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Abstract

It is well-known that Description Logics (DLs) that admit efficient decision procedures are unable to rep-
resent structured objects, i.e., objects whose parts are inter-connected in arbitrary instead of tree-like ways.
A common solution to this problem is to extend a DL with a rule-based formalism. This either results
in undecidability or requires restrictions on the shape of the rules, which typically prevent the rules from
representing the required structures. In this paper, we consider an approach for modeling graph-structured
objects using answer set programming. While in its full generality, reasoning with this representation is
also undecidable, we consider a restriction which allows the representation of graph structured objects and
yet the reasoning is decidable. We illustrate how this representation has been useful in exporting a biology
knowledge base developed as part of Project Halo.

1 Introduction

As part of Project Halo (See http://www.projecthalo.com), our team at SRI has en-
coded a significant portion of an introductory college textbook (Reece et al. 2011) into a knowl-
edge base called KB Bio 101. The encoding work was done using a knowledge authoring sys-
tem called AURA (Gunning et al. 2010) which uses Knowledge Machine (KM) as a knowledge
representation and reasoning system (Clark and Porter 2011). Since KB Bio 101 can be a useful
resource for research on reasoning algorithms, we are interested in making it available in a way
that the knowledge representation and reasoning used in it is clearly understood. In the process of
developing a translation, we discovered that KB Bio 101 cannot be directly expressed in com-
monly available decidable description Logics (DL) because they disallow the representation of
graph-structured objects. Logic programming offers sufficient expressiveness to model the graph
structures but lacks direct support for conceptual modeling primitives used in KB Bio 101.
Motivated by this problem, we consider an object-oriented language called OOKB which is an
extension of answer set programming (ASP) that is capable of representing KB Bio 101, and
provides direct support for DL-style conceptual modeling primitives as well as graph structures.
To give an insight into the reasoning challenges posed by OOKB, we analyze its computational
properties and note that reasoning with it in full generality is undecidable. We consider syntac-
tic restrictions under which reasoning with this representation becomes decidable. The repre-
sentation features of OOKB and the syntactic restrictions considered by us are different from



2 V. Chaudhri et al.

the closely related prior work on Datalog± (Calı̀ et al. 2009), FDNC (Eiter and Simkus 2010)
programs and ASP f s (Alviano et al. 2010), and none of these prior languages is adequate for
capturing KB Bio 101. More specifically, reasoning in OOKB requires rules that violate the
guardedness condition of in Datalog± (see (29) and (31)—(32) in Section 4.2); and the syntac-
tical restriction imposed in FDNC programs and finitely ground ASP f s programs disallows the
representation of graph-like structure that is needed in OOKB (see the next section).

2 Motivating Example

Suppose we wish to represent the statement: “Every cell has a part a chromosome and a
ribosome.” Given a class Living-Entity, we can represent this knowledge in a DL by:

Cell v Living-Entity u (∃has-part.Ribosome)u (∃has-part.Chromosome) (1)

Next, let us consider the following statement:
“Every Eukaryotic Cell is a Cell and has part a Nucleus and a Eukaryotic Chromosome

such that the Eukaryotic Chromosome is inside the Nucleus. ”.
We can capture this statement only partially using DL. Specifically, we can state:

Eukaryotic-Cell vCellu (∃has-part.Nucleus)u
∃(has-part.Eukaryotic-Chromosomeu (∃is-inside−1.Nucleus))

(2)

The above description fails to represent that the eukaryotic chromosome is inside the same Nu-
cleus that is the part of the Eukaryotic Cell. Indeed, expressing such knowledge would require
violating the desirable tree model property (in general, the tree model property is a good indica-
tor of decidability (Vardi 1996)). Furthermore, Eukaryotic-Cell inherits a Chromosome from
its superclass Cell which is then specialized to Eukaryotic-Chromosome. The above repre-
sentation does not make the relationship between the inherited Chromosome and the
Eukaryotic-Chromosome defined as part of (2) explicit. Representing graph structures, and
stating such relationships across a class hierarchy is crucial for giving precise answers to ques-
tions such as: What is the structure of a Eukaryotic Cell? What are the differences be-
tween a Ribosome and a Chromosome? What is the relationship between a Chromosome and
a Nucleus? Such questions have been found extremely useful in the context of an education
application called Inquire (Overholtzer et al. 2012).

3 Logic Programming and Answer Sets

A logic program Π is a set of rules of the form

c← a1, . . . ,am,not am+1, . . . ,not an (3)

where 0≤m≤n, each ai is a literal of a first order language and not a j, m< j≤n, is called a nega-
tion as failure literal (or naf-literal). A rule (program) is non-ground if it contains some variable;
otherwise, it is a ground rule (program).

The Herbrand universe of a program Π is the set UΠ of terms constructable from constants
and function symbols in Π. The Herbrand base of Π, BΠ, is the set of ground atoms con-
structable using the predicate symbols in Π and the terms in UΠ. A substitution δ is given by a
set {X1/t1, . . . ,Xs/ts} where Xi’s are distinctive variables and ti’s are terms. δ is a ground substi-
tution if ti ∈ UΠ for every i. For a literal l, l[δ ] is the literal obtained from l by simultaneously
replacing every occurrence of Xi by ti for every i.
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The semantics of a program is defined over ground programs. For a ground rule r of the form
(3), let pos(r)={a1, . . . ,am} and neg(r)={am+1, . . . ,an}. A set of ground literals X is consistent
if there exists no atom a s.t. {a,¬a}⊆X . A ground rule r of the form (3) is satisfied by X if (i)
neg(r)∩X 6= /0; (ii) pos(r)\X 6= /0; or (iii) c ∈ X .

Let Π be a ground program. For a consistent set of ground literals S, the reduct of Π w.r.t. S,
denoted by ΠS, is the program obtained from the set of all rules of Π by deleting (i) each rule that
has a naf-literal not a in its body with a ∈ S, and (ii) all naf-literals in the bodies of the remaining
rules. S is an answer set (or a stable model) of Π (Gelfond and Lifschitz 1990) if it satisfies the
following conditions: (i) If Π does not contain any naf-literal then S is a minimal set of ground
literals satisfying all rules in Π; and (ii) If Π contains some naf-literal then S is an answer set of
ΠS.

For a non-ground program Π, a set of literals in BΠ is an answer set of Π if it is an answer
set of ground(Π) that is the set of all possible ground rules obtained from instantiating variables
with terms in UΠ. Π is consistent if SM(Π) 6= /0 where SM(Π) denotes the set of answer sets of
Π. Π entails a ground atom a (Π |= a) if ∀S ∈ SM(Π).[a ∈ S].

For convenience in notation, we will make use of choice atoms that are allowed to occur in
a rule wherever a literal can. A choice atom is of the form l S u where S is a set of literals and
l ≤ u are non-negative integers; l S u is true in a set of literals X if l ≤ |S∩X | ≤ u. When l = 0
or u = ∞, they will be omitted. The set S in a choice atom l S u can occur in various forms (see,
e.g., (Simons et al. 2002)); e.g., it can be explicitly listed as {l1, . . . , ln} where li’s are literals; or
written in the form {p : q} where p, q are atoms. Given a set of ground literal X , {p : q}∩X is
the set of atoms {p[δ ] | there exists a ground instantiation δ such that q[δ ] ∈ X}. Answer sets of
logic programs can be computed using answer set solvers (e.g., CLASP (Gebser et al. 2007), dlv
(Citrigno et al. 1997)).

4 Object-Oriented Knowledge Bases in ASP

We now employ the basic framework of ASP to support representation of an object-oriented
knowledge base (or OOKB). As stated earlier, a driving motivation for this work was the need to
export KB Bio 101 that was originally developed using Knowledge Machine (KM) (Clark and
Porter 2011). The choice of terminology used in our work is influenced by the Open Knowledge
Base Connectivity knowledge model (Chaudhri et al. 1998) as it had incorporated the central
features of a large family of object-oriented frame-based knowledge representation systems. We
will also relate the modeling primitives introduced here to their counterparts in the DL systems,
but we do not make any claims about supporting the equivalent semantics.

4.1 Object-Oriented Domain

In this section, we define the vocabulary and axiom schemas necessary to define the knowledge
about a domain. We consider five broad classes of knowledge: taxonomic, descriptive rules,
cardinality constraints, sufficient conditions and equality statements.

4.1.1 Taxonomic Knowledge

Classes, relation declarations, and relationship between classes are specified using statements
of the types (4)—(14). (4), (5), and (9) declare a class, an individual, and a relation, respec-
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tively, (e.g., class(cell) says that cell represents the class of cells). (6) states that c is a sub-
class of c′ (e.g., subclass o f (e cell,cell) states that the class of Eukaryotic Cells (e cell)
is a subclass of the class of cells). (7) states that the two classes c and c′ are disjoint, e.g.,
dis joint(x chromosome,y chromosome) states that the class x chromosome is disjoint from the
class y chromosome. (8) says that i is an individual instance of the class c.

class(c) (4)

individual(o) (5)

subclass o f (c,c′) (6)

dis joint(c,c′) (7)

instance o f (i,c) (8)

relation(s) (9)

range(s,r) (10)

domain(s,d) (11)

subrelation o f (s1,s2) (12)

compose(s1,s2,s3) (13)

inverse(s1,s2) (14)

The domain and range of a relation are specified by (10) and (11). For example, a binary rela-
tion has part whose domain and range are tangible entity is represented by three atoms
relation(has part), domain(has part, tangible entity), and range(has part, tangible entity).
(12)–(14) define the relationships between the relations of the domain. (12) states that s1 is a
sub-relation of s2. (13) represents a transfer through relation, i.e., the composition of s1 and
s2, s1 ◦ s2, is identical to s3. (14) indicates that s1 is the inverse relation of s2. An example of a
sub-relation in the biology domain is subrelation o f (has f unctional part,has part): whenever
has f unctional part(XY ) holds, has part(X ,Y ) also holds. compose(encloses,has part,encloses)
is an example of (13): If X encloses Y and Y has Z as its part then X also encloses Z.

4.1.2 Descriptive Rules

To represent relations between individuals, we introduce atoms of the form value(r,x,y) where
r is a relation and x and y are terms referring to individuals. We will require that the class mem-
bership of x and y be specified if value(r,x,y) is specified, e.g., to represent motivating example,
we write:

2{instance o f ( f1(X),chromosome),value(has part,X , f1(X))}2 ← instance o f (X ,cell). (15)

← subclass o f (e cell,cell). (16)

← subclass o f (e chromo,chromosome). (17)

2{value(has part,X , f2(X)), instance o f ( f2(X),nucleus)}2 ← instance o f (X ,e cell). (18)

2{value(has part,X , f3(X)), instance o f ( f3(X),e chromo)}2 ← instance o f (X ,e cell). (19)

3{value(inside, f3(X), f2(X)), instance o f ( f3(X),e chromo), ← instance o f (X ,e cell). (20)

instance o f ( f2(X),nucleus)}3

Rule (15) states that for each individual X in the class cell, there exists f1(X) (an individual) in
the class chromosome that is a part of X . The rule (20) states that for each X in the class e cell,
there exists f3(X) that is an instance of the class e chromo that is inside f2(X) that is an instance
of the class nucleus. With these rules, we are able to model the graph-structured relationship
between e chromo, nucleus and cell.
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This leads us to define descriptive statements of the form

3{value(s, f (X),g(X)), instance o f ( f (X),c f ), instance o f (g(X),cg)}3← instance o f (X ,c) (21)

where f and g are unary functions, called Skolem functions, such that f 6= g and c is a class. f
and g can be id, the identity function. If f (or g) is id, then we require that c f = c (or cg = c) and
we will remove the corresponding atom instance o f ( f (X),c f ) and replace 3 by 2 in the head of
the rule. We call value(s, f (X),g(X)) a relation value literal of c and instance o f ( f (X),c f ) (or
instance o f (g(X),cg)) an instance-of literal of c.

A descriptive statement of the form (21) describes relation values of individuals belonging
to class c, represented by the atom value(s, f (X),g(X)): for each individual X in c, f (X) (an
instance of class c f ) is related to g(X) (an instance of class cg) by the relation s.

4.1.3 Cardinality Constraints on Relations

Cardinality constraints on relations are specified by statements of the following form:

constraint(t, f (X),s,d,n)← instance o f (X ,c) (22)

where s is a relation, n is a non-negative integer, d and c are classes, and t can either be min, max,
or exact. This constraint states that for each instance X of the class c, the set of values of relation
s restricted on f (X) has minimal (resp. maximal, exactly) n values belonging to the class d. We
require that f (X) must occur in a relation value literal value(s, f (X),g(X)) of c. For example, to
state that each human cell has exactly 46 chromosomes, we write

constraint(exact,X ,has part,chromosome,46)← instance o f (X ,human cell). (23)

The head of (22) is called a constraint-literal of class c.
Observe that by setting t = exact, n = 1, d =Thing, where Thing is the root of the class hier-

archy, a constraint of the form (22) expresses that the relation s is single-valued for all instances
in the KB. When d =Thing, the constraint represents a pure number constraint. When d is some
subclass of Thing, it represents a qualified number constraint.

4.1.4 Sufficient Conditions

A sufficient condition of a class c defines sufficient conditions for membership of that class based
on the relation values and constraints applicable to an instance:

instance o f (X ,c)← Body(~X) (24)

where Body(~X) is a conjunction of relation value literals, instance-of literals, and constraint-
literals of c, and X is a variable occurring in the body of the rule; e.g., to encode “if a cell has
a part nucleus, it is a eukaryotic cell”, we use:

instance o f (X ,e cell) ← instance o f (X1,nucleus),
relation value(has part,X ,X1), instance o f (X ,cell).

(25)

4.1.5 (In)Equality Between Individual Terms

A limitation of rules (19) and (20) is that they fail to capture that f1(X) introduced as part of
the definition of cell has been specialized to e chromo as part of the rules about e cell.
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Since a cell has more than one chromosome, this equality cannot be inferred by simply adding
cardinality constraints. To support such representation an OOKB allows a user to express equality
between terms using the following rule:

eq( f1(X), f3(X))← instance o f (X ,e cell). (26)

which says that for each individual e in the class eukaryotic cell, the two terms f1(e) and
f3(e) refer to the same individual. Stating such equality relationship provides a powerful mod-
eling tool in OOKBs especially in situations where a class may inherit Skolem functions from
multiple superclasses which need to refer to the same individual.

Sometimes, it is convenient also to indicate that two terms might not be equivalent. In general,
an OOKB domain can contain statements for the specification of (in)equality between terms of
the following form:

eq(t1, t2) ← instance o f (X ,c) (27)

neq(t1, t2) ← instance o f (X ,c) (28)

where c is a class, t1 and t2 are terms constructable from Skolem functions and the variable X .

4.1.6 Defining an OOKB Domain

Definition 1
An OO-domain D is a collection of rules of the form (4)–(14), (21)–(22), (24), (27), and (28).

Observe that rules of the form (7), (12), (13), (14), (21), (22), and (24) correspond to the follow-
ing features in DL systems: disjointness (denoted by J), relation hierarchy (H), relation compo-
sition ((◦)), inverse roles (I), existential statements (E), qualified number restrictions (Q), and
sufficient properties (P), respectively. We refer to (10) and (11) as type constraints and denote
them by C. A rule of type E is more general than an existential statement in a DL since it allows
for the specification of non-tree structured objects.

OO-domains can be characterized by their type of rules, similar to the conventional character-
ization of DLs in (Schmidt-Schauß and Smolka 1991). For this purpose, we associate with each
domain a label of the form Tw where w is a string over the alphabet {H, I,E,Q,P,C,J,(◦)}. The
basic part of an OO-domain is denoted with T and consists of rules of the form (4)—(6), (8) and
(9). If the domain’s label contains a letter in {H, I,E,Q,P,C,J,(◦)} then it contains rules of the
corresponding form, e.g., the label HIEP says that the domain contains rules for relation hierar-
chy, inverses, descriptive statements and sufficient conditions; etc. By a Tw-domain, we mean an
OO-domain with label Tw.

4.2 Domain Independent Axioms

In this section, we will give axioms that define the meaning of various relationships that were
introduced in previous section. The rules considered here can be viewed as background axioms
that a reasoner would use for deriving conclusions for an OOKB domain.

4.2.1 Taxonomic Axioms

Rules (29)–(32) state transitivity of subclass relationship, inheritance of class membership, com-
mutativity and meaning of disjointness, thus allowing for reasoning about membership of indi-
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viduals with respect to a class and reasoning about relationship between classes.

subclass o f (C,B) ← subclass o f (C,A),subclass o f (A,B). (29)

instance o f (X ,C) ← instance o f (X ,D),subclass o f (D,C). (30)

dis joint(C,D) ← dis joint(D,C). (31)

¬instance o f (X ,C) ← instance o f (X ,D),dis joint(D,C). (32)

4.2.2 Axioms for Reasoning with Relations

Rule (33) specifies the composition of two relationships. (34) and (35) specify the meaning of
subrelations and inverse relations.

value(U,X ,Z) ← compose(S,T,U),value(S,X ,Y ),value(T,Y,Z). (33)

value(T,X ,Y ) ← subrelation o f (S,T ),value(S,X ,Y ). (34)

value(T,Y,X) ← inverse(S,T ),value(S,X ,Y ). (35)

4.2.3 Axioms for (In)Equality Reasoning

Rules (29)–(35) allow for inheritance reasoning about class membership and relation values of
an individual. In presence of rules of the form (27)-(28), a relation value can occur in different
forms which represent the same relation value. For instance, given that eq( f1(x), f2(x)) holds
and that both value(has part,x, f1(x)) and value(has part,x, f2(x)) hold, then the latter two
atoms would be considered as identical. This is for example relevant when checking cardinality
constraints: even though syntactically those values f1(x) and f2(x) are different, a cardinality
constraint indicating that x should have strictly less than 2 parts, should still be satisfied. Thus,
instead of dealing directly with value atoms when checking cardinality constraints we define a
new valuee atom which represents the set {value(s,x′,y′) | eq(x′,x) and eq(y′,y) hold}.

To support this computation, we define a predicate substitute(x,y) between terms occurring
in the descriptive rules of an OO-domain that indicates that x and y are identical and x could be
substituted by y. The rules for propagating the equality relation and substitute and valuee are:

eq(X ,Y ) ← eq(Y,X) (36)

eq(X ,Z) ← eq(X ,Y ),eq(Y,Z),X 6= Z (37)

← eq(X ,Y ),neq(X ,Y ) (38)

{substitute(X ,Y )} ← eq(X ,Y ). (39)

← eq(X ,Y ),{substitute(X ,Z) : eq(X ,Z)}0,
{substitute(Y,Z) : eq(Y,Z)}0. (40)

← substitute(X ,Y ),substitute(X ,Z),X 6= Y,X 6= Z,Y 6= Z. (41)

← substitute(X ,Y ),X 6= Y,neq(X ,Y ). (42)

substitute(Y,Z) ← substitute(X ,Z),X 6= Z,eq(X ,Y ). (43)

is substituted(X) ← substitute(X ,Y ),X 6= Y. (44)
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substitute(X ,X) ← term(X),not is substituted(X). (45)

term(X) ← value(S,X ,Y ). (46)

term(Y ) ← value(S,X ,Y ). (47)

valuee(S,X1,Y1) ← value(S,X ,Y ),substitute(X ,X1),substitute(Y,Y1). (48)

The first three rules express the transitivity and reflexivity of the equality between terms and that
two terms cannot be specified as equal and not equal.

Rule (39) introduces a substitution for X given an eq statement involving X (this can be seen
as a traditional guess step). Rules (40) ensures that that for an equality eq(X ,Y ) there has to be at
least some substitution picked for both X and Y . Rule (41) ensures that we always have at most
1 substitution and rule (43) ensures that a picked substitution does not violate any neq statement.
We further guarantee that something is appropriately substituted by itself (rules (44)-(47)) in
order to guarantee that all terms have a substitution. Rule (48) defines the predicate valuee that
encodes a set of relation values that are identical under the (in)equality specification. Observe
that if the domain does not contain any specification of the form (27) then valuee(s,x,y) holds
iff value(s,x,y) holds.

4.2.4 Axioms for Enforcing Constraints

To enforce the constraints (10)–(11) and (22), ΠR contains:

← value(S,X ,Y ),domain(S,C),not instance o f (X ,C). (49)

← value(S,X ,Y ),range(S,C),not instance o f (Y,C). (50)

← constraint(min,Y,S,D,M),{valuee(S,Y,Z) : instance o f (Z,D)}M−1. (51)

The first two rules make sure that domain and range of a relation are not violated. We note
that our use of the domain and range specification is different from their conventional use in a
DL (e.g., (Baader et al. 2008)) in that we do not use them for inferring the class membership
of individuals. For example, suppose the domain of the relation age is Living-Entity, and
that value(age, table-25,antique) holds but instance o f (table-25,Living-Entity) does not, the
constraint on the domain of the relation age is violated. This behavior is different from some DL
systems which would conclude table-25 to be an instance of Living-Entity.

The rule (51) enforces the minimal cardinality constraint on a set of values of a relation.
Similar rules to enforce other constraints are omitted to save space. Notice that we use valuee in
this axiom instead of value because any value atoms that are related by eq need to be counted
only once. Just like the domain and range constraints, we treat cardinality constraints ((22) and
(51)) different from number restrictions in DLs. For example, the following OOKB constraint

constraint(max,X ,has part,chromosome,46)← instance of (X ,human cell) (52)

means that if there would more than 46 chromosomes that are part of a human cell, there
would not be an answer set (or, the KB would be inconsistent). In a DL system, in the presence
of an analogous constraint, if the system encounters more than 46 chromosome parts of a human
cell, it would infer that some subset of those must be equal leading to explosive case analy-
sis. A discussion of these two different approaches to dealing with constraints can be found in
(de Bruijn et al. 2005).



OOKBs in Logic Programming 9

4.2.5 Defining a General OOKB

Definition 2 (General OOKB)
A general OOKB over a finite OO-domain D is a logic program KB(D,De) = D∪ΠR∪De where
(i) ΠR is the set of rules (29)–(35) and (36)–(51), and (ii) De is a set of ASP rules.

An OOKB KB(D,De) is called a taxonomical knowledge base (or TKB) if De = /0. We write
T KB(D) to denote D∪ΠR. We further classify TKBs by the type of its OO-domain, e.g., if D is
a T HIEQ-domain, we say that T KB(D) is a T HIEQP knowledge base respectively. We say that
D is consistent if T KB(D) is consistent.

4.3 Decidability of Reasoning

We consider decidability of the following traditional computational tasks in the context of OOKB:
(C1) Consistency: given an OOKB KB(D,De), determine whether or not KB(D,De) has an

answer set.
(C2) Concept satisfiability: given an OOKB KB(D,De) and an instance i of a class c, determine

whether or not KB(D,De)∪{instance o f (i,c)} has an answer set.
(E) (Ground) Entailment: given an OOKB KB(D,De) and a ground atom a, determine whether

or not KB(D,De) |= a holds.
(QA) Query answering: given an OOKB KB(D,De) and an atom q, determine all ground sub-

stitutions δ = {X1/a1, . . . ,Xn/an}, where {X1, . . . ,Xn} is the set of distinct variables oc-
curring in q, s.t. KB(D,De) |= q[δ ].

We start off with some background on logic programming decidability results. It is well-known
that deciding whether a logic program has an answer set is Σ1

1-complete for the general first order
case (Marek et al. 1992; Schlipf 1995) and entailment is undecidable (Dantsin et al. 2001): we
have that (C1) and (C2) are Σ1

1-complete and (E) is undecidable. In ASP, reasoning involves a
grounding step, followed by calculating the answer sets. Therefore, the (QA) task is not treated
explicitly in the existing ASP literature.

We next identify classes of OOKBs that yield better complexity properties for these tasks. As
the complexity of general LP has been discussed extensively in the literature (e.g., (Dantsin et al.
2001; Marek et al. 1992; Schlipf 1995)), we focus on TKBs. This is because TKBs represent
precisely the representation needed for KB Bio 101. The first result that we obtain in this di-
rection is related to the consistency of TKBs. Let us observe that the inconsistency of a T KB(D)

can arise in the different situations: (i) the specification of the class hierarchy is inconsistent, i.e.,
D contains an individual a with the specification instance o f (a,c1) and the class relationships
dis joint(c1,c2) and subclass o f (c1,c2); (ii) the specification of (in)equality between terms is in-
consistent, i.e., both eq(x,y) and neq(x,y) hold; or (iii) a domain, range, or cardinality constraint
is violated, i.e., a constraint of the form (49)—(51) is violated. Since an answer set of T KB(D)

is an answer set of T KB(D)\ΠC where ΠC is the set of rules of the form (49)—(51), (39), (40)–
(42), we can show that (C1) and (C2) are decidable for T HIEP(◦)-TKBs, i.e., (C1) and (C2)

are decidable for TKBs without constraints.
Decidability of (QA) depends on whether the answer sets of TKB are finite or not. Unfortu-

nately, finiteness of the answer set is not guaranteed as seen in the next example.

Example 1
Consider a T E OO-domain D1 with a class a, a relation r, and the descriptive statement

2{value(r,X , f (X)), instance o f ( f (X),a)}2 ← instance o f (X ,a) (53)
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← instance o f (c,a) (54)

It is easy to see that T KB(D1) has an infinite answer set that can be enumerated by the function
TT KB(D1). The example illustrates that answer sets may be infinite in general, and thus checking
ground entailment (E) or query answering (QA) is non-trivial.

We can attain decidability for ground entailment if we impose a guardedness condition. Intu-
itively, the application of the immediate consequence operator TT KB(D)\ΠC

results in larger terms
(in size) if the terms appearing in the head of rules are more complex than the terms in the body.
This is already the case for all rules in any TKB except possibly for sufficient conditions (24)
where the head contains a variable but the body possibly more complex terms. If we can guaran-
tee that applying TT KB(D)\ΠC

only results in terms of size equal or bigger than the size of the term
to be proven, we can prune the search space as soon as we generate a term of size greater than
the size of the term to be proven. Specifically, as each ground atom a is built over terms with a
certain depth, once TT KB(D)\ΠC

yields atoms over terms beyond that depth and a does not appear
in its result, we can be sure that a is not entailed.

Formally, for a term x in the language of KB(D,De), |x|, called the size of x, is defined as
the number of function symbols occurring in x. We say that an OO-domain D (and T KB(D)) is
guarded if for every sufficient condition of the form (24), 1 ≥ |Y | holds for term Y occurring in
the body of the rule, i.e., only variables occur in rules of the form (24).

Proposition 1
(E) is decidable for TKBs with guarded and consistent T HIEPQCJ(◦)-domains.

The above proposition shows that entailment in OOKBs for guarded and consistent OO-
domains could be verified using some ASP solvers since they provide options for limiting the
maximum nesting level for complex terms (e.g., the option maxnesting in dlv); e.g., given a
T KB(D) and a ground atom a, by setting maxnesting=|a|, dlv allows us to determine whether
T KB(D) |= a holds.

However, guardedness still does not help with the task (QA) as the Herbrand universe is,
in most cases, infinite and we cannot reduce (QA) to (E). We next investigate an acyclicity
condition, that leads to finite answers sets and thus decidability of (QA).

Definition 3
Let D be an OO-domain and c1 and c2 are two classes in D. We say that a class c1 refers-to a class
c2, denoted by c1 ≺ c2, if (i) D contains a rule whose head contains some instance o f (Y,c2) and
whose body contains instance o f (X ,c1); or if (ii) D contains the subclass statement subclass o f (c1,c2).

Let ≺∗ be the transitive closure of ≺ over the set of classes in D. D is acyclic if there exists no
class c in D s.t. c≺∗ c.

We say T KB(D) is acyclic if D is. It is easy to check that D1 is cyclic since a ≺ a. We can
prove:

Proposition 2
For an acyclic T HIEQCJ(◦)-domain D, every answer set of T KB(D) is finite.

From earlier we know that every T HIEQCJ(◦)-TKB has at most one answer set; with Prop. 2 we
then have that all the reasoning tasks (C1), (C2), (E), and (QA) are decidable for T HIEQCJ(◦)
acyclic T KBs; and as a consequence, we have:
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Corollary 1
Value set computation is decidable for acyclic T HIEQCJ(◦) T KBs.

D1 (Example 1) shows that Prop. 2 does not hold for cyclic OO-domains. Observe that Prop. 2
is limited to domains without sufficient conditions. This is because the body of a sufficient con-
dition (24) often contains instance-of literal of the class occurring in the head of the rule, TKBs
with sufficient conditions do not satisfy the acyclicity condition.

Observe that Prop. 2 is not a special case of Prop. 1 even though every acyclic T HIEQCJ(◦)-
domain is guarded. Prop. 2 does not require consistency. Not all domains require sufficient con-
ditions and sometimes, inconsistency is unavoidable.

We note that acyclicity of OOKBs is similar in spirit to definitorial TBoxes in DLs (Baader
et al. 2008). A definitorial TBox only contains definitions and for each concept it contains only
one definition that cannot refer to itself either directly or indirectly. The acyclicity conditions we
have considered here does not require the KB to consist of only definitions.

5 Summary and Conclusions

The primary contributions of work reported here are in the addition of a conceptual modeling
layer in the style of frame-based systems and DLs to ASP, an initial analysis of its computational
properties, and its use in making available one of the largest ASP knowledge base. Given the
undecidability of reasoning with this KB and its size, it poses both theoretical and practical chal-
lenges. The theoretical challenge lies in continuing to identify the weakest syntactic restrictions
on the OOKB that will still allow tractable reasoning. The empirical challenge lies in identifying
algorithms that support scalable reasoning with OOKBs such as KB Bio 101.
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SIMONS, P., NIEMELÄ, N., AND SOININEN, T. 2002. Extending and implementing the stable model
semantics. Artificial Intelligence 138, 1–2, 181–234.

VARDI, M. Y. 1996. Why is modal logic so robustly decidable? In Descriptive Complexity and Finite
Models, Proceedings of a DIMACS Workshop, January 14-17, 1996, Princeton University, N. Immerman
and P. G. Kolaitis, Eds. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 31. American Mathematical Society, 149–184.


