p if there is a state s ∈ S such
that K, s |= p; we also call K a model of p. A CTL formula p is satisfiable iff there is a
model of p.

Example 3. Consider the expression of absence of starvation t ⇒ AFc [4] for a process
in a mutual exclusion problem (more about mutual exclusion in Section 4). The formula
demands that if a process tries (t) to enter a critical region, it will eventually succeed in
doing so (c) for all possible future execution paths.

s2

t t c

s0 s1

Fig. 1. Example Structure t ⇒ AFc

We will usually represent structures by diagrams as in Figure 1, where states are
nodes, transitions between nodes define R, and the labels of the nodes contain the
propositions true at the corresponding states. The structure K defined by Figure 1 does
not satisfy t ⇒ AFc at s0 since on the path (s0, s0, . . .) c never holds. We have how-
ever, K, s1 |= t ⇒ AFc and K, s2 |= t ⇒ AFc, where the latter holds trivially since
t �∈ L(s2).

From a synthesis viewpoint, we are mainly interested in finite structures and thus in
n-satisfiability, where a CTL formula p is n-satisfiable iff there exists a model K =
(S,R,L) of p with |S| = n, n a non-negative integer. Note that for sufficiently large n,
satisfiability is equivalent to n-satisfiability.

Theorem 1 (Small Model Theorem for CTL [7]). Let p0 be a CTL formula. Then p0
is satisfiable iff p0 has a finite model of size ≤ exp(length(p0)).
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N -satisfiability of CTL formulas can be reduced to satisfiability of predicates w.r.t. pro-
grams under the extended answer set semantics. In order to keep the treatment simple,
we will assume that the only allowed temporal constructs are EG, EU, and EX. They
are actually adequate in the sense that other temporal constructs can be equivalently, i.e.
preserving satisfiability, rewritten using only those three [15]. Before giving the trans-
lation of a CTL formula to a program we define the closure of a formula, identifying its
subformulas. For a formula p, the closure of p is the minimal set clos(p) such that

– p ∈ clos(p),
– if ¬q ∈ clos(p), then q ∈ clos(p),
– if q ∧ r ∈ clos(p), then {q, r} ⊆ clos(p).
– if EGq ∈ clos(p), then q ∈ clos(p),
– if E(q U r) ∈ clos(p), then {q, r} ⊆ clos(p),
– if EXq ∈ clos(p), then q ∈ clos(p).

For a formula p and a non-negative n, we then construct a program consisting of two
parts: a generating part Gn and a defining part Dn

p . The program Gn creates n state
constants with rule (g1). The rules (g2) allow to introduce transitions between states
and the rules (g3) enable any proposition P ∈ AP to be true at a state or not:

state({s0 , . . . , sn−1}) ← (g1)

next(S : state,N : state) ← ¬next(S : state,N : state) ← (g2)

[P ](S : state) ← ¬[P ](S : state) ← (g3)

where [P ] is the predicate corresponding to the proposition P . Finally, in order to make
the resulting transition relation total, it imposes the restriction that every state should
have a successor: succ(S ) ← next(S ,N ) and ← state(S ),not succ(S ) (g4). The pro-
gram Dn

p introduces for every non-propositional CTL formula in clos(p) the following
rules (we write [q] for the predicate corresponding to the CTL formula q ∈ clos(p)):

[¬q ](S ) ← not [q ](S ) (d1)

[q ∧ r ](S ) ← [q ](S ), [r ](S ) (d2)

[EGq ](S ) ← [q ](S ),next(S ,N ), [EGq ]1 (N ) (d1
3)

[EGq ]1 (S ) ← [q ](S ),next(S ,N ), [EGq ]2 (N ) (d2
3)

...

[EGq ]n−1 (S ) ← [q ](S ),next(S ,N ), [q ](N ) (dn
3 )

[E(q U r)](S ) ← [r ](S ) (d4)

[E(q U r)](S ) ← [q ](S ),next(S ,N ), [E(q U r)](N ) (d5)

[EXq ](S ) ← next(S ,N ), [q ](N ) (d6)

The rules (d{1,2,6}) are direct translations of the CTL semantics. Rules (di
3) ensure there

is a finite path of at least n + 1 nodes along which q holds; there must be a duplicate si

on this path which can be used to expand the path into an infinite one.
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Rules (d4) and (d5) are in accordance with the characterization E(q U r) ≡ r ∨ (q ∧
EXE(q U r)) [7], and make implicit use of the minimality of answer sets to eventually
ensure realization of r.

Combining the two programs, we can reduce n-satisfiability checking for CTL for-
mulas to satisfiability of predicates.

Theorem 2. Let p be a CTL formula. p is n-satisfiable iff [p] is satisfiable w.r.t. Gn ∪
Dn

p .

We call satisfiability checking of a CTL formula using the reduction in Theorem 2, ASP
satisfiability checking.

Example 4. Consider the formula t ⇒ AFc from Example 3. We have that Gn is the
program

state({s0 , . . . , sn−1}) ←
next(S : state,N : state) ← ¬next(S : state,N : state) ←

[t ](S : state) ← ¬[t ](S : state) ←
[c](S : state) ← ¬[c](S : state) ←

succ(S ) ← next(S ,N )
← state(S ),not succ(S )

To obtain the defining part of the program, we first rewrite t ⇒ AFc such that it
contains only ¬,∧,EG,EU, and EX using the equivalences: t ⇒ AFc ≡ ¬t ∨ AFc ≡
¬t ∨ ¬EG¬c ≡ ¬(t ∧ EG¬c). The closure of this last formula is {¬(t ∧ EG¬c), t ∧
EG¬c, t,EG¬c,¬c, c} such that Dn

¬(t∧EG¬c) is the program

[¬(t ∧ EG¬c)](S ) ← not [t ∧ EG¬c](S )
[¬c](S ) ← not [c](S )

[t ∧ EG¬c](S ) ← [t ](S ), [EG¬c](S )
[EG¬c](S ) ← [¬c](S ),next(S ,N ), [EG¬c]1 (N )

[EG¬c]1 (S ) ← [¬c](S ),next(S ,N ), [EG¬c]2 (N )
...

[EG¬c]n−1 (S ) ← [¬c](S ),next(S ,N ), [¬c](N )

We then have that the CTL formula t ⇒ AFc is n-satisfiable iff the predicate [¬(t ∧
EG¬c)] is satisfiable w.r.t. Gn ∪ Dn

¬(t∧EG¬c).

Satisfiability checking of CTL formulas is in general EXPTIME-complete [7]. Using the
ASP-translation yields a NEXPTIME decision procedure.

Theorem 3. Let p be a CTL formula. ASP satisfiability checking of p is in NEXPTIME

w.r.t. the size of p.

Proof. We can reduce reasoning with extended answer sets to the normal answer set
semantics by replacing rules a ← β with a ← β,not ¬a . Intuitively, if the body is
true and the rule cannot be defeated, because the negated head is false, one must apply
the rule. Define E(Gn ∪ Dn

p ) as such a transformed program. From Theorem 4 in
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[24] we have that the extended answer sets of Gn ∪ Dn
p are exactly the answer sets of

E(Gn ∪ Dn
p ).

Thus [p] is satisfiable w.r.t. Gn ∪ Dn
p iff there exists an answer set of E(Gn ∪ Dn

p )
containing some [p](si) iff there exists an answer set of gr(E (Gn ∪ Dn

p )) containing
[p](si). By [3], the latter can be done by a nondeterministic Turing Machine in time
polynomial in the size of gr(E (Gn ∪ Dn

p )).
The size of E(Gn ∪ Dn

p ) is exponential w.r.t. the size of p. Indeed, the number of
constants n in E(Gn ∪ Dn

p ) may be exponential w.r.t. the size of p: by Theorem 1, one
may need to introduce an exponential number of states to have equivalence of satisfi-
ability and n-satisfiability. Not considering the rules (g1) that introduce the constants,
and taking |AP | constant, one can see that the size of E((Gn ∪Dn

p )\g1) is linear in the
size of p, as is the size of the closure of p.

Grounding does not yield extra complexity, i.e. the size of gr(E (Gn ∪ Dn
p )) is

polynomial in the size of E(Gn ∪ Dn
p )2, resulting in a decision procedure that is in

NEXPTIME w.r.t. the size of p. ��

Provided EXPTIME �= NEXPTIME, this result would be less optimal than theoretically
attainable for satisfiability checking of CTL formulas. As for Description Logics [2],
for which rather efficient solvers, such as FACT [14], exist despite the high theoretical
complexity, practical cases can be handled by answer set solvers such as DLV [10],
SMODELS [23], or OLPS [19]. Note that the translation in [13] of LTL model checking
to ASP is essentially in NEXPTIME as well, since only an exponential bound guarantees
that [13]’s bounded model checking coincides with model checking.

Another reasoning problem for CTL is the Branching-Time Model Checking Prob-
lem [7], which involves checking, given a finite structure K = (S,R,L), whether for
each state s ∈ S, K, s |= p; if this is the case we call K a branching-time model of
p3. As was the case for satisfiability checking, model checking can also be reduced to
computing extended answer sets of a program.

For a structure K = (S,R,L), let MK be the program

state({s0 , . . . , sn−1}) ← for S = {s0, . . . , sn−1} (m1)

next(si , sj ) ← for (si, sj) ∈ R (m2)

[P ](si) ← for P ∈ L(si) (m3)

i.e. MK adds the facts defining K.

Theorem 4. Let K = (S,R,L) be a finite structure and p a CTL formula. K is a
branching-time model of p iff MK ∪Dn

p ∪{ ← not [p](si) | si ∈ S} has an (extended)
answer set, for n = |S|.

The component { ← not [p](si) | si ∈ S} ensures that, for each state si ∈ S, [p](si) is
in every answer set, such that p is satisfied at each state.

2 In general [5], grounding a program may result in an exponential blow-up, however, E(Gn ∪
Dn

p ) is such that every rule contains at most 2 different variables and thus contributes to at
most n2 ground rules.

3 Not to confuse with a model of p, which satisfies only one state.
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Satisfiability checking of CTL formulas is EXPTIME-complete, but branching-time
model checking for CTL can be done in deterministic polynomial time [7]. Similarly,
branching-time model checking for CTL via ASP is one exponential level lower than
satisfiability checking via ASP, i.e. in NP.

4 Synthesis from a CTL Specification

We recall some definitions and terminology, see e.g. [8]. A concurrent program P =
P1 ‖ . . . ‖ Pk consists of k processes Pi, 1 ≤ i ≤ k, that run in parallel, where the
parallelism is, typically, simulated by a nondeterministic interleaving of atomic actions
of the processes. We represent processes as synchronization skeletons, thereby ignoring
any details that are irrelevant to the problem of synchronizing the processes. For exam-
ple, a process may have a state where it executes some critical code. In synchronization
problems, we are then not interested in the actual code that is being executed, but more
in the questions whether it is allowed, depending on the state of other processes, to enter
the critical section, whether the process is executing the critical section, or whether it is
not.

Formally, a synchronization skeleton is a finite state diagram consisting of uniquely
labeled states, transitions, and guarded commands on the transitions. A guarded com-
mand is of the form B → A, where the guard B is a predicate over states or shared
variables and A is the command to be executed. Usually, states are subscripted by the
index of the process that is in that particular state, e.g. c1 indicates that process 1 is in
the critical section. For example, the following skeleton

c1t1
¬c2 ∧ x = 1 → x := 2

may indicate that process 1 can enter the state c1 from state t1 if process 2 is currently
not in state c2 and x = 1 for the shared variable x; upon entering the state it executes
the command by setting x to 2.

The global computation of the concurrent program can then be seen as a flowgraph
system [8], where each state (s1, . . . , sk, x1, . . . , xm) encodes the states si its consti-
tuting processes are currently in, as well as the value xj of the m shared variables.
For a state (s1, . . . , si, . . . , sk, x1, . . . , xm), a possible next state in the computation
of the program is (s1, . . . , s

′
i, . . . , sk, x′

1, . . . , x
′
m) if the i-th process has a transition

si → s′i labeled by B → A such that B is true for (s1, . . . , si, . . . , sk, x1, . . . , xm) and
x′

1, . . . , x
′
m represent the values of the shared variables after executing A. Intuitively, a

computation step consists of nondeterministically selecting an enabled process (one for
which the guard B is true4), effectively simulating parallelism. A computation of the
program is an infinite path in this flowgraph system.

CTL is used to specify the behavior of the concurrent program, i.e. its flowgraph
system, as well as part of the behavior of the processes of the program. Synthesis is
the task, given a CTL specification, to construct the synchronization skeletons of the
processes, and in particular the guarded commands, such that the flowgraph system
constructed from these processes satisfies the specification.

4 We assume, as in [8], nonterminating processes such that there is always an enabled process.
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We can distinguish 3 phases in the synthesis method: (1) provide the CTL specifi-
cation, (2) generate a model if the specification is satisfiable, i.e. the flowgraph system,
and (3) define the synchronization skeletons from the flowgraph system. In the sequel,
we use (preferred) ASP for the second phase of the synthesis method, for more details
on the other phases, we refer the reader to, e.g., [8].

We extend the CTL semantics of Section 3 to better suit the concurrent program-
ming paradigm sketched above. As in [8], we define temporal structures as tuples
K = (S,R1, . . . , Rk, L) for programs consisting of k processes. The definition of
satisfaction for such a structure K is as before with R = R1 ∪ . . . ∪ Rk. We introduce
the temporal operator Xi, 1 ≤ i ≤ k, with K, s |= EXip iff there exists a (s, t) ∈ Ri

such that K, t |= p, while K, s |= AXip iff K, s |= ¬EXi¬p. Intuitively, K, s |= EXip if
there is a transition for process i to a state where p holds. The formula EXp is equivalent
with EX1p ∨ . . . ∨ EXkp.

Satisfiability checking of such CTL formulas can be reduced to ASP satisfiability
checking of predicates w.r.t. a program Gn

k ∪ Dn
p,k where Gn

k is the program Gn from
Section 3 with (g2) replaced by k sets of rules (gi

2), 1 ≤ i ≤ k,

nexti(S : state,N : state) ← ¬nexti(S : state,N : state) ← (gi
2)

and rules next(S ,N ) ← nexti(S ,N ) (g5) added.
The rules (gi

2) enable the introduction of transitions for individual processes; (g5)
defines the union R = R1 ∪ . . . ∪ Rk. The closure of a formula p is modified such that
if EXiq ∈ clos(p), then q ∈ clos(p), and if EXq ∈ clos(p), then {EX1q, . . . ,EXkq} ⊆
clos(p). We then obtain the defining part Dn

p,k by replacing (d6) with k rules (di
6)

[EXiq ](S ) ← nexti(S ,N ), [q ](N ) (di
6)

Theorem 5. Let p be a CTL formula. p is n-satisfiable iff [p] is satisfiable w.r.t. Gn
k ∪

Dn
p,k.

If a CTL formula p is n-satisfiable, we will use the term flowgraph system for both a
model of p and the corresponding answer set obtained with Theorem 5.

Example 5. Consider 2 synchronization skeletons P1 and P2, each modeling the 3
states it can assume: the process can be in the non-critical section of the code (ncsi ,
i ∈ {1, 2}), it can try to access a critical section of code (tryi ), and it can execute the
critical section of code (csi ).

In the mutual exclusion problem, one searches for the guarded commands of pro-
cesses P1 and P2 such that they cannot both execute the critical section of the code at
the same time. There are many CTL specifications around that model the behavior of
the concurrent program executing both processes in parallel, see e.g. [7,4,1,15,18]. We
repeat the specification of [8]:

1. Initially, both processes are in their non-critical section: ncs1 ∧ ncs2 .
2. Both processes cannot be in the critical section at the same time (mutual exclusion):

AG¬(cs1 ∧ cs2 ).
3. If a process tries to access its critical section it must always eventually succeed in

doing so (absence of starvation): AG(tryi ⇒ AFcsi) .
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4. Each process is always in exactly one section: AG(ncsi ∨ tryi ∨ csi), AG(ncsi ⇒
(¬tryi ∧ ¬csi)), AG(tryi ⇒ (¬ncsi ∧ ¬csi)), AG(csi ⇒ (¬ncsi ∧ ¬tryi)).

5. If a process is in the non-critical section, it will try to access the critical section
in the next step (and it will do nothing else): AG(ncsi ⇒ (AXitryi ∧ EXitryi)).
Note that EXitryi is necessary to ensure that there is a next state where tryi holds,
AXitryi alone would not be sufficient.

6. If a process is trying to access the critical section, then, if it does a move, it will do
so into the critical section: AG(tryi ⇒ AXicsi).

7. If a process is in the critical section, it will move to the non-critical section (and it
will do nothing else): AG(csi ⇒ (AXincsi ∧ EXincsi)).

8. If process Pj makes a move, process Pi will do nothing, i.e. they are asynchronous
processes: AG(ncsi ⇒ AXjncsi), AG(tryi ⇒ AXjtryi), AG(csi ⇒ AXjcsi).

9. Some process can always move, i.e. the program is nonterminating: AGEXtrue.

Let p be the conjunction of the above CTL formulas, rewritten such that it only contains
the temporal operators EXi,EU, and EG. The program G9

2 ∪ D9
p,2, i.e. with 9 states

and 2 processes, has then, among others, the two answer sets, or flowgraph systems,
in Figure 2 and Figure 3. We listed only propositions in the states, but s4 and s5 are
different, since they satisfy different temporal formulas.

Figure 2 is the flowgraph system (call it Mg) usually found in literature as a solution to
the mutual exclusion problem, but the structure Mb in Figure 3 also satisfies the mutual
exclusion specification. Mb only differs from Mg in the missing of transitions (s1, s3)

s3

ncs1 ncs2
s0

ncs1 try2

s1

try1 ncs2
s2

ncs1 cs2 try1 try2

s4

try1 cs2
s7

try1 try2

s5

cs1 ncs2
s6

cs1 try2

s8

Fig. 2. Maximally Parallel Flowgraph System for Mutual Exclusion

s3

ncs1 ncs2
s0

ncs1 try2

s1

try1 ncs2
s2

ncs1 cs2 try1 try2

s4

try1 cs2
s7

try1 try2

s5

cs1 ncs2
s6

cs1 try2

s8

Fig. 3. Flowgraph System for Mutual Exclusion
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and (s2, s6). It is then natural to wonder why Mg is preferred over Mb as a flowgraph
system for the mutual exclusion problem.

The answer is fairly simple. Observing model Mb, one sees that when the system is
in the state s1 its only option is to execute a transition of P1. This in contrast with Mg

where the system can choose between P1 and P2. Thus Mg is more nondeterministic,
and, by our model of concurrency, allows for more parallelization. That Mb is less
parallelized has as a side-effect that P2 can only enter the critical section if P1 also tries
to enter its critical section, thus, if P1 decides to do nothing, P2 is blocked as well. The
same scenario cannot occur in Mg since P2 can go, independently from P1, from trying
to enter to actually entering the critical section.

This drive for more parallelization is implicit in most CTL synthesis methods. E.g.,
when constructing a model from a tableau, rule [2.2] in [8] says

Choose C ′ to be some Cj ∈ Blocks(Di) such that FRAG [Ci] is of minimal
size. (Choose one with a maximal number of successors among those Cj with
fragments of minimal size, and break ties by choosing the one with lowest index
in a predefined ordering.)

Without going into detail, FRAG [Ci] is a part of the tableau that fulfills eventuali-
ties appearing in a node Ci. The relevant part of rule [2.2] for parallelization, as [8]
indicates, is choosing nodes of maximal outdegree, since this increases the degree of
nondeterministic choice in the model. Instead of leaving this for the model constructing
algorithm to take care of, we make this maximal parallelization property declaratively
explicit.

Definition 1 (Maximal Parallelization Property). Let p be a CTL formula. A model
M1 = (S,R1, . . . , Rk, L) of p is more parallel than a model M2 = (S, T1, . . . , Tk, L)
of p, denoted M1 � M2, if ∀1 ≤ i ≤ k · Ti ⊆ Ri. As usual, we have M1 ≺ M2 if
M1 � M2 and not M2 � M1.

A model M1 = (S,R1, . . . , Rk, L) of p is maximally parallel if it is minimal
w.r.t. ≺. A CTL formula p is maximally (n-)satisfiable iff p is (n-)satisfiable by a maxi-
mally parallel model.

It is clear that � is a partial order with ≺ its strict version. Intuitively, a model M1 is
more parallel than M2 if they have the same states with the same labeling of the states,
but, for each process, the set of transitions of M2 is a subset of the set of transitions
of M1.

Example 6. We have that Mb is indeed not maximally parallel since Mg ≺ Mb. Model
Mg on the other hand is maximally parallel. Every state in a model of the CTL spec-
ification for mutual exclusion has a maximum of 2 outgoing transitions: process Pi,
i ∈ {1, 2}, in a given state has only one possibility, i.e. from ncsi to tryi , from tryi
to csi , and from csi to ncsi . Thus the only candidates in Mg for the inclusion of more
transitions are s4, s7, s5, and s8.

For s4 the only possible addition is a transition to s8. However, this violates the
absence of starvation property, since we then have an infinite path (s1, s4, s8, s1, . . .)
without getting into the critical section for process 2. The transitions going out of s7
can only be extended by a transition to a state [cs1 cs2 ], violating the mutual exclusion
problem. s5 and s8 can be treated similarly.
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If a CTL formula is satisfiable, it is always maximally satisfiable.

Theorem 6. Let p be a CTL formula. p is maximally satisfiable iff p is satisfiable.

As was the case for normal satisfiability, maximal satisfiability is essentially equivalent
to maximal n-satisfiability. The proof is similar to the proof from Theorem 6.

Theorem 7. Let p be a CTL formula. p is maximally satisfiable iff p is maximally n-
satisfiable for an n exponential in the size of p.

Preferred ASP is well-suited for the expression of such a maximal parallelization prop-
erty. To obtain maximally parallel models, we define the order < on Gn

k ∪ Dn
p,k such

that nexti(S : state,N : state) < ¬nextj(S : state,N : state) for 1 ≤ i, j ≤ k.
Intuitively, the program 〈Gn

k ∪ Dn
p,k, <〉 attempts to introduce as many transitions as

possible with the most preferred nexti(S : state,N : state) ← . It only allows defeat
of such preferred rules with the less preferred ¬nexti(S : state,N : state) ← if the
CTL formula would otherwise be unsatisfiable. Theorem 7 ensures that we can restrict
ourselves to maximal n-satisfiability.

Theorem 8. Let p be a CTL formula. p is maximally n-satisfiable iff p is preferred
satisfiable w.r.t. 〈Gn

k ∪ Dn
p,k, <〉.

Example 7. For the ordered program 〈G9
2 ∪ D9

p,2, <〉 with G9
2 ∪ D9

p,2 as in Example 5
and < defined as in Theorem 8, we obtain the preferred answer set Mg from Figure 2.

For completeness, we briefly describe how [8] obtains synchronization skeletons from
the flowgraph system. One first introduces shared variables for every set of propositions
that appears more than once as a label of a state, and then one gives a different value to
shared variables that represent different states (with the same label), e.g. the label of s4
in Mg from Example 5 is updated with TURN = 1 and s5 with TURN = 2 .

Looking at the flowgraph system in Figure 2, one sees that the state transitions for
P1 are ncs1 → try1 → cs1 → ncs1 → . . . The guards for those transitions are de-
duced from the flowgraph system: P1 goes from try1 to cs1 in the flowgraph system for
global transitions [try1 ncs2 ] → [cs1 ncs2 ] or [try1 try2 TURN = 1] → [cs1 try2 ],
resulting in a guard ncs2 ∨ (try2 ∧ TURN = 1) for the transition try1 → cs1 in the
synchronization skeleton for P1 (with empty command). The complete synchronization
skeleton for P1 is shown in Figure 4.

try1

try2 → TURN := 2 ncs2 ∨ (try2 ∧ TURN = 1) →

ncs2 ∨ cs2 →
ncs2 ∨ try2 →

cs1ncs1

Fig. 4. Synchronization Skeleton for Process P1
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5 Conclusions and Directions for Further Research

We reduced CTL reasoning to extended ASP, investigated the complexity, and indi-
cated where and how preferred ASP can be a useful aid in the synthesis of concurrent
programs from a CTL specification.

Noting that both LTL [13] and CTL can be caught within an ASP framework, it
is interesting to investigate whether reasoning with the more general temporal logic
CTL∗ can be reduced to ASP. Another promising application of preferred ASP lies in
the debugging of a proposed synthesis for a specification: one can minimally repair the
synthesis by defeating faulty state transitions.
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