
Tractable Reasoning with DL-Programs over
Datalog-rewritable Description Logics

Stijn Heymans and Thomas Eiter and Guohui Xiao1

Abstract. The deployment of KR formalisms to the Web has cre-
ated the need for formalisms that combine heterogeneous knowledge
bases. Nonmonotonic dl-programs provide a loose integration of De-
scription Logic (DL) ontologies and Logic Programming (LP) rules
with negation, where a rule engine can query an ontology with a
native DL reasoner. However, even for tractable dl-programs, the
overhead of an external DL reasoner might be considerable. To rem-
edy this, we consider Datalog-rewritable DL ontologies, i.e., ones
that can be rewritten to Datalog programs, such that dl-programs
can be reduced to Datalog¬, i.e, Datalog with negation, under well-
founded semantics. To illustrate this framework, we consider several
Datalog-rewritable DLs. Besides fragments of the tractable OWL 2
Profiles, we also present LDL+ as an interesting DL that is tractable
while it has some expressive constructs. Our results enable the usage
of DBLP technology to reason efficiently with dl-programs in pres-
ence of negation and recursion, as a basis for advanced applications.

1 Introduction
As the envisioned basis of future information systems, the Semantic
Web is a fertile ground for deploying AI techniques, and in turn raises
new research problems in AI. As a prominent example, the combina-
tion of rules with Description Logics (DLs), which is central to the
Semantic Web architecture, has received high attention over the past
years, with approaches like Description Logic Programs [12], DL-
safe rules [20], r-hybrid KBs [21], DL+log [22], MKNF KBs [19],
Description Logic Rules and ELP [15, 16], and dl-programs [8].

In particular, dl-programs support a loosely-coupled integration of
rules and ontologies, and provide an expressive combination frame-
work based on the interaction of rules with a DL knowledge base
(KB) via so-called dl-atoms. Such dl-atoms query the DL KB by
checking for entailment of ground atoms or axioms w.r.t. the KB; as
knowledge deduced by the rules can be streamed up to the DL KB in
turn, a bi-directional flow of information is possible.

The answer set semantics of dl-programs in [8], based on [11],
is highly expressive, but on the other hand already intractable on
the rule side; hence, towards scalable reasoning with negation, [9]
presents a well-founded semantics for dl-programs, based on [10].
Given that the queries in dl-atoms are tractable, such programs can
be evaluated in polynomial time (as usual, under data complexity).

Tractability of queries in dl-atoms is in line with recent tractable
DLs such as the DL-Lite families [6], EL++ [1, 2], and Description
Logic Programs [12], that strive for scalability. In fact, they gave rise

1 Knowledge Based Systems Group, Institute of Information Systems, Vienna
University of Technology, Favoritenstraße 9-11, A-1040 Austria, email:
{heymans,eiter,xiao}@kr.tuwien.ac.at. This work has been
partially supported by the Austrian Science Fund (FWF) projects P20305
and P20840, and by the EC project OntoRule (IST-2009-231875).

to three families of languages that resulted in the OWL 2 Profiles of
the emerging Web Ontology Language OWL 2 [18].

However, even when loosely coupling such a tractable DL with
rules via dl-programs under well-founded semantics, one still needs a
dedicated algorithm that uses native DL reasoners to perform the ex-
ternal queries, thus causing a significant overhead. This paper tries to
overcome this, by identifying a class of Description Logics, so-called
Datalog-rewritable DLs, for which reasoning with dl-programs can
be reduced to pure Logic Programming, i.e., to Datalog¬ (Datalog
with negation under well-founded semantics). This class is defined
non-constructively: a transformation of DL KBs to Datalog pro-
grams must exist, such that ground entailment from a DL KB carries
over to the Datalog program. Besides this non-constructive class, we
do present several (syntactically defined) DLs which have this prop-
erty, including the novel DL LDL+.

The main contributions of this paper are as follows.

• We define a class of Datalog-rewritable DLs (Section 3), and
show how reasoning with dl-programs over such DLs under well-
founded semantics can be reduced to Datalog¬ by means of an ef-
ficient transformation. Noticeably, for dl-programs without nega-
tion, the result is a standard Datalog program; moreover, the trans-
formation preserves stratified negation.

• We introduce LDL+ as a particular Datalog-rewritable DL (Sec-
tion 4). This DL has no negation (hence the +) and distinguishes
between expressions on the left- and right-hand side of axioms.
LDL+ offers expressive concept- and role expressions on the
left-hand side of axioms (hence the L in LDL+), e.g., qualified
number restrictions and transitive closure of roles. The Datalog-
rewritability of LDL+ (Section 5) is interesting in itself, showing
how to do reasoning in DLs with expressive constructs efficiently
via Logic Programming. As a side result, we obtain that reason-
ing in LDL+ is tractable, considering both data and combined
complexity; more precisely, we show that it is PTIME-complete
in both settings. Despite its low complexity, LDL+ is still ex-
pressive enough to represent many constructs useful in ontology
applications [2] such as role equivalences and transitive roles.

• We review the different OWL 2 Profiles and relate them to LDL+

(Section 6). While LDL+ misses some constructs, e.g., the exists
restriction on axiom right-hand sides as in EL++ and DL-Lite , or
negation as in the DL-Lite families, it adds others, e.g., expressive
role constructs and transitive closure (which is not expressible in
first-order logic). Furthermore, we show that LDL+ encompasses
Description Logic Programs without a complexity increase.
Our results enable the use of mature LP technology, e.g., systems

like XSB or Datalog engines like DLV, and emerging implementa-
tions of recursive SQL, to reason efficiently with dl-programs involv-
ing recursion and negation, as a basis for advanced applications.

2 Preliminaries
2.1 Datalog and Datalog¬

Constants, variables, terms, and atoms are defined as usual. We as-
sume that a binary inequality predicate 6= is available; atoms not us-
ing 6= are normal. A Datalog¬ rule r has the form

h← b1 , . . . , bk ,not c1 , . . . ,not cm (1)

where the body b1, . . . , bk, c1, . . . , cm are atoms and h is a normal
atom. We call B−(r) = {c1, . . . , cm} the negative body of r. If
B−(r) = ∅, then r is a Datalog rule. A finite set of Datalog¬

(Datalog) rules is a Datalog¬ (Datalog) program. Ground terms,
atoms, and programs are defined as usual. A fact is a ground rule (1)
with k = m = 0.

The Herbrand Domain HP of a program P is the set of constants
from P . The Herbrand Base BP of P is the set of normal ground
atoms with predicates and constants from P . An interpretation of P
is any set I ⊆ BP . For a ground normal atom a, we write I |= a if
a ∈ I; for a ground atom c1 6= c2, we write I |= c1 6= c2 if c1 and
c2 are different; for a ground negation as failure atom l = not a, we
write I |= l if I 6|= a. For a set of ground (negation as failure) atoms
α, I |= α if I |= l for all l ∈ α. A ground rule r : h←α is satisfied
w.r.t. I , denoted I |= r, if I |= h whenever I |= α.

An interpretation I of a ground program P is a model of P , if
I |= r for every r ∈ P ; in addition, I is minimal, if P has no model
J ⊂ I . For a non-ground P , I is a (minimal) model of P iff it is
a (minimal) model of gr(P), the grounding of P with the constants
of P defined as usual. Each Datalog program P has some minimal
model, which in fact is unique; we denote it with MM (P). We write
P |= a if MM (P) |= a.

We recall the well-founded semantics [10] for Datalog¬. Let I be
an interpretation for a Datalog¬ program P . The GL-reduct [11] P I

of a program P is the set of Datalog rules h← b1 , . . . , bk such that
r : h← b1 , . . . , bk ,not c1 , . . . ,not cm ∈ gr(P) and I 6|= ci, for
all i, 1 ≤ i ≤ m.

Using the γ operator [5], one can define the well-founded seman-
tics as follows. Let γP (I) = MM (P I) and γ2

P (I) = γP (γP (I)),
i.e., applying the γ operator twice; as γP is anti-monotone, γ2

P is
monotone. The set of well-founded atoms of P , denoted WFS (P),
is exactly the least fixed point of γ2

P . We denote with P |=wf a that
a ∈ WFS (P).

For a Datalog (Datalog¬) program P and an atom a, deciding
P |=a (P |=wf a) is data complete (P is fixed except for facts) for
PTIME and (combined) complete (P is arbitrary) for EXPTIME [7].

2.2 Description Logics
For space constraints, we assume the reader is familiar with DLs and
adopt the usual conventions, see [3]. We highlight some points below.

A DL knowledge base (KB) Σ = 〈T ,A〉 consists of a finite set
T (called TBox) of terminological and role axioms α v β, where
α and β are concept (respectively role) expressions, and a finite set
A (called ABox) of assertions A(o1) and R(o1, o2) where A is a
concept name, R is a role name, and o1, o2 are individuals (i.e., con-
stants). We also view Σ as the set T ∪ A.

For particular classes of DL KBs Σ, we assume that (1) Σ is de-
fined over a (finite) set Po of concept and role names; we call the
constants appearing in Σ the Herbrand domain of Σ, denoted with
∆H(Σ); (2) Σ can be extended with arbitrary assertions, i.e., for any
ABox A′ (over Po), Σ ∪ A′ is an admissible DL KB, and (3) Σ de-
fines a ground entailment relation |= such that Σ |= Q(e) is defined

for dl-queries Q(e), e ground terms, which indicates that all models
of Σ satisfy Q(e). Here, a dl-query Q(t) is either of the form (a)
C(t), where C is a concept and t is a term; or (b) R(t1, t2), where
R is a role and t1, t2 are terms.

The relation Σ |= Q(e) is defined relative to the models of Σ,
which are the interpretations I = (∆I , ·I) that satisfy all axioms
and assertions of Σ, where ∆I 6=∅ is the domain and ·I is an inter-
pretation function for concept- and role names as well as individuals.

We will assume that the unique names assumption holds in inter-
pretations I, i.e., oI1 6= oI2 for distinct o1 and o2, and moreover for
simplicity that oI = o for individuals o (in particular {o}I = {oI}
for nominals) appearing in the KB.

Example 1. Take the DL KB Σ:

(≥2 PapToRev .>) v Over
Over v ∀Super+.Over

{(a, b)} t {(b, c)} v Super

where Super+ is the transitive closure of the role Super . The first
two axioms indicate that someone who has more than two papers
to review is overloaded, and that an overloaded person causes all
the supervised persons to be overloaded as well (otherwise the man-
ager delegates badly). The final axiom — equivalent to the assertions
Super(a, b) and Super(b, c) — defines the supervision hierarchy.

2.3 DL-Programs under Well-Founded Semantics
We introduce dl-programs under well-founded semantics [9].

Informally, a dl-program consists of a DL KB Σ over Po and a
Datalog¬ program P over a set of predicates Pp distinct from Po ,
which may contain queries to Σ. Roughly, such queries ask whether a
certain ground atom logically follows from Σ. Note that the Herbrand
domains of Σ and P are not necessarily distinct.

Syntax. A dl-atom a(t) has the form
DL[S1] p1, . . . , Sm] pm; Q](t) m ≥ 0, (2)

where each Si is either a concept or a role name from Po , pi is a
unary, resp. binary, predicate symbol from Pp , and Q(t) is a dl-
query. We call the list S1] p1, . . . , Sm] pm the input signature
and p1, . . . , pm the input predicate symbols. Intuitively,] increases
Si by the extension of pi prior to the evaluation of query Q(t).2

A dl-rule r has the form (1), where any atom bi, cj may be a dl-
atom. A dl-programKB=(Σ, P) consists of a DL KB Σ and a finite
set of dl-rules P — KB is a dl-program over DL, if Σ is a DL KB.

Semantics. We define the Herbrand base BKB of a dl-program
KB = (Σ,P) as the set of ground atoms with predicate symbols
from P (i.e., from Pp) and constants from the Herbrand domains of
Σ and P . An interpretation ofKB is any subset I ⊆ BKB. It satisfies
a ground atom a under Σ, denoted I |=Σ a,

– in case a is a non-dl-atom, iff I |= a, and
– in case a is a dl-atom of form (2), iff Σ ∪ τ I(a) |= Q(c),

where τ I(a), the extension of a under I , is τ I(a) =
Sm

i=1 Ai(I)
with Ai(I) = {Si(e) | pi(e) ∈ I}. Satisfaction of ground dl-rules
r under Σ is then as usual (see Datalog¬) and denoted with I |=Σ r.
I is a model of KB, denoted I |= KB, iff I |=Σ r for all r ∈ gr(P).

We define the well-founded semantics for dl-programs as in [9] us-
ing the γ2 operator. For I and KB = (Σ,P), let KBI = (Σ, sP I

Σ),

2 Modifiers that were included in the original dl-program, −∪,−∩, may be ex-
pressed by] in strong enough DLs and similarly for subsumption expres-
sions C v D. However, Datalog-rewritability precludes such constructs.

the reduct of KB wrt. I , be the dl-program where sP I
Σ results from

gr(P) by deleting (1) every dl-rule r where I |=Σ a for some
a ∈ B−(r), and (2) from the remaining dl-rules r the negative body
B−(r). Note that sP I

Σ may still contain positive dl-atoms. As shown
in [9], KBI has a single minimal model, denoted MM (KBI).

Now the operator γKB on interpretations I of KB is defined
by γKB(I) = MM (KBI). As γKB is anti-monotone, γ2

KB(I) =
γKB(γKB(I)) is monotone and has a least fixpoint. This fixpoint is
the set of well-founded atoms ofKB, denoted WFS (KB); we denote
with KB |=wf a that a ∈ WFS (KB).

Example 2. Take KB = (Σ,P) where Σ as in Example 1 and P :

r1 : good(X) ← DL[; Super](X ,Y),
not DL[PapToRev] paper; Over](Y);

r2 : over(X) ← not good(X);
r3 : paper(b, p1) ← ;
r4 : paper(b, p2) ← .

Note that the first dl-atom has no input signature. Intuitively, r1 in-
dicates that if X is supervising Y and Y is not overloaded, then X is
a good manager and r2 indicates that if X is a not a good manager
then X is overloaded. Then, KB |=wf over(a).

Deciding (Σ, P) |=wf a is combined complete for EXPTIME

(PTIMENEXP) for Σ in SHIF(D) (SHOIN (D)) and data com-
plete for PTIMENP for Σ in SHIF(D) and SHOIN (D) [9]; here
data complete means that only the constants in Σ and P , the ABox
A, and the facts in P may vary.

3 Reducing DL-Programs to Datalog¬

Let KB = (Σ, P) be a dl-program and let a be a ground atom from
BKB. We define a class of DLs, so-called Datalog-rewritable DLs,
such that reasoning w.r.t. dl-programs over such DLs becomes re-
ducible to Datalog¬. In particular, we show that for such Datalog-
rewritable DLs, we can reduce a dl-program KB = (Σ, P) to a
Datalog¬ program Ψ(KB) such that KB |=wf a iff Ψ(KB) |=wf a.

We abstractly define which DLs we consider Datalog-rewritable.

Definition 1. A DLDL is Datalog-rewritable if there exists a trans-
formation ΦDL from DL KBs to Datalog programs such that, for
any DL KB Σ,

(i) Σ |= Q(o) iff ΦDL(Σ) |= Q(o) for any concept or role name
Q from Σ, and individuals o from Σ;

(ii) ΦDL is modular, i.e., for Σ = 〈T ,A〉 where T is a TBox and
A an ABox, ΦDL(Σ) = ΦDL(T) ∪ A;

In other words, a ground atom a is entailed by the DL KB Σ
iff a ∈ MM (ΦDL(Σ)), the unique minimal model of the Datalog
program ΦDL(Σ). Furthermore, we refer to a polynomial Datalog-
rewritable DL DL, if ΦDL(Σ) for a DL KB Σ is computable in
polynomial time.

We assume w.l.o.g. that both P and ΦDL(Σ) are safe—each vari-
able appears in a positive normal atom in the body—for KB =
(Σ,P).

Let ΛP
∆
= {λ | DL[λ; Q] occurs in P}, i.e., the input signatures

appearing in P . The translation of KB = (Σ,P) to a Datalog¬

program is then built up of the following four components:

• ΣΛP

∆
= ∪λ∈ΛP Σλ where Σλ is Σ with all concept and role names

subscripted with λ. Intuitively, each input signature of a dl-atom

in P will influence Σ differently. As we want to cater for these
influences in one program, we have to differentiate between the
KBs with different inputs.

• A Datalog program ρ(ΛP) containing for each λ = S1]
p1, . . . , Sm]pm ∈ ΛP the rules Siλ(Xi)← pi(Xi), 1 ≤ i ≤ m,
where the arity of Xi matches the one of Si. Intuitively, we add
the extension of pi to the appropriate concept or role.

• A set TP of Datalog rules >(a)← and >2 (a, b)← for all a, b
in the Herbrand domain of P to ensure their introduction in Σ.

• Finally, P ord results from replacing each dl-atom DL[λ; Q](t) in
P with a new atom Qλ(t).

The transformation of the dl-program KB is then defined as

Ψ(KB)
∆
= ΦDL(ΣΛP) ∪ P ord ∪ ρ(ΛP) ∪ TP . (3)

Example 3. Let KB = (Σ, P) where Σ = { C v D } and

P
∆
= { p(a)← ; s(a)← ; s(b)← ;

q←DL[C] s;D](a),not DL[C] p;D](b) }.

Then ΛP = {λ1
∆
= C] s, λ2

∆
= C] p}, such that ρ(ΛP)

consists of Cλ1 (X)← s(X) and Cλ2 (X)← p(X). The component
P ord consists of q←Dλ1 (a),not Dλ2 (b) and the original facts.

Note that Ψ(KB) is a Datalog program, if KB is negation-free,
and a stratified Datalog¬ program, if KB is stratified (cf. [8]); thus,
beneficial for evaluation, acyclic negation is fully preserved.

Proposition 1. LetKB be a dl-program over a polynomial Datalog-
rewritable DL. Then, Ψ(KB) is constructible in polynomial time.

The following result allows us to reduce reasoning with dl-
programs to Datalog¬ under well-founded semantics.

Theorem 2. LetKB be a dl-program over a Datalog-rewritable DL
and a from BKB. Then, KB |=wf a iff Ψ(KB) |=wf a.

From Theorem 2 and the fact that any Datalog¬ program P
amounts to a dl-program (∅, P) [9], we obtain the following result.

Corollary 3. For any dl-program KB over a DL DL and ground
atom a from BKB, deciding KB |=wf a is (i) data complete for
PTIME, if DL is Datalog-rewritable and (ii) combined complete for
EXPTIME, if DL is polynomial Datalog-rewritable.

Thus, over Datalog-rewritable DLs, the data complexity of
dl-programs decreases from PTIMENP to PTIME compared to
SHIF(D) and SHOIN (D), and the combined complexity from
PTIMENEXP to EXPTIME compared to SHOIN (D) (and is the
same as for SHIF(D)) over polynomial Datalog-rewritable DLs.

4 The Description Logic LDL+

In this section, we introduce the Description LogicLDL+ and derive
some basic model-theoretic properties.

4.1 Basic Definitions
We design LDL+ by syntactic restrictions on the expressions that
occur in axioms, distinguishing between occurrence in the “body” α
and the “head” β of an axiom α v β. We define

• b-roles (b for body) E, F to be role names P , role inverses E−,
role conjunctions E uF , role disjunctions E tF , role sequences
E ◦ F , transitive closures E+, role nominals {(o1, o2)}, and role
top >2, where o1, o2 are individuals, and >2 is the universal role;

• h-roles (h for head) E, F to be role names P , role inverses E−,
role conjunctions E u F , and role top >2.

Furthermore, let basic concepts C, D be concept names A, the top
symbol >, and conjunctions C uD; then we define

• b-concepts C, D as concept names A, conjunctions C u D, dis-
junctions C t D, exists restrictions ∃E.C, atleast restrictions
≥n E.C, nominals {o}, and the top symbol>, where E is a b-role
as above, and o is an individual.

• h-concepts (h for head) as basic concepts B or value restrictions
∀E.B where B is a basic concept and E a b-role.

Note that all h-roles are also b-roles, but an analog relation does
not hold for concepts: ∀E.C is an h-concept but not a b-concept.
When immaterial, we will refer to both b-concepts and h-concepts as
(LDL+) concepts; we use an analog convention for roles.

Now an LDL+ KB is a pair Σ = 〈T ,A〉 of a finite TBox T and
a finite ABox A, where

• T is a set of terminological axioms B v H , where B is a b-
concept and H is an h-concept, and role axioms S v T , where S
is a b-role and T is an h-role, and

• A is a set of assertions of the form C(o) and E(o1, o2) where C
is an h-concept and E an h-role.

Example 4. Reconsider the DL KB Σ from Example 1. It is easily
checked that Σ amounts to an LDL+ KB.

Normal Form. To simplify matters, we restrict to an expressive
normal form of LDL+ knowledge bases Σ. First, an assertion C(o)
is equivalent to the axiom {o} v C, and and similarly E(o1, o2) is
equivalent to {(o1, o2)} v E; hence, we assume that the ABox is
empty and identify Σ with its TBox. Second, every axiom B v H as
above can be equivalently rewritten such that H is either a concept
name A, the > symbol, or ∀E.A, where A is a concept name and E
is a b-role. We can similarly remove conjunction from the head T of
role axioms S v T , and restrict the h-role T to role names, inverse
role names, and >2.

Proposition 4. EveryLDL+ KB Σ can be transformed into the form
described in polynomial (in fact, in linear) time.

In the sequel, we tacitly deal with such normalized LDL+ KBs.

4.2 Immediate Consequence Operator
In this section, we define an immediate consequence operator for
LDL+ that allows us to calculate the ground entailment of atoms.
Moreover, we show that ground entailment for LDL+ is domain in-
dependent, and thus can be confined to the constants in the KB.

We first show that b-concepts satisfy a monotonicity property. For
a given KB Σ and interpretations I = (∆, ·I) and J = (∆, ·J)
over the same domain ∆, we write I ⊆ J if AI ⊆ AJ for concept
names A in Σ and P I ⊆ PJ for role names P in Σ; note that oI =
oJ for any individual o due to the unique names assumption. Then
I ⊂ J if I ⊆ J but I 6= J . We say that an interpretation (resp.
model) I = (∆, ·I) of Σ is minimal, if there is no interpretation
(resp. model) J = (∆, ·J) of Σ such that J ⊂ I.

Definition 2. An LDL+ concept (role) C (E) is monotonic, if for
each pair of interpretations I = (∆, ·I) and J = (∆, ·J) of Σ,
I ⊆ J implies CI ⊆ CJ (EI ⊆ EJ).

Proposition 5. All b-concepts and all LDL+ roles are monotonic.

Note that an h-concept ∀E.B is not monotonic.
We can write interpretations I = (∆, ·I) as sets, called set-inter-

pretations, consisting of A(x) if x ∈ AI , P (x, y) if (x, y) ∈ P I for
concept (role) names A (P), and {o}(o) for individuals o. Instead
of x ∈ CI ((x, y) ∈ EI), we write I |= C(x) (I |= E(x, y))
for concepts (roles) C (E). We furthermore assume that each such I
contains >(x) for every x ∈ ∆ as well as >2(x, y) for all x, y ∈ ∆.

One can see that for a fixed ∆, the set I∆ of all set-interpretations
over ∆ is under the usual subset relation ⊆ a complete lattice as in
[24]. For an LDL+ KB Σ and a domain ∆, we then define an imme-
diate consequence operator T∆ on I∆ as follows, where A ranges
over the concept names, P over the role names, and x, y over ∆:

T∆(I) = I ∪ {A(x) | B v A ∈ Σ, I |= B(x)}
∪ {A(x) | B v ∀E.A ∈ Σ, I |= B(y), I |= E(y, x)}
∪ {P (x, y) | S v P ∈ Σ, I |= S(x, y)}
∪ {P (y, x) | S v P− ∈ Σ, I |= S(x, y)} .

For a set-interpretation I of Σ over ∆, T∆(I) is still a set-
interpretation of Σ over ∆, such that T∆ is well-defined.

As easily seen, T∆ is monotone, i.e., J ⊆ I implies T∆(J) ⊆
T∆(I), and thus has a least fixpoint LFP(T∆), i.e., a unique minimal
I such that T∆(I) = I [24]. This fixpoint corresponds to a model
of Σ, which in fact is the singe minimal model of Σ over ∆.

Proposition 6. Let Σ be an LDL+ KB and let ∆ be a domain for
Σ. Then, (i) Σ has a unique minimal model I = (∆, ·I), denoted
MM (∆, Σ), and (ii) LFP(T∆) = MM (∆, Σ).

Entailment checking of b-concepts can then in each domain be
restricted to the unique minimal model for that domain.

Proposition 7. Let Σ be an LDL+ KB, C a b-concept, and o ∈
∆H(Σ). Then, Σ |= C(o) iff for all ∆, MM (∆, Σ) |= C(o).

Note that the proposition does not necessarily hold if C is an
h-concept. For example, consider Σ = {{a} v A} and the h-
concept C = ∀R.A, where A is a concept name and R is a
role name. Clearly, Σ 6|= ∀R.A(a). However, when we consider
the domain ∆H(Σ) = {a}, MM (∆H(Σ), Σ) = {A(a)} and
MM (∆H(Σ), Σ) |= ∀R.A(a).

Importantly, the only relevant interpretation domain is the Her-
brand domain ∆H(Σ) of the KB Σ.

Proposition 8. Let Σ be an LDL+ KB, C a b-concept, and o ∈
∆H(Σ). Then, Σ |= C(o) iff MM(∆H(Σ), Σ) |= C(o).

Note that MM(∆H(Σ), Σ) = LFP(T∆H(Σ)) is effectively con-
structable by fixpoint iteration (for a finite KB in finite time).

Proposition 8 is at the core of the argument that LDL+ is a
Datalog-rewritable DL, which we show in the next section.

5 LDL+ is Datalog-rewritable
To show that a (normalized) LDL+ KB Σ is Datalog-rewritable,
we construct a suitable Datalog program ΦLDL+(Σ) such that Σ |=
Q(o) iff ΦLDL+(Σ) |= Q(o), whenever A is a concept- or role
name appearing in Σ and o ⊆ ∆H(Σ).

Define the closure of Σ, clos(Σ), as the smallest set containing
(i) all subexpressions that occur in Σ (both roles and concepts) ex-
cept value restrictions, and (ii) for each role name occurring in Σ, its
inverse. Formally, ΦLDL+(Σ) is the following program:

• For each axiom B v H ∈ Σ where H is a concept name, add the
rule H (X)←B(X).

• For each axiom B v ∀E.A ∈ Σ where A is a concept name, add
the rule A(Y)←B(X),E(X ,Y).

• For each role axiom S v T ∈ Σ, add T (X ,Y)←S(X ,Y).
(Here T = P− may be an inverse for a role name P .)

• For each role name P that occurs in Σ, add the rule
P(X ,Y)←P−(Y ,X).

• For each concept (role) name or (role) nominal Q (Q′) in
clos(Σ), add the rules>(X)←Q(X),>(X)←Q ′(X ,Y), and
>(Y)←Q ′(X ,Y). This ensures that newly introduced con-
stants, e.g., in the context of dl-programs, are also assigned to >
— a relevant property for modularity.

• To deduce the top role, add >2 (X ,Y)←>(X),>(Y).
• Next, we distinguish between the types of concepts D in clos(Σ):

– if D = {o}, add D(o)← .

– if D = D1 uD2, add D(X)←D1 (X),D2 (X).

– if D = D1 tD2, add D(X)←D1 (X) and D(X)←D2 (X).

– if D = ∃E.D1, add the rule D(X)←E(X ,Y),D1 (Y).

– if D = ≥n E.D1, add

D(X) ← E(X ,Y1),D(Y1), . . . ,E(X ,Yn),D(Yn),
Y1 6= Y2, . . . , Yi 6= Yj , . . . , Yn−1 6= Yn

(4)

(where 1 ≤ i < j ≤ n).

• Finally, for each role E ∈ clos(Σ):

– if E = {(o1, o2)}, add E(o1 , o2)← .

– if E = F−, add E(X ,Y)←F (Y ,X).

– if E = E1 u E2, add E(X ,Y)←E1 (X ,Y),E2 (X ,Y).

– if E = E1 t E2, add E(X ,Y)←E1 (X ,Y) and
E(X ,Y)←E2 (X ,Y).

– if E = E1 ◦ E2, add E(X ,Y)←E1 (X ,Z),E2 (Z ,Y).

– if E = F+, add

E(X ,Y) ← F (X ,Y)
E(X ,Y) ← F (X ,Z),E(Z ,Y)

(5)

Proposition 9. ΦLDL+ is polynomial rewritable. Furthermore,
ΦLDL+ is modular.

The next result shows that ΦLDL+(Σ) works as desired.

Proposition 10. For every (normalized)LDL+ KB Σ, Q∈ clos(Σ),
and o ⊆ ∆H(Σ), it holds that Σ |= Q(o) iff ΦLDL+(Σ) |= Q(o).

Corollary 11. LDL+ is (polynomial) Datalog-rewritable.

Thus, using Theorem 2, reasoning with dl-programs over LDL+

reduces to reasoning with Datalog¬ under well-founded semantics.

Example 5. Take the LDL+ KB Σ from Example 1. Then, the re-
duction yields the Datalog program ΦLDL+(Σ):

Over(X) ← (≥2 PapToRev .>)(X)
(≥2 PapToRev .>)(X) ← PapToRev(X ,Y1),>(Y1)

PapToRev(X, Y2),>(Y2), Y1 6= Y2

Over(Y) ← Super+(X ,Y),Over(X)
Super+(X ,Y) ← Super(X ,Y)
Super+(X ,Y) ← Super(X ,Z),Super+(Z ,Y)

Super(X ,Y) ← {(a, b)}(X ,Y)
Super(X ,Y) ← {(b, c)}(X ,Y)
{(a, b)}(a, b) ←
{(b, c)}(b, c) ←
Super(X ,Y) ← Super−(Y ,X)

PapToRev(X ,Y) ← PapToRev−(Y ,X)
>2 (X ,Y) ← >(X),>(Y)

and in addition the rules for >.For KB in Example 2, we then can
easily construct Ψ(KB).

Reductions of DLs to LP have been considered before, e.g., in
[14, 23]. Swift [23] reduces reasoning in the DL ALCQI (in fact,
consistency checking of concept expressions) to Datalog¬ under
answer set semantics (employing a guess and check methodology),
while Hustadt et al. [14] reduce reasoning in the DL SHIQ− to dis-
junctive Datalog in a non-modular way, i.e., the translation as such
is not usable in the context of dl-programs; both DLs considered in
[14] and [23] do not feature transitive closure.

From the complexity of Datalog, we obtain by Datalog-
rewritability of LDL+ immediately that it is tractable under data
complexity. Moreover, due to the structure of ΦLDL+(Σ), the same
holds under combined complexity.

Corollary 12. For every LDL+ KB Σ, concept name A, and o ∈
∆H(Σ), deciding Σ |= A(o) is in PTIME under both data and com-
bined complexity.

Indeed, all rules in ΦLDL+(Σ) except (4) can be grounded in
polynomial time (they use only constantly many variables). The rule
(4) can be partially grounded for all values of X; whether the body of
such a partially grounded rule can be satisfied in a given set of ground
atoms is easily decided in polynomial time; hence, we can compute
MM (ΦLDL+(Σ)) by simple fixpoint iteration in polynomial time.

We will establish matching lower complexity bounds below.

6 The OWL 2 Profiles
In this section, we review the OWL 2 Profiles [17], which are frag-
ments of OWL 2 [18] that can be more efficiently evaluated than
OWL 2, and discuss their relation with LDL+.
OWL 2 EL. The OWL 2 EL Profile corresponds to the DL EL++

[1, 2]. We consider the definition of EL++ in [2], which extends
[1], in particular its normal form for TBoxes. One can verify that
the only constructs preventing EL++ axioms from being equivalent
LDL+ axioms are⊥, concrete domains, and exists restrictions in ax-
iom right-hand sides. Let EL++

− denote EL++ without ⊥, concrete
domains, and such exists restrictions.

Proposition 13. EL++
− is a fragment of LDL+, i.e., each EL++

− KB
is an LDL+ KB, and thus polynomially Datalog-rewritable.

Even though EL++ is not a fragment of LDL+, in turn LDL+

contains many constructs that EL++ does not allow, e.g., qualified
number restrictions, inverses, general sequences of roles, role con-
junction, role disjunction, concept disjunction in axiom bodies.
OWL 2 QL. The OWL 2 QL Profile corresponds to the DL-Lite
family DL-Litecore , DL-LiteR, and DL-LiteF [6]. Denote by
DL-Lite−X the DL DL-LiteX without negation and exists restric-
tions in axiom right-hand sides, X ∈ {core,R,F}. Then, both ter-
minological and role axioms in DL-Lite−R are LDL+ axioms; and,
any DL-Lite−R ABox can be rewritten using the nominals of LDL+

as usual.

Proposition 14. The DLs DL-Lite−core and DL-Lite−R are frag-
ments of LDL+, and thus polynomially Datalog-rewritable.

Similar to EL++, full DL-Litecore and DL-LiteR are not frag-
ments of LDL+, but in turn LDL+ has constructs which none of
the DLs DL-LiteX allows, e.g., role sequences.

The DL DL-Lite−F , however, is not a fragment of LDL+. Indeed,
like DL-LiteF it allows for functional restrictions on roles, some-
thing that is not expressible in Datalog as such.

OWL 2 RL. The OWL 2 RL Profile extends so-called Description
Logic Programs [12]. The latter have a classical model semantics
and correspond to the restriction of LDL+ to conjunction and dis-
junction of concepts, exists restrictions, and value restrictions. Thus,
Description Logic Programs are a strict subset of LDL+, missing,
e.g., nominals, qualified number restrictions, and role constructors.

Proposition 15. Description Logic Programs are a fragment of
LDL+, and thus polynomially Datalog-rewritable.

Note that the translation of the transitive closure of a role ex-
pression E+ results in the recursive rules (5) such that, in contrast
with Description Logic Programs, the transformation ΦLDL+ is not
a first-order rewriting, justifying the term Datalog-rewritable. Al-
though DLs with expressive role constructs such as role sequence,
role disjunction and transitive closure tend to become undecidable
(e.g., ALC+N (◦,t) [4]), LDL+ remains decidable. Moreover, it
has an Herbrand domain model property (a finite model property
where the domain is the Herbrand domain). Indeed, from [4] one
can see that the undecidability proofs for expressive DLs extensively
use functional restrictions on roles, a feature LDL+ cannot express.

Checking ground entailment in OWL 2 RL and Description Logic
Programs is data and combined complete for PTIME [17]. As the lat-
ter are a fragment of LDL+ without number restrictions, combined
with Corollary 12 we obtain the following result.

Proposition 16. For any LDL+ KB Σ, concept name A, and
o ∈ ∆H(Σ), deciding Σ |= A(o) is data and combined complete
for PTIME. The hardness holds in absence of number restrictions.

7 Conclusion
We have presented a transformation of nonmonotonic dl-programs,
which are the major formalism for loosely-coupling DL KBs and
nonmonotonic logic programming, to Datalog under well-founded
semantics, which is a predominant nonmonotonic rule formalism in
data and knowledge bases that allows for tractable reasoning. The
transformation is applicable to a range of different DLs, including
LDL+, a novel rich DL, as well as to large fragments of the OWL 2
Profiles that have been designed for tractable DL reasoning. In par-
ticular, the transformation of a negation-free (stratified) dl-program
results in a Datalog (stratified Datalog¬) program. In this way, we
obtain tractable reasoning with recursion and negation, which thanks
to the availability of efficient engines for well-founded semantics
(e.g., the XSB system) provides a basis for developing efficient and
scalable applications that combine rules and ontologies.

Looking at the OWL 2 Profiles based on the DL-Lite families and
EL++, it appears that one of the missing features in LDL+ is the
exists restriction on axiom right-hand sides. However, DLs allowing
this are not straight Datalog-rewritable, as this feature can enforce
new domain elements (beyond the Herbrand domain). One may han-
dle this using function symbols in the logic program or open domains
[13]. However, both extensions cause undecidability in general.

Compared to OWL 2 QL, LDL+ misses negation. Negation is not
realizable in Datalog; it remains to be seen whether for Datalog¬

under well-founded semantics, transformations similar to the one we
presented (with possibly restricted negation in DLs) are feasible.

Finally, Datalog-rewritability is not just useful for (1) DL rea-
soning via Datalog engines or (2) loosely-coupled reasoning via dl-
programs, but also for tight-coupling approaches such as r-hybrid
KBs [21]. Intuitively, while rules in r-hybrid KBs must be DL-safe to
ensure that only the Herbrand domain is relevant, our approach hints
that it is also interesting to look at DLs that have this property. Note
that they are of particular interest for data management, where often
just the Herbrand domain matters.

REFERENCES
[1] F. Baader, S. Brandt, and C. Lutz, ‘Pushing the EL envelope’, in Proc.

IJCAI, pp. 364–369. Morgan-Kaufmann Publishers, (2005).
[2] F. Baader, S. Brandt, and C. Lutz, ‘Pushing the EL envelope further’, in

Proc. OWLED08DC, (2008). http://ceur-ws.org/Vol-496.
[3] The Description Logic Handbook, eds., F. Baader, D. Calvanese, D. L.

McGuinness, D. Nardi, and P. F. Patel-Schneider, CUP, 2003.
[4] F. Baader and U. Sattler, ‘Number restrictions on complex roles in DLs:

A preliminary report’, in Proc. KR, pp. 328–339, (1996).
[5] C. Baral and V. S. Subrahmanian, ‘Dualities between alternative seman-

tics for logic programming and nonmonotonic reasoning’, JAR, 10(3),
399–420, (1993).

[6] D. Calvanese, G. de Giacomo, D. Lembo, M. Lenzerini, and Riccardo
Rosati, ‘Tractable reasoning and efficient query answering in descrip-
tion logics: The DL-Lite family’, JAR, 39(3), 385–429, (2007).

[7] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, ‘Complexity and
expressive power of logic programming’, ACM Computing Surveys,
33(3), 374–425, (2001).

[8] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits,
‘Combining answer set programming with description logics for the
Semantic Web’, Artificial Intelligence, 172(12-13), 1495–1539, (2008).

[9] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits, ‘Well-foun-
ded semantics for description logic programs in the Semantic Web’, in
Proc. RuleML, pp. 81–97, (2004). Full paper ACM TOCL, (to appear).

[10] A. Van Gelder, K. Ross, and J. S. Schlipf, ‘The well-founded semantics
for general logic programs’, JACM, 38(3), 620–650, (1991).

[11] M. Gelfond and V. Lifschitz, ‘The stable model semantics for logic
programming’, in Proc. ICLP, pp. 1070–1080. The MIT Press, (1988).

[12] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, ‘Description logic
programs: Combining logic programs with description logic’, in Proc.
WWW 2003, pp. 48–57. ACM, (2003).

[13] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir, ‘Open answer set
programming with guarded programs’, ToCL, 9(4), 1–53, (2008).

[14] U. Hustadt, B. Motik, and U. Sattler, ‘Reducing SHIQ− description
logic to disjunctive datalog programs’, in Proc. of KR, pp. 152–162.
AAAI Press, (2004).

[15] M. Krötzsch, S. Rudolph, and P. Hitzler, ‘Description logic rules’, in
Proc. ECAI, pp. 80–84. IOS Press, (2008).

[16] M. Krötzsch, S. Rudolph, and P. Hitzler, ‘ELP: Tractable rules for OWL
2’, in Proc. ISWC 2008, pp. 649–664, (2008).

[17] OWL 2 Web Ontology Profiles, eds., B. Motik, B. Cuenca Grau, I. Hor-
rocks, Z. Wu, A. Fokoue, and C. Lutz, 2008. W3C Rec. 27 Oct. 2009.

[18] OWL 2 Web Ontology Language: Structural Specification and
Functional-Style Syntax, eds., B. Motik, P. F. Patel-Schneider, and
B. Parsia, 2008. W3C Working Draft April 2009.

[19] B. Motik and R. Rosati, ‘A faithful integration of description logics with
logic programming’, in Proc. IJCAI, pp. 477–482, (2007).

[20] B. Motik, U. Sattler, and R. Studer, ‘Query answering for OWL-DL
with rules’, Journal of Web Semantics, 3(1), 41–60, (July 2005).

[21] R. Rosati, ‘On the decidability and complexity of integrating ontologies
and rules’, Journal of Web Semantics, 3(1), 41–60, (2005).

[22] R. Rosati, ‘DL+log: Tight integration of description logics and disjunc-
tive datalog’, in Proc. KR, pp. 68–78, (2006).

[23] T. Swift, ‘Deduction in ontologies via ASP’, in Proc. of LPNMR, pp.
275–288, (2004).

[24] A. Tarski, ‘A lattice-theoretical fixpoint theorem and its applications’,
Pacific Journal of Mathematics, 5, 285–309, (1955).

