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1. Introduction

There have been several proposals for using F-Logic [21, 20] as the basis for an ontology language
for the Semantic Web, as well as extending current Semantic Web languages with F-Logic-based rules
[19, 10, 2, 6]. In F-Logic, classes and properties are interpreted as objects. This may hamper inter-
operation with Description Logic-based ontology languages (e.g. OWL DL [12]), in which classes and
properties are interpreted as unary and binary predicates, respectively. We call ontologies in F-Logic
“frame-based ontologies” and ontologies in Description Logics “predicate-based ontologies”.

Statements such as “John is a Person” and “John has-father Jack” are represented in F-Logic us-
ing statements of the forms John :Person and John[has-father � Jack], where : and � are F-
Logic language constructs, and John, Person, has-father, Jack are terms. In Description Logics,
and, in general, predicate-based ontologies, these statements are represented as Person(John) and
has-father(John, Jack), respectively, where John and Jack are terms, as before, but Person and
has-father are predicate symbols. It is an open problem whether, and to what extent, the F-Logic rep-
resentation of the statements can be seen as equivalent to the Description Logic representation, especially
in the presence of equality statements, since equality of terms in F-Logic entails equality of their class
extensions as well.

In this paper we define a straightforward translation from predicate-based ontologies to F-Logic. We
show that when considering a sorted variant of F-Logic, the translation preserves entailment for arbitrary
first-order theories. We then show that this is not the case in general when translating the ontology to
an unsorted F-Logic language. However, for certain classes of first-order formulas, namely cardinal
formulas [11], the translation preserves validity. A disadvantage of this class is that its definition is
semantic, i.e. it is not possible to determine whether a given formula is cardinal based on its structure.
There are known classes of cardinal formulas (e.g. equality-free formulas). However, these classes are
not expressive enough to capture ontology languages with counting quantifiers or equality.

We define the novel class of equality-safe (E-safe) formulas, show that axioms of the Description
Logic SHIQ can be equivalently rewritten to E-safe formulas, and show that E-safe formulas are car-
dinal. Finally, E-safe formulas are closed under negation, and thus entailment of E-safe formulas can be
reduced to checking validity. Using these results, we show that our translation preserves entailment for
large classes of ontology languages which include equality, such as SHIQ.

We use these results to close the open problem of F-Logic extensions of Description Logic Programs
(DLP) [16]. We define F-Logic programming, with negation based on the stable model semantics [14],
and show that this is indeed an extension of DLP.

We then show that our main result about E-safe formulas also applies to HILOG [11], a syntactically
higher-order, but semantically first-order logical language. Finally, we show that our results apply to a
meta-modeling extension of Description Logics considered in [24], called v-entailment.

Structure of the paper In Section 2 we review predicate- and frame-based ontology modeling lan-
guages. In Section 3, we show that the translation of any predicate-based ontology to sorted F-Logic is
faithful and that the translation of cardinal formulas to unsorted F-Logic is faithful; we identify the class
of E-safe formulas and demonstrate cardinality. We define the notion of F-Logic programming and show
that the straightforward F-Logic extension of DLP preserves ground entailment in Section 4. We then
show that our results apply to HILOG and Description Logics with meta-modeling in Section 5. Finally,
we review related work and present conclusions in the Sections 6 and 7.
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This paper extends [8] with a novel definition of F-Logic programming and a more in-depth treatment of
HILOG and meta-modeling extensions of Description Logics.

2. Preliminaries

First-Order Logic and Description Logics The signature of a first-order language L is of the form
Σ = 〈F ,P〉, where F and P are disjoint countable sets of function and predicate symbols and each
function or predicate symbol has an associated arity n, which is a nonnegative integer. Function symbols
with arity 0 are also called constants.

Given a signature Σ and a set of variable symbols V , terms are either variables or constructed terms
of the form f(t1, . . . , tn) with f ∈ F an n-ary function symbol (n ≥ 0) and t1, . . . , tn terms. Atomic
formulas are expressions of the forms p(t1, . . . , tn) and t1 = t2, with p ∈ P an n-ary predicate symbol
(n ≥ 0) and t1, . . . , tn terms. Formulas of a first-order language L are constructed as usual: every
atomic formula is a formula of L; compound formulas are constructed using atomic formulas, the logical
connectives ¬,∧,∨,⊃, the quantifiers ∃,∀, and the auxiliary symbols ‘)’,‘(’. A sentence is a formula
with no free occurrences of variables. A theory Φ ⊆ L is a finite set of sentences.

An interpretation of a language L is a tuple I = 〈U, ·I〉, where U is a countable nonempty set (called
domain) and ·I is a mapping which assigns: a function f I : Un → U to every n-ary function symbol
f ∈ F and a relation pI ⊆ Un to every n-ary predicate symbol p ∈ P . A variable assignment B is a
mapping which assigns an element xB ∈ U to every variable symbol x. A variable assignment B′ is an
x-variant of B if yB = yB′

for every variable y ∈ V with y 6= x. A variable substitution β is a mapping
from variables to ground terms.

Given an interpretation I = 〈U, ·I〉, a variable assignment B, and a term t, tI,B is defined as:
xI,B = xB for variable symbol x and tI,B = f I(tI,B

1 , . . . , tI,B
n ) for t of the form f(t1, . . . , tn).

An interpretation I satisfies an atomic formula p(t1, . . . , tn), given a variable assignmentB, denoted
(I, B) |= p(t1, . . . , tn), if (tI,B

1 , . . . , tI,B
n ) ∈ pI . (I, B) |= t1 = t2 iff tI,B

1 = tI,B
2 . This extends to

arbitrary formulas as usual: (I, B) |= ¬φ1 iff (I, B) 6|= φ1; (I, B) |= φ1∧φ2 (resp. (I, B) |= φ1∨φ2) iff
(I, B) |= φ1 and (I, B) |= φ2 (resp. (I, B) |= φ1 or (I, B) |= φ2); (I, B) |= ∀x(φ1) (resp. (I, B) |=
∃x(φ1)) iff for every (resp. for some) B′ which is an x-variant of B, (I, B′) |= φ1.

An interpretation I is a model of φ, denoted I |= φ, if (I, B) |= φ for every variable assignment B;
φ is satisfiable if it has a model (unsatisfiable otherwise); φ is valid if every interpretation I is a model
of φ. These definitions straightforwardly extend to the case of theories Φ ⊆ L.

A theory Φ ⊆ L entails a formula φ ∈ L, denoted Φ |= φ, iff for every interpretation I of L such
that I |= Φ, I |= φ.

A predicate-based ontology language is a first-order language in which unary predicates represent
classes of objects and binary predicates represent properties (relations between objects). Description
Logics [3] are such predicate-based ontology languages.1 Of special interest is the Description Logic
SHOIQ, which is a slight generalization of the language underlying the Semantic Web ontology lan-
guage OWL DL [25].

1We recognize that several nonmonotonic extensions of Description Logics have been defined in the literature. In the present
paper we restrict ourselves here to classical Description Logics.
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SHOIQ descriptions are formed as follows, with A a concept identifier, C,C ′ descriptions, R,R′

role identifiers, o1, . . . , on individual identifiers, and n a positive integer; the sets of concept, role, and
individual identifiers are mutually disjoint.

C,C ′ −→ A | > | ⊥ | C u C ′ | C t C ′ | ¬C | {o1 . . . on} | ∃R.C | ∀R.C |> nR.C |6 nR.C

A SHOIQ ontology is a set of axioms, with an axiom S formed as follows.

S −→ C v C ′ | C ≡ C ′ | R v R′ | R ≡ R′− |
Trans(R) | o1 ∈ C | 〈o1, o2〉 ∈ R | o1 = o2 | o1 6= o2

We say that a role R is a sub-role of a role R′ if R v? R′, where v? is the reflexive-transitive closure of v.
For every number restriction > nR.C,6 nR.C, holds that R must be simple, i.e., R and its sub-roles
may not be transitive (with transitivity indicated by Trans(R)).

Tables 1 and 2 present the semantics of SHOIQ in the form of a translation to first-order logic
(cf. [7]). Table 1 defines the mapping function π from SHOIQ descriptions to first-order logic formulas.
X is a meta-variable; it is replaced with a variable or constant during the translation. Table 2 defines the
translation from SHOIQ axioms to closed first-order logic formulas. The mapping π naturally extends
to sets of SHOIQ axioms.

Mapping concepts to FOL

π(A,X) = A(X)
π(>, X) = X = X

π(⊥, X) = ¬(X = X)

π(C u C ′, X) = π(C,X) ∧ π(C ′, X)
π(C t C ′, X) = π(C,X) ∨ π(C ′, X)

π(¬C,X) = ¬π(C,X)
π({o1 . . . on}, X) =

∨
16i6nX = oi

π(∃R.C,X) = ∃y(R(X, y) ∧ π(C, y))
π(∀R.C,X) = ∀y(R(X, y) ⊃ π(C, y))

π(> nR.C,X) = ∃y1, . . . , yn(
∧

16i6n(R(X, yi) ∧ π(C, yi)) ∧
∧

i6=j ¬yi = yj)
π(6 nR.C,X) = ∀y1, . . . , yn+1(

∧
16i6n+1(R(X, yi) ∧

∧
π(C, yi)) ⊃

∨
i6=j yi = yj)

where y, y1, . . . , yn+1 are new variables

Table 1. SHOIQ descriptions and their mappings to FOL

Individual identifiers used in class definitions (in enumerations {o1 . . . on}) are called nominals. The
Description Logic SHIQ corresponds to SHOIQ without nominals, i.e. the enumeration construct
({o1, . . . , on}) may not be used in SHIQ.

Description Logic Programs (DLP) [16] are an intersection of Description Logics and logic program-
ming, which means that a Description Logic Program can be seen both as a Description Logic ontology
and as a logic program, and can thus be processed both by Description Logic and logic programming
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Mapping axioms to FOL

π(C v C ′) = ∀x(π(C, x) ⊃ π(C ′, x))
π(C ≡ C ′) = π(C v C ′) ∧ π(C ′ v C)

π(R v R′) = ∀x, y(R(x, y) ⊃ R′(x, y))
π(R ≡ R′−) = ∀x, y(R(x, y) ⊃ R′(y, x)) ∧ ∀x, y(R′(y, x) ⊃ R(x, y))
π(Trans(R)) = ∀x, y, z(R(x, y) ∧R(y, z) ⊃ R(x, z))

π(o1 ∈ C) = π(C, o1)
π(〈o1, o2〉 ∈ R) = R(o1, o2)

π(o1 = o2) = o1 = o2

π(o1 6= o2) = ¬(o1 = o2)

Table 2. SHOIQ axioms and their mappings to FOL

reasoners. The Description Logic DHL is a Horn logic subset of the Description Logic SHIQ, which
means that a DHL axiom is a SHIQ axiom which is equivalent to a (conjunction of) Horn logic for-
mula(s). With DHLO we denote the extension of DHL with nominals, while staying in the Horn
fragment. A Description Logic Program (DLP) ΠO is obtained from a DHL ontology O by rewriting
the axioms in O to Horn formulas and interpreting the formulas using the standard minimal Herbrand
model semantics (see e.g. [23]). By the standard results in Logic Programming [23], we know that O
and ΠO agree on ground entailment.
DHLO descriptions are formed as follows, with CL, C

′
L (resp. CR, C

′
R) descriptions which are

allowed only on the left-hand (resp. right-hand) side of the class inclusion symbol v.

C,C ′ −→ A | C u C ′ | ∃R.{o1}
CL, C

′
L −→ C | CL t C ′

L | ∃R.CL |> 1R | {o1 . . . on}
CR −→ C | ∀R.CR

A DHLO ontology is a set of axioms, with an axiom S formed as follows.

S −→ CL v CR | C ≡ C ′ | R v R′ | R ≡ R′− | Trans(R) |
> v ∀R.CR | > v ∀R−.CR | o1 ∈ A | 〈o1, o2〉 ∈ R

DHL is DHLO without nominals. The following proposition, which slightly extends [16, Theorem 1],
establishes the correspondence between DHLO ontologies and Horn formulas.

Proposition 2.1. Let O be a set of DHLO axioms, and π(O) its FOL equivalent. Then, there is exists
set of Horn logic formulas Φ which is equivalent to π(O), i.e. Φ and π(O) have the same models.
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Example 2.1. Consider the DHLO ontology O:

∃colorOf.Eye u Color v EyeColor

> v ∀hasColor.Color
hasColor ≡ colorOf−

a ∈ Eye

〈a, green〉 ∈ hasColor

O corresponds to the set of Horn formulas Φ:

∀x, y(colorOf(x, y) ∧ Eye(y) ∧ Color(x) ⊃ EyeColor(x))
∀x, y(hasColor(x, y) ⊃ Color(y))
∀x, y(hasColor(x, y) ⊃ colorOf(y, x))
∀x, y(colorOf(x, y) ⊃ hasColor(y, x))

Eye(a)
hasColor(a, green)

Notice that Φ |= EyeColor(green).

Frame Logic Frame Logic [19, 20] (F-Logic) is an extension of first-order logic which adds explicit
support for object-oriented modeling. It is possible to explicitly specify methods, as well as general-
ization/specialization and class instantiation relationships. The syntax of F-Logic has some seemingly
higher-order features, namely, the same identifier can be used for a class, an instance, and a method.
However, the semantics of F-Logic is strictly first-order2. To simplify matters, we do not consider pa-
rameterized, functional (single-valued) and inheritable methods, and compound molecules. Additionally,
we consider only finite F-Logic theories.

The signature of an F-language LF is of the form Σ = 〈F ,P〉 with F and P disjoint countable sets of
function and predicate symbols, each with an associated arity n ≥ 0. Let V be a set of variable symbols.
Terms and atomic formulas are constructed as in first-order logic with equality.

A molecule in F-Logic is one of the following statements: (i) an is-a assertion of the form C :D, (ii)
a subclass-of assertion of the form C ::D, or (iii) a data molecule of the form C[D � E], with C,D,E
terms. An F-Logic molecule is ground if it does not contain variables.

Formulas of an F-language LF are either atomic formulas, molecules, or compound formulas which
are constructed in the usual way from atomic formulas, molecules, and the logical connectives¬,∧,∨,⊃,
the quantifiers ∃,∀ and the auxiliary symbols ‘)’,‘(’. We denote universal closure with (∀).

F-Logic Horn formulas are of the form (∀)B1∧ . . .∧Bn ⊃ H , with B1, . . . , Bn,H atomic formulas
or molecules. F-Logic Datalog formulas are F-Logic Horn formulas without function symbols such that
every variable in H occurs in some equality-free B1, . . . , Bn.

An F-structure is a tuple I = 〈U,≺U ,∈U , IF , IP , I�〉. Here, U is a countable nonempty set, ≺U is
an irreflexive partial order on the domain U and ∈U is a binary relation over U . We write a �U b when
2Note that F-Logic is also often used as an extension of nonmonotonic logic programming. We consider such nonmonotonic
F-Logic programs in Section 4.
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a ≺U b or a = b, for a, b ∈ U . For each F-structure holds that if a ∈U b and b �U c then a ∈U c. Thus,
if b �U c, then {k | k ∈U b, k ∈ U} ⊆ {k | k ∈U c, k ∈ U}, but the converse does not necessarily hold.
I.e., if b �U c, then the class extension of b is a subset of the class extension of c. However, the converse
of this statement is not universally true.

An n-ary function symbol f ∈ F is interpreted as a function over the domain U : IF (f) : Un → U .
An n-ary predicate symbol p ∈ P is interpreted as a relation over the domain U : IP (p) ⊆ Un. I�

associates a partial function U → 2U with each element of U : I� : U −→ U → 2U . Variable
assignments are defined as in first-order logic.

Given an F-structure I, a variable assignment B, and a term t of LF , tI,B is defined as: xI,B = xB

for x a variable symbol and tI,B = IF (f)(tI,B1 , . . . , tI,Bn ) for t of the form f(t1, . . . , tn).
F-satisfaction of φ in I, given the variable assignment B, denoted I, B |=f φ, is defined as:

• I, B |=f p(t1, . . . , tn) iff (tI,B1 , . . . , tI,Bn ) ∈ IP (p),

• I, B |=f t1 : t2 iff tI,B1 ∈U tI,B2 ,

• I, B |=f t1 :: t2 iff tI,B1 �U tI,B2 ,

• I, B |=f t1[t2 � t3] iff I�(tI,B2 )(tI,B1 ) is defined and tI,B3 ∈ I�(tI,B2 )(tI,B1 ), and

• I, B |=f t1 = t2 iff tI,B1 = tI,B2 .

Extension to satisfaction of compound formulas is as in first-order logic.
The notions of a model and of validity are defined analogous to first-order logic. A theory Φ ⊆ LF

F-entails a formula φ ∈ LF , denoted Φ |=f φ, iff for every F-structure I such that I |=f Φ, I |=f φ.

Sorted F-Logic In predicate-based ontology languages, the sets of symbols used for concepts, roles
and individuals are disjoint. This is not the case in F-Logic. This disjointness can be regained by using a
sorted F-Logic language.

We consider a sorted F-Logic language with three sorts: individuals, concepts and roles. A sorted
F-Logic language has a sorted signature Σ = 〈Fa,Fc,Fr,P〉, where Fa is a set of function symbols, as
before, Fc is a set of concept symbols, Fr is a set of role symbols, and P is a set of predicate symbols, as
before. Fa,Fc,Fr, and P are pairwise disjoint. The usual restrictions on the use of symbols in formulas
applies, namely only molecules of the form a : c, c ::d, a[r � b] are allowed, with a, b terms constructed
from symbols in Fa ∪ V , c, d ∈ Fc ∪ V , and r ∈ Fr ∪ V . Quantifiers need to be qualified with a, c, r to
indicate over which domain (individual, concept, role) the variable quantifies.

A sorted F-structure has three pairwise disjoint domains: Ua, Uc, Ur for the individuals, concepts,
and roles, respectively; ≺U is an irreflexive partial order over Uc; ∈U is a relation between Ua and Uc:
∈U⊆ Ua × Uc. IF interprets symbols in Fa as functions over Ua, symbols in Fc as elements in Uc, and
symbols of Fr as elements in Ur. IP interprets symbols in P as n-ary relations over Un

a . Finally, I�

associates a partial mapping Ua → 2Ua with each element of Ur.

3. Translating Predicate-Based Ontologies to F-Logic

In this section we define a straightforward translation from predicate-based ontologies to F-Logic. We
show that when considering sorted F-Logic, the translation preserves entailment for arbitrary first-order
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Entity Translation
Class δ(A(t)) = t :A
Property δ(R(t1, t2)) = t1[R � t2]

Equality δ(t1 = t2) = t1 = t2

n-ary predicate δ(P (~t)) = P (~t)

Universal δ(∀~x.φ) = ∀~x(δ(φ))
Existential δ(∃~x.φ) = ∃~x(δ(φ))
Conjunction δ(φ ∧ ψ) = (δ(φ) ∧ δ(ψ))
Disjunction δ(φ ∨ ψ) = (δ(φ) ∨ δ(ψ))
Implication δ(φ ⊃ ψ) = (δ(φ) ⊃ δ(ψ))
Negation δ(¬φ) = ¬(δ(φ))

Table 3. Translation of predicate-based to frame-based modeling

theories. We then show that this is not the case in general when translating an ontology to an unsorted
F-Logic language. However, for certain classes of first-order formulas, namely those where entailment
can be reduced to validity of a cardinal formula [11], the translation preserves entailment.

Table 3 defines the mapping δ from the predicate style of ontology modeling to the frame style. In
the table, A is a unary predicate symbol, φ, ψ are formulas, R is a binary predicate symbol, P is an n-ary
predicate symbol, with n = 0 or n ≥ 3, x is a variable symbol, and t, t1, t2 are terms. The mapping δ
extends to sets of formulas in the natural way.

Definition 3.1. Given a first-order language L with the signature Σ = 〈F ,P〉. Let LF be the F-Logic
language with the same signature Σ, we say that LF corresponds to L. Given a first-order theory Φ ⊆ L,
then we say that δ(Φ) ⊆ LF is the corresponding F-Logic theory.

Our translation preserves function-freeness, i.e. if no function symbol of arity > 0 was used in the
original ontology, no function symbol of arity > 0 will occur in the translated ontology. This is not the
case for the translation of Description Logics to F-Logic presented in [4].

Proposition 3.1. Let Φ be a first-order theory which does not contain function symbols of arity > 0.
Then, δ(Φ) does not contain functions symbols of arity > 0.

In the remainder of this section we will first show that the translation in Definition 3.1 is faithful
(i.e. preserves entailment) when considering a sorted F-Logic language. We will then show that for a
certain class of formulas, the class of cardinal formulas (see [11]), the translation is also faithful when
considering an unsorted language. Besides the classes of cardinal formulas identified in [11], we identify
the novel class of E-safe formulas, show that reasoning in SHIQ can be reduced to checking validity of
E-safe formulas, and show that E-safe formulas are cardinal. Note that the class of E-safe formulas goes
beyond SHIQ, and can capture a wide class of description languages.
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3.1. Translating to Sorted F-Logic

We first investigate a translation to sorted F-Logic. We augment the translation in Table 3 to ensure
that variables only quantify over the domain of individuals Ua by replacing each universal quantifier ∀
in Table 3 with ∀a and each existential quantifier ∃ with ∃a. We denote the thus obtained translation
function with δs.

We now show equi-satisfiability of formulas in L, and their F-Logic counterparts. If L is a predicate-
based ontology language with signature Σ = 〈F ,P〉, then the corresponding sorted F-Logic language
LF has the signature Σ′ = 〈Fa,Fc,Fr,P ′〉, where Fa = F , Fc = {t | t is a unary predicate symbol in
P}, Fr = {t | t is a binary predicate symbol in P}, and P ′ = P − (Fc ∪ Fr).

Lemma 3.1. Let φ be a formula in L and let LF be the corresponding sorted F-Logic language, then φ
is satisfied in some interpretation of L if and only if δs(φ) is satisfied in some sorted F-structure of LF .

Proof:
(Sketch) From any interpretation I of L such that I |= φ one can straightforwardly construct a corre-
sponding sorted F-structure I such that I |=f δ

s(φ), and vice versa. ut

Using Lemma 3.1 we now obtain correspondence with respect to entailment.

Theorem 3.1. Let Φ ⊆ L be a finite first-order theory and let φ ∈ L be a formula. Then

Φ |= φ iff δs(Φ) |=f δ
s(φ).

Proof:
Follows immediately from Lemma 3.1 and the fact that checking the entailment Φ |= φ can be reduced
to checking unsatisfiability of the formula (

∧
Φ) ∧ ¬φ (similar for entailment in F-Logic). ut

3.2. Translating Cardinal Formulas

We now consider the translation function δ of Table 3 in its original form, and we consider unsorted
languages and F-structures of the form I = 〈U,≺U ,∈U , IF , IP , I�〉.

It turns out that we lose the correspondence of entailment and, more specifically, validity. Consider,
for example,

φ = (∀x, y(x = y)) ⊃ (q(a)↔ r(a)). (1)

The formula φ is trivially satisfied in any interpretation I = 〈U, ·I〉 which has more than one element in
the domain (|U | ≥ 2), since the antecedent will be trivially false, and thus the implication trivially true,
in such an interpretation. If we consider an interpretation I = 〈U, ·I〉 with only one element k in U ,
then the antecedent is true, but the consequent is not necessarily true, because q and r may be interpreted
differently (e.g. qI = ∅, rI = {k}). Thus, φ is not valid in first-order logic (FOL). Now consider the
corresponding F-Logic formula

δ(φ) = (∀x, y(x = y)) ⊃ (a :q ↔ a :r).

Where φ is not a valid FOL formula, δ(φ) is a valid F-Logic formula, since q and r must be interpreted
as the same class in every F-structure which has a domain consisting of exactly one element.
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From the example we can see that the translation δ is not faithful (with respect to validity, and thus
also entailment) for arbitrary predicate-based ontology languages. We will show that there is a class of
theories for which the correspondence does hold. This is the class of theories for which entailment can
be reduced to checking validity of a cardinal formula [11].

Definition 3.2. Let φ be a formula in L and let γ denote the number of symbols in L. An interpretation
I = 〈U, ·I〉 is cardinal if |U | ≥ γ. φ is cardinal if the following holds:

If φ is satisfied in every cardinal interpretation of L, then φ is satisfied in every interpretation
of L.

Definition 3.2 naturally extends to sets of formulas.
Note that this condition does not hold for the formula φ in (1), because φ is true in every interpretation

with a domain of at least 3 elements, but it is not true in every interpretation ofL. The following definition
of cardinality is equivalent to Definition 3.2.

Proposition 3.2. Let φ be a formula in L, then φ is cardinal if and only if

φ is unsatisfied in some cardinal interpretation of L whenever φ is unsatisfied in some inter-
pretation of L.

Proof:
Follows immediately from the fact that the proposition is the contraposition of Definition 3.2. ut

We now formulate our main result for the case of unsorted F-Logic:

Lemma 3.2. Let φ ∈ L be a formula. Then,

1. if φ is valid in first-order logic, then δ(φ) is valid in F-Logic, and

2. if φ is cardinal and δ(φ) is valid in F-Logic, then φ is valid in first-order logic.

Proof:
See the appendix. ut

Theorem 3.2. Let Φ ⊆ L be a finite first-order theory and φ ∈ L be a formula. Then,

if Φ |= φ then δ(Φ) |=f δ(φ).

If ¬(
∧

Φ) ∨ φ is cardinal, then also

Φ |= φ iff δ(Φ) |=f δ(φ).

Proof:
Follows from Lemma 3.2 and the observation that checking the entailment Φ |= φ can be reduced to
checking validity of the formula ¬(

∧
Φ) ∨ φ. ut
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Results on cardinal formulas from [11] can be applied directly to our case. From [11] we know that
equality-free sentences, as well as the negation of a conjunction of Horn clauses with no equality in
the antecedent, are cardinal. This is, however, not sufficient for many ontology languages. Description
Logics such as SHIQ allow explicit assertion of equality between individuals and the introduction of
equality statements through maximal number restrictions (see the translation of 6 nR.C in Table 1).

We define the class of E-safe formulas (E stands for “equality”) which allow only safe uses of equality.
With “safe” we mean that the use of equality does not restrict the size of the domains of the models.

For the definition of E-safe formulas we need the notion of a variable graph of a conjunction of
atoms. Given a conjunction of atomic formulas χ = α1 ∧ . . . ∧ αn, the variable graph of χ is an
undirected graph 〈N,E〉 where the set of nodes N is the smallest set such that if αi contains a variable,
then αi ∈ N , for 1 ≤ i ≤ n, and the set of edges E is the smallest set such that if αi and αj contain a
common variable, then 〈αi, αj〉 ∈ E, for 1 ≤ i < j ≤ n.

We first define the class of limited E-safe (lE-safe) formulas, denoted lESF :

lESF ::= A | ¬A | φ1 ∧ φ2 | φ1 ∨ φ2 | ∀~x(χ ⊃ φ) | ∃~x(χ ∧ φ)

whereA is an atomic formula either of the form p(~t) or t1 = t2 with t1, t2 either both ground or both non-
ground terms; φ, φ1, φ2 are lE-safe formulas, and χ is either an atom of the form p(~t) or a conjunction
of atoms of the form p(~t) such that the variable graph of χ is connected. Finally, every free variable in φ
must appear in χ. We now define the class of E-safe formulas, denoted ESF :

ESF ::= ϕ | ∀x(φ) | ∃x(φ) | ψ1 ∧ ψ2 | ψ1 ∨ ψ2

where ψ1, ψ2 are E-safe formulas, φ and ϕ are lE-safe formulas, and x is the only free variable in φ. As
usual, an E-safe sentence is an E-safe formula without free variables.

The structure of E-safe formulas is similar to the structure of guarded formulas [1]. The major
distinctions are the restrictions on the use of the equality symbol in E-safe formulas and the fact that the
guard in an E-safe formula may be a conjunction of atoms, whereas in the guarded fragment the guard
always consists of a single atom.

Observe that the formulas ∀x(x = x ⊃ φ) and ∃x(x = x ∧ φ) are equivalent to ∀x(φ) and ∃x(φ),
respectively. Because of this equivalence, we consider formulas of the forms ∀x(x = x ⊃ φ) and
∃x(x = x∧ φ), where φ is an lE-safe formula with at most one free variable x, E-safe formulas. It turns
out that the negation of an E-safe formula is equivalent to an E-safe formula as well.

Proposition 3.3. Let φ be an E-safe formula. Then, there exists an E-safe formula ψ which is equivalent
to ¬φ.

Proof:
(Sketch) It can be easily verified that the negation normal form (NNF) of ¬φ is an E-safe formula. ut

Example 3.1. The following formulas are E-safe:

∀x(p(x) ⊃ q(x))
∀x(s(x, y) ⊃ p(x))
∃x, y(p(x) ∧ r(x, y) ∧ x = y)
∀x, y(r(x, y) ⊃ x = y)
∀x(∀y1, y2(person(x) ∧ father(x, y1) ∧ father(x, y2) ⊃ y1 = y2))



1012 J. de Bruijn and S. Heymans / On the Relationship between Description Logic-based and F-Logic-based Ontologies

As can be seen from the above formulas, every variable participating in an equality atom is guarded by
a non-equality atom.

The following formulas are not E-safe:

∀x, y(x = y)
∀x, y(q(x) ∧ q(y) ⊃ x = y)
∀x, y(x = y ⊃ p(x, y))
∀x(q(x) ⊃ x = a)

Many expressive Description Logic languages can be considered E-safe, including SHIQ, as is
demonstrated in the following proposition.

Proposition 3.4. Let S be a SHIQ axiom. Then, π(S) (resp., ¬π(S)) can be rewritten to an E-safe
formula φ (resp. ψ) such that π(S) and φ (resp. ¬π(S) and ψ) are equivalent, i.e., share the same models.

Proof:
Assume S is a SHIQ axiom. In case S is a property or individual axiom, π(S) is trivially E-safe and
φ = π(S).

Say S is a class axiom such that δ(S) is of the form ∀x(φ0 ⊃ φ1). Given the form of π(S) and
the translation in Table 2, one can transform φ0 ⊃ φ1 to a conjunction ϕ of lE-safe formulas by, e.g.,
removing disjunction from the antecedent induces a splitting of the original formula in a conjunction of
formulas, such that φ ≡ ∀x(ϕ) is an E-safe formula which is equivalent to π(S).

Since, by Proposition 3.3, the negation of an E-safe formula is equivalent to an E-safe formula, we
have that ¬π(S) is equivalent to an E-safe formula as well. In fact, if ψ is the negation normal form of
¬π(S), then ψ is E-safe. ut

The class of E-safe formulas is highly expressive, even when considering only function symbols of
arity 0. In fact, it is easy to see, with a slight modification of Proposition 3.4, that SHIQ knowledge
bases extended with certain kinds of (function-free) Horn formulas (those which can be translated to
E-safe formulas) can be equivalently translated to sets of E-safe formulas. As entailment in this class of
formulas is undecidable in general [22, 18]3, entailment of E-safe formulas is undecidable in general as
well.

We now formulate our main result about cardinal formulas.

Lemma 3.3. The following classes of first-order formulas are cardinal.

1. Sets of equality-free sentences,

2. formulas of the form ¬S, where S is a conjunction of Horn clauses without equality in the head,
and

3. the class of E-safe sentences.
3The proofs of undecidability of combinations of Description Logics (contained in SHIQ) with Horn formulas in [22, 18] rely
only on Horn formulas which are E-safe.
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Proof:
See the appendix. ut

The following corollary follows immediately from Theorem 3.2, Proposition 3.4, and Lemma 3.3:

Corollary 3.1. Let Φ be a finite set of SHIQ axioms and φ a SHIQ axiom, then

Φ |= φ iff δ(π(Φ)) |=f δ(π(φ)).

Note that SHOIQ formulas are not E-safe in general, because of the possibility of using nominals.
Consider, for example, the SHOIQ knowledge base {> v {a}} which is equivalent to the first-order
sentence ∀x(x = a), which is not E-safe. We obtain the following negative result about SHOIQ.

Proposition 3.5. There are a finite SHOIQ theory O and a SHOIQ axiom S such that ¬(
∧
π(O)) ∨

π(S) is not cardinal and π(O) 6|= π(S), but δ(π(O)) |=f δ(π(S)).

Proof:
ConsiderO = {> v {a}} and S = C ≡ D. To show that ¬(

∧
π(O))∨π(S) is not cardinal, consider an

interpretation I = 〈U, ·I〉 such that U = {k}, CI = ∅, and DI = {k}. Clearly, I 6|= ¬(
∧
π(O))∨π(S).

It is easy to verify that for any cardinal interpretation Ic, i.e. any interpretation with a domain of size
≥ 3, Ic |= ¬(

∧
π(O)) ∨ π(S). Therefore, ¬(

∧
π(O)) ∨ π(S) is not cardinal.

Clearly, π(O) = {∀x(x = a)} 6|= π(S) = ∀x(C(x) ≡ D(x)). It is also easy to verify that
δ(π(O)) = {∀x(x = a)} |= δ(π(S)) = ∀x(x :C ≡ x :D). ut

4. F-Logic Programming

F-Logic as we have considered so far in this paper is based on the standard semantics described in
the original paper [20], which is a standard first-order semantics. However, all implementations of F-
Logic we are aware of are based on nonmonotonic logic programming, which goes beyond the standard
(monotonic) first-order semantics. In order to show properties of language layering involving languages
based on logic programming we define F-Logic programs and give them a semantics based on the stable
model semantics [14]. We show that F-Logic programs extend the Horn fragment of standard F-Logic,
as defined in Section 2, and use this result, combined with the results in the previous section, to show
that F-Logic programs generalize DHLO.
A normal F-Logic program P consists of rules of the form

h ← b1, . . . , bm, not c1, . . . , not cn, (2)

where h, b1, . . . , bm, c1, . . . , cn are (equality-free) atoms or molecules. h is the head atom of r,B+(r) =
{b1, . . . , bm} is the set of positive body atoms of r, and B−(r) = {c1, . . . , cn} is the set of negative body
atoms of r. If B−(r) = ∅, then r is positive. If every variable in r occurs in B+(r), then r is safe. If
every rule r ∈ P is positive (safe, respectively), then P is positive (safe, respectively). Additionally,
every F-Logic program contains the following rules, which axiomatize the semantics of molecules:

x ::z ← x ::y, y ::z (3)

x :z ← x :y, y ::z (4)

x ::x (5)



1014 J. de Bruijn and S. Heymans / On the Relationship between Description Logic-based and F-Logic-based Ontologies

The first rule (3) axiomatizes transitivity of the subclass relation; the second rule (4) axiomatizes
inheritance of class membership; the third rule (5) axiomatizes the fact that every class is a subclass of
itself.4

The F-Logic signature ΣP is a superset of the function and predicate symbols which occur in P . Let
LF

P denote the F-Logic language based on ΣP . We assume that ΣP contains at least one 0-ary function
symbol or only 0-ary predicate symbols. The Herbrand base, BH , of LF

P is the set of ground atomic
formulas and molecules of LF

P . Subsets of BH are called Herbrand interpretations.
The grounding of a logic program P , denoted gr(P ), is the union of all possible ground instantiations

of P , which are obtained by replacing each variable in a rule r with a ground term in ΣP , for each rule
r ∈ P .

Let P be a positive program. A Herbrand interpretation M of P is a model of P if, for every rule
r ∈ gr(P ), B+(r) ⊆M implies h ∈M . A Herbrand model M is minimal iff for every model M ′ such
that M ′ ⊆M , M ′ = M .

Following [15], the reduct of a logic program P with respect to an interpretation M , denoted PM ,
is the positive logic program obtained from gr(P ) by deleting (i) each rule r with B−(r) ∩M 6= ∅, and
(ii) not c from the body of every remaining rule r with c ∈ B−(r). If M is a minimal Herbrand model
of PM , then M is a stable model of P .

If P is a positive logic program, then the corresponding Horn F-Logic theory ΦP is obtained by, for
every rule, replacing the arrow ← with material implication ⊃, and replacing every comma (,) in the
body of the rule with ∧.

Theorem 4.1. Let P be a positive logic program and ΦP be the corresponding Horn F-Logic theory,
then P has one stable model M and for every ground atom or molecule α, α ∈M iff ΦP |= α.

Proof:
Let Φ be an F-Logic theory and let Φ′ be the FOL theory obtained from Φ by replacing every molecule of
the form t1 : t2 with an atomic formula of the form isa(t1, t2), molecules of the form t1 :: t2 with atomic
formulas of the form subclass(t1, t2), and molecules of the form t1[t2 � t3] with atomic formulas of
the form att(t1, t2, t3), with t1, t2, t3 terms and isa, subclass, att predicate symbols which do not
occur in Φ, and adding the following formulas:

∀ x, y, z ( subclass(x, y) ∧ subclass(y, z) ⊃ subclass(x, z)),
∀ x, y, z ( isa(x, y) ∧ subclass(y, z) ⊃ isa(x, z)), and

∀ x ( subclass(x, x)).

It is easy to verify that the F-Logic models of Φ and the FOL models of Φ′ are isomorphic. The theorem
follows immediately from the correspondence between minimal Herbrand models and first-order ground
4Note that this third rule is not safe, and thus may not be suitable for efficient implementation. However, the identity subclass
relation is trivial and therefore often not required for query answering; alternatively, one could approximate the axiomatization
as follows:

x :: x ← x :: y

x :: x ← y :: x

x :: x ← y : x

so the identity subclass relation is only returned in queries in case the term x is used as a class.
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entailment [23], and the correspondence between stable models and minimal Herbrand models for posi-
tive programs [14]. ut

F-Logic DLP There are several proposals for layering F-Logic programming on top of DHLO (e.g.
[19, 10, 2, 6]). The following proposition shows that this layering is justified, in the sense that it preserves
entailment.

Proposition 4.1. Let O be a DHLO ontology and let be α an equality-free ground atomic formula.
Then,

O |= α iff δ(π(O)) |=f δ(α).

Proof:
Equivalence (with respect to entailment, modulo the transformation δ) between π(O) and δ(π(O)) fol-
lows from Theorem 3.2, Lemma 3.3 and the fact that π(O) is equivalent to a set of Horn formulas without
equality in the head. ut

Given a DHLO ontology O, there is, by Proposition 2.1, a set of Horn formulas which is equivalent
to O which we denote with O′. The F-Logic program corresponding to O, denoted PO, corresponds to
δ(O′), interpreted under the Stable Model Semantics. The following corollary follows immediately from
Theorem 4.1 and Proposition 4.1.

Corollary 4.1. Let O be aDHLO ontology, let PO be the corresponding F-Logic program, and let α an
equality-free ground atomic formula. Then, PO has a single stable model M and

O |= α iff δ(α) ∈M .

A number of currently available F-Logic programming are based on the well-founded semantics [13],
which is another semantics for negation in logic programs. In contrast to the stable model semantics,
models in the well-founded semantics, called well-founded models, are three-valued, i.e. a ground atom
is true, false, or undefined, and every logic program has exactly one well-founded model. With respect
to entailment of ground atoms, and hence query answering, the well-founded semantics can be seen as
an approximation to the stable model semantics, as shown by the following result from the literature.

Proposition 4.2. ([13])
Let P be a normal logic program and let M be the well-founded model of P . Then,

• if no atom in the Herbrand base is undefined in M , then M is the single stable model of P , and

• the set of ground atoms which is true in M is a subset of every stable model of P .

5. HILOG and Description Logics with Meta-Modeling

In this section we apply the results obtained in this paper to HILOG [11] and Description Logics with
meta-modeling [24].
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5.1. HILOG

HILOG [11] is a language which, like F-Logic, has syntactically higher-order features, but stays in a
first-order semantic framework. However, in contrast to F-Logic, it does not have specific syntactical
features for ontology modeling, but instead extends the syntax of first-order logic with the possibility to
quantify over predicates and functions, as well as atomic formulas.

The alphabet of a HILOG language consists of a countable set S of parameter symbols. Let V be a
countable sets of variable symbols, disjoint from S. Then, terms are formed as follows: any t ∈ S ∪ V
is a term and if t, t1, . . . , tn (n ≥ 0) are terms, then t(t1, . . . , tn) is a term. Any term and any equality
atom t1 = t2 is an atomic formula. Complex formulas are built from atomic formulas in the usual way,
using the usual logical connectives (∧,∨, . . . ,⊃), quantifiers (∀,∃), and parentheses (‘)’, ‘(’).

A HILOG-structure is a quadruple M = 〈U,Utrue, I, F 〉, where U is a countable nonempty set (the
domain), Utrue ⊆ U specifies which of the elements in U correspond to true propositions, I : S 7→ U
maps parameter symbols to elements of the domain, and F : U 7→ [Uk 7→ U ], maps every u ∈ U to a
function [Uk 7→ U ], also denoted u(k)

F , for every positive integer k ≤ 1.
Given a HILOG-structure M and a variable assignment B : V 7→ U , B recursively extends to terms

as follows: B(s) = I(s) for every s ∈ S, and B(t(t1, . . . , tn)) = B(t)(n)
F (B(t1), . . . , B(tn)).

A structure M satisfies an atomic formula φ, given a variable assignment B, if B(φ) ∈ Utrue. This
extends to complex formulas in the usual way. As usual, M is a model of φ if M satisfies φ for every
variable assignment B, and φ is HILOG-valid if every HILOG-structure is a model of φ. These notions
extend to sets of formulas in the usual way.

We say that a set of formulas Φ HILOG-entails a formula φ if every HILOG-structure which is a
model of Φ is also a model of φ.

The main result about cardinal formulas in HILOG is analogous to the result about cardinal formulas
in F-Logic.

Proposition 5.1. ([11], Theorem 3.2)
Let Φ ⊆ L be a finite first-order theory and φ ∈ L a formula. Then,

if Φ |= φ then δ(Φ) HILOG-entails δ(φ).

If ¬(
∧

Φ) ∨ φ is cardinal, then, additionally,

Φ |= φ iff Φ HILOG-entails φ.

The following corollary follows immediately from Lemma 3.3 and Proposition 5.1.

Corollary 5.1. Let φ ∈ L be an E-safe sentence, then

• φ is HILOG-valid if and only if φ is valid in first-order logic, and

• if Φ ⊆ L is a finite set of E-safe sentences, then Φ HILOG-entails φ if and only if Φ |= φ.
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5.2. Description Logics with Meta-modeling

Two proposals for extending SHOIQ with meta-modeling support are presented in [24]. The propos-
als are based on the contextual predicate calculus and inspired by HILOG [11], respectively. The two
proposals are called the π-semantics and the v-semantics, respectively. We are concerned here with the
v-semantics, which features meta-modeling in the style of HILOG. However, there is a distinction: in
HILOG, atomic formulas are interpreted as elements of a domain U , whereas this is not the case in the
v-semantics. In fact, in the v-semantics, classes and properties are interpreted using class- and property-
extension functions, in the spirit of the ∈U and I� relation and function, in F-structures.

The definition of the syntax of SHOIQ (resp., SHIQ) with meta-modeling is obtained from the
definition of the syntax of SHOIQ (resp., SHIQ) in Section 2 by omitting the requirement that the sets
of concept, role, and individual identifiers are mutually disjoint; the sets of concept, role and individual
identifiers comprise the set of parameter symbols S.

A v-interpretation is a tuple I = 〈U, IF , IC , IR〉, where U is a countable non-empty set (the domain),
IF is a parameter interpretation function IF : S → U , IC is a class extension function IC : U → 2U ,
and IR is a role extension function IR : U → 2(U×U). The class extension function IC extends to
descriptions as follows:

IC(A) = AI ⊆ U
IC(>) = U

IC(⊥) = ∅
IC(C u C ′) = IC(C) ∩ IC(C ′)
IC(C t C ′) = IC(C) ∪ IC(C ′)

IC(¬C) = U\IC(C)
IC({o1 . . . on}) = {IF (o1), . . . , IF (on)}

IC(∃R.C) = {x | (x, y) ∈ IR(IF (R)) ∧ y ∈ IC(C)}
IC(∀R.C) = {x | (x, y) ∈ IR(IF (R))→ y ∈ IC(C)}

IC(≥ nR.C) = {x | ‖{y | (x, y) ∈ IR(IF (R)) ∧ y ∈ IC(C)}‖ ≥ n}
IC(≤ nR.C) = {x | ‖{y | (x, y) ∈ IR(IF (R)) ∧ y ∈ IC(C)}‖ ≤ n}

Satisfiability of a formula φ in a v-interpretation I , denoted I |=v φ, is defined as follows:

I |=v C v C ′ iff IC(C) ⊆ IC(C ′),
I |=v C ≡ C ′ iff IC(C) = IC(C ′),
I |=v R v R′ iff IR(IF (R)) ⊆ IR(IF (R′)),
I |=v R ≡ R′− iff IR(IF (R)) = IR(IF (R′))−,
I |=v Trans(R) iff IR(IF (R))+ ⊆ IR(IF (R)),
I |=v o1 ∈ C iff IF (o1) ∈ IC(C),
I |=v 〈o1, o2〉 ∈ R iff 〈IF (o1), IF (o2)〉 ∈ IR(IF (R)),
I |=v o1 = o2 iff IF (o1) = IF (o2), and
I |=v o1 6= o2 iff IF (o1) 6= IF (o2),
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where R+ denotes the transitive closure of the relation R, and R− denotes the inverse of R.
The notions of a model and entailment are defined as usual. We denote entailment in the v-semantics

with the symbol |=v.
We extend the mapping π which was defined in Section 2 to map from SHOIQ with meta-modeling

to contextual FOL; we can simply adopt the definitions of the mapping function from the Tables 1 and
2. We then use the mapping function δ to transform SHOIQ theories with meta-modeling to F-Logic.
We obtain the following correspondence.

Theorem 5.1. Let Φ be a SHOIQ theory with meta-modeling. Then, there exists a v-interpretation I
such that I |=v Φ iff there exists an F-structure I such that I |=f δ(π(Φ)).

Proof:
(Sketch) (⇒) Let I = 〈U, IF , IC , IR〉 be a v-interpretation such that I |=v Φ. The corresponding F-
structure I = 〈U,≺U ,∈U , IF , IP , I�〉 is defined as follows: (i) the domains are the same, (ii) IF (t) =
IF (t) for every t ∈ S, (iii) u1 ∈U u2 if u1 ∈ IC(u2), for every pair (u1, u2) ∈ U × U , and (iv)
I�(u) = IR(u) for every u ∈ U . It is easy to verify that I |=f Φ.
(⇐) Analogous. ut

Since SHOIQwith meta-modeling is closed under negation, correspondence with respect to validity
and entailment follows immediately.

Using this correspondence, we can immediately apply the results obtained in this paper to SHIQ
and SHOIQ with meta-modeling.

Proposition 5.2.

1. If Φ is a finite SHIQ theory and φ is a SHIQ axiom, then Φ v-entails φ iff Φ |= φ;

2. if Φ is a finite SHOIQ theory, φ is a SHOIQ axiom, and Φ |= φ, then Φ v-entails φ; and

3. there are a SHOIQ theory Φ′ and a SHOIQ axiom φ′ such that Φ′ v-entails φ′, but Φ′ 6|= φ′.

Note that (2) in Proposition 5.2 was already implicit in [24].

6. Related Work

Balaban [4] proposes to use F-Logic as an underlying framework for Description Logics and uses the
flexibility of F-Logic to extend Description Logics. DFL [5] uses F-Logic to reason about ontologies
and rules. The major differences between the approach of Balaban and our approach are: (a) we do not
need function symbols if the original language does not use function symbols; (b) we allow arbitrary
predicate-based ontology languages, whereas Balaban’s translation is restricted to Description Logics;
and (c) Balaban uses a sorted F-Logic, whereas we do not need sorts for a large class of formulas.

F-OWL [27] uses FLORA [26], an F-Logic programming implementation, to reason over OWL. The
authors capture the semantics of OWL using entailment rules over RDF triples. It is not clear exactly
which part of the semantics of OWL is captured in F-OWL.
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7. Conclusions

In predicate-based ontology representation languages (e.g. Description Logics), classes are modeled as
unary predicates and properties as binary predicates, which are interpreted as sets and as binary relations,
respectively. In F-Logic, classes and properties are both first interpreted as objects and then related to
sets and relations, respectively.

In this paper we have introduced a translation from predicate-based ontologies to ontologies in F-
Logic. We have shown that this translation preserves entailment for large classes of predicate-based
ontology languages, including the class of cardinal formulas. Intuitively, cardinal formulas do not restrict
the size of the domains of the models. We have defined the class of E-safe formulas and shown that E-
safe formulas are cardinal. Finally, we have shown that the class of E-safe formulas is a very expressive
class of formulas which includes the Description Logic SHIQ.

We have used the translation to close the open problem of the F-Logic extension of Description
Logic Programs [16]. Furthermore, we have shown that our results also apply to HILOG [11] and the
v-semantics for Description Logics with meta-modeling [24].

The results obtained in this paper can be used for, for example, F-Logic based reasoning with, and
extension of, classes of predicate-based ontology languages. Another application of the results is the use
of F-Logic as a vehicle for the extension of RDF(S) [17]. Initial results on the F-Logic-based reasoning
with, and extension of, RDF(S) are reported in [9].

Appendix. Proofs of Lemmas 3.2 and 3.3

Proof of Lemma 3.2:
To prove 1. we define, for a given F-Logic structure I, the corresponding FOL interpretation (I)FOL. We
then proceed by contradiction, and show that whenever there is an F-Logic structure I which does not
satisfy the formula δ(φ), the corresponding FOL interpretation (I)FOL does not satisfy φ, contradicting
the assumption that φ is valid in FOL:

1. Given an F-structure I = 〈U,≺U ,∈U , IF , IP , I�〉 for the language LF , the corresponding FOL inter-
pretation I = (I)FOL = 〈U, ·I〉 for L is defined as follows: (i) ∀ f ∈ F : f I = IF (f), (ii) ∀ unary c ∈ P:
cI = {k | k ∈U IF (c), k ∈ U}, (iii) ∀ binary r ∈ P: rI = {〈k1, k2〉 | k2 ∈ I�(IF (r))(k1), for k1, k2 ∈
U}, and (iv) ∀ non-unary and non-binary p ∈ P: pI = IP (p).

Assume that φ is valid in first-order logic, but δ(φ) is not valid in F-Logic. Then, there must be some
F-structure I such that I 6|=f δ(φ). It is easy to verify that I = (I)FOL does not satisfy φ, contradicting
the assumption that φ is valid in first-order logic.

The proof of 2. is similar: for a given cardinal FOL interpretation I, we define the corresponding F-
Logic structure (I)FL. We then proceed by contradiction. We show that whenever there is a cardinal
interpretation I which does not satisfy the formula φ, (I)FL does not satisfy δ(φ). By Proposition 3.2 we
know that whenever a cardinal formula φ is not valid in FOL, there must be some cardinal interpretation
I such that I 6|= φ. Therefore, if a cardinal formulas φ is not valid, δ(φ) is not valid, contradicting the
assumption that δ(φ) is valid in F-Logic.

2. Given a cardinal interpretation I = 〈U, ·I〉 of L. Since |U | is greater than or equal to the number of
symbols in L, we may assume that for each q ∈ P there is a unique individual kq ∈ U . I = (I)FL =
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〈U,�U ,∈U , IF , IP , I�〉 is the corresponding F-Logic structure, which is defined as follows: (i) ∀ f ∈ F :
IF (f) = f I , (ii) ∀ unary c ∈ P: IF (c) = kc, (iii) ∀ binary r ∈ P: IF (r) = kr, (iv) ∀ unary c ∈ P
and every individual k ∈ U , if k ∈ cI then k ∈U IF (c), (v) ∀ unary c1, c2 ∈ P: IF (c1) �U IF (c2) if
cI1 ⊆ cI2, (vi) ∀ binary r ∈ P and ∀ k1, k2 ∈ U , if 〈k1, k2〉 ∈ rI then k2 ∈ I�(IF (r))(k1), and (vii) ∀
non-unary and non-binary p ∈ P: IP (p) = pI .

Let φ be a cardinal formula. Assume that δ(φ) is valid in F-Logic, but φ is not valid in first-order
logic. Then, by Proposition 3.2, there must be some cardinal interpretation I = 〈U, ·I〉 such that I 6|= φ,
and thus (I, B) 6|= φ for some variable assignment B. Since I is cardinal, I = (I)FL is defined. To
prove the lemma, it is sufficient to show that I, B 6|=f δ(φ), contradicting the assumption that δ(φ) is
valid in F-Logic. We proceed by induction over the structure of the formula φ.

Consider φ = A(t). (I, B) 6|= φ iff tI,B /∈ AI iff tI,B /∈U IF (A). The ‘only if’ direction follows
from (v) in the translation above. The ‘if’ direction follows from the fact that, by construction of I,
IF (C) 6= k for any k = IF (D), with D 6= C a concept identifier. Similar for formulas of the form
R(t1, t2).

Consider φ = (t1 = t2). (I, B) |= φ iff tI,B
1 = tI,B

2 iff tI,B1 = tI,B2 . The last ‘iff’ follows trivially
from the construction of I.

Consider φ = ∀x(ψ). (I, B) 6|= φ iff for some x-variant B′ of B, (I, B′) 6|= ψ iff (I, B′) 6|= δ(ψ).
The last ‘iff’ follows by induction and from the observation that the domains of I and I are the same.
Similar for φ = ∃x(ψ). This can be trivially extended to formulas of the forms ¬ψ, ψ1∧ψ2, and ψ1∨ψ2.

�

Proof of Lemma 3.3:
Cardinality of the first and second class is shown in [11]. The proof of cardinality of E-safe sentences
proceeds along the following lines. For each E-safe ϕ sentence we show that whenever ϕ is not satisfied
in some interpretation I, then ϕ is not satisfied in a corresponding cardinal interpretation Ic. From
Proposition 3.2 follows that ϕ is cardinal.

We first define, given an interpretation I, the corresponding cardinal interpretation Ic. We need the
following auxiliary notion. Given an interpretation I = 〈U, ·I〉 of a language L with signature ΣL =
〈F ,P〉, k ∈ U is unused in I if: (a) k does not occur in the domain or the range of the function
f I : Un → U for any f ∈ F , and (b) k does not occur in any tuple of the relation pI ⊆ Un for any
p ∈ P .

If I is cardinal, then Ic = I. Otherwise, let Ic = 〈U c, ·Ic〉 be the cardinal interpretation obtained
from I by adding a set K of individuals to the domain: U c = U ∪K, such that |U c| = γ, where γ is the
number of symbols in the language L, and defining ·Ic in the following way:

1. for every function symbol f ∈ F , f Ic = f I ,

2. for every n-ary predicate symbol p ∈ P , if ~k ∈ pI , then ~k ∈ pIc, and for every i ∈ {1, . . . , n} and
every k ∈ K, if there is some tuple 〈a1, . . . , ai−1, ai, ai+1, . . . , an〉 ∈ pIc, then 〈a1, . . . , ai−1, k,
ai+1, . . . , an〉 ∈ pIc.

There are five kinds of E-safe sentences: (1) lESF sentences, (2) universal and (3) existential E-
safe sentences, and (4) conjunctions and (5) disjunctions of E-safe sentences. Any lESF sentence φ is
equivalent to a universal sentence ∀x(φ). We proceed to show, for each of the types of formulas (2–5),
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that whenever a sentence ϕ is not satisfied in an interpretation I, ϕ is not satisfied in Ic, i.e. if I 6|= ϕ,
then Ic 6|= ϕ. It follows from Proposition 3.2 that ϕ is cardinal.

(2) ϕ = ∀x(φ):
Since I 6|= ∀x(φ), there must be some variable assignment B of I such that (I, B) 6|= φ. We show

that (Ic, B) 6|= φ by induction over the structure of φ. W.l.o.g. we assume that ∃x, ∀x do not occur in φ.

• φ = p(t1, . . . , tn): since (I, B) 6|= φ, 〈tI,B
1 , . . . , tI,B

n 〉 /∈ pI . By construction of Ic, we have that
also 〈tI

c,B
1 , . . . , tI

c,B
n 〉 /∈ pIc

, and thus (Ic, B) 6|= φ. Similar for φ = ¬p(t1, . . . , tn).

• φ = t1 = t2: follows immediately from the construction of Ic. Similar for φ = ¬t1 = t2.

• φ = ψ1 ∨ ψ2: by induction we obtain (Ic, B) 6|= ψ1 and (Ic, B) 6|= ψ2.

• φ = ψ1∧ψ2: if (I, B) 6|= ψ1 (resp., (I, B) 6|= ψ2), we obtain (Ic, B) 6|= ψ1 (resp., (Ic, B) 6|= ψ2)
by induction.

• φ = ∀~y(χ ⊃ ψ): let B′ be a ~y-variant of B such that (I, B′) 6|= χ ⊃ ψ; observe that xB′
= xB .

Since (I, B) 6|= φ, such a B′ must exist. We have that (I, B′) |= χ, and thus (Ic, B′) |= χ, by
construction of Ic. We obtain (Ic, B′) 6|= ψ by induction.

• φ = ∃~y(χ ∧ ψ): by assumption, we have that for every variable assignment B′ of I which is a
~y-variant of B, (I, B′) 6|= χ∧ψ. Notice that, by construction of φ, every free variable in ψ occurs
in χ. Now, if for every free variable y in χ holds that yB′ ∈ U , (Ic, B′) 6|= χ ∧ ψ immediately
follows by induction, since χ, ψ are both lE-safe.

Now, assume that for some free variable y in χ holds that yB′
= k ∈ K and (Ic, B′) |= χ ∧ ψ. It

is easy to verify, by construction of Ic, that there must be some variable assignment B′′ which is
a ~y-variant of B such that (I, B′′) |= χ ∧ ψ, and thus (I, B) |= φ, contradicting the assumption
(I, B) 6|= φ.

(3) ϕ = ∃x(φ):
Since I 6|= ∃x(φ), there is no variable assignmentB′ of I such that (I, B′) |= φ. LetB be a variable

assignment of Ic. We show that (Ic, B) 6|= φ by induction over the structure of φ.

• φ = p(t1, . . . , tn): if for every ti holds that tI,B
i /∈ K, then clearly (Ic, B) 6|= φ. Now assume

tI,B
i = k ∈ K and (Ic, B) |= p(t1, . . . , tn) for some ti. This means that there is some tuple 〈a1,
. . . , ai−1, k, ai+1, . . . , an〉 ∈ pIc, and thus, by construction of Ic, there must be some tuple 〈a1,
. . . , ai−1, ai, ai+1, . . . , an〉 ∈ pI , thus (I, B′) |= ∃x(φ) for some variable assignment B′ such
that xB′

= ai, contradicting the assumption that I 6|= ∃x(φ). Similar for φ = ¬p(~t).

• φ = t1 = t2: since I 6|= ∃x(φ), t1 and t2 must be different terms. If ti is a ground term or
a constructed term, then clearly tI,B

i /∈ K; (Ic, B) 6|= φ follows straightforwardly from I 6|=
∃(φ). Assume that t1 and t2 are both variables and tB1 = tB2 = k for some k ∈ K, then it is
straightforwardly construct a variable assignment B′ of I such that tB1 = tB2 = k for some k ∈ U ,
and thus (I, B′) |= φ, contradicting the assumption that I 6|= ∃x(φ). Similar for φ = ¬t1 = t2.

• φ = ψ1 ∨ ψ2: by induction we obtain (Ic, B) 6|= ψ1 and (Ic, B) 6|= ψ2.
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• φ = ψ1 ∧ ψ2: let B′ be a variable assignment of I such that yB′
= yB for all variables y 6= x,

then if (I, B′) 6|= ψ1 (resp., (I, B′) 6|= ψ2), we obtain (Ic, B) 6|= ψ1 (resp., (Ic, B) 6|= ψ2) by
induction.

• φ = ∀~y(χ ⊃ ψ): let B′ be a ~y-variant of B such that (I, B′) 6|= χ ⊃ ψ. Since I 6|= ∃x(φ), such
a B′ must exist. We have that (I, B′) |= χ, and thus (Ic, B′) |= χ, by construction of Ic. We
obtain (Ic, B′) 6|= ψ by induction.

• φ = ∃~y(χ∧ψ): by assumption, we have that for every ~y-variantB′ ofB, (I, B′) 6|= χ∧ψ. Assume
that yB′

/∈ K for all variables y 6= x. Since χ, ψ are both lE-safe, we obtain (Ic, B′) 6|= χ ∧ ψ by
induction.

Now assume that for some free variable y in χ holds that yB′
= k ∈ K and (Ic, B′) |= χ ∧ ψ. It

is easy to verify that, by construction of Ic, there must be some variable assignment B′′ which is
a y-variant of B such that (I, B′′) |= χ ∧ ψ, contradicting the assumption.

(4) ϕ = ψ1 ∧ ψ2:
Assume that I 6|= ψ1 ∧ ψ2, and thus I 6|= ψ1 or I 6|= ψ2. By induction we immediately obtain

Ic 6|= ψ1 or Ic 6|= ψ2, and thus Ic 6|= ψ1 ∧ ψ2

(5) ϕ = ψ1 ∧ ψ2:
Assume that I 6|= ψ1 ∨ ψ2, and thus I 6|= ψ1 and I 6|= ψ2. By induction we immediately obtain

Ic 6|= ψ1 and Ic 6|= ψ2, and thus Ic 6|= ψ1 ∨ ψ2. �
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