Approximating Extended Answer Sets

Davy Van Nieuwenborgh' and Stijn Heymans? and Dirk Vermeir 3

Abstract. We present an approximation theory for the extended anset4, which may lead to the development of “anytime” approximate

swer set semantics, using the concept of an approximatiusti@ont.
Intuitively, an approximation constraint, while satisfibg a “per-
fect” solution, may be left unsatisfied in an approximateeeged
answer set. Approximations improve as the number of uriatis
constraints decreases. We show how the framework can gitarea
the classical answer set semantics, thus providing an sippative
version of the latter.

1 Introduction

The idea behind the answer set semantics for logic programsth
intuitive and elegant. Given a prografhand a candidate answer set
M, one computes a reduct progrdmy; of a simpler type for which
a semantics”;; is known. The reducf,, is obtained fromP by
taking into account the consequences of accepting the peoitouth
values of the literals inV/. The candidate se¥/ is then an answer
set just whenP;;, = M, i.e. M is “self-producible”.

In [17], the same reduction technique is applied to definestte
tended answer set semantics for simple logic programgrograms
containing only classical negation. In contrast with thesslcal an-
swer set semantics, extended answer sets are able to handia-c
dictory programs by allowing rules to be defeated, i.e. awéecertain
rules unsatisfied.

The answer set semantics has been implemented in state-aft
solvers such apLVv[11] or sMODELY14]. While these solvers per-
form well in many cases, they implement an “all or nothing'ast
egy, i.e. they do not provide the user with “partial” or “appimate”
answer sets if there are insufficient resources for comgudim ex-
act solution. Clearly, given the inherent complexity of greblems
tackled by such solvers, it would be desirable to have suepprox-
imation facility, e.g. in cases where the available resesi@re lim-
ited. Furthermore, for many application areas obtainirghsu‘good
enough” solution within a certain time limit, may be attiget e.g.
in diagnostic reasoning [18].

In this paper, we propose to provide an approximation théary
the extended answer set semantics, based on so-callecizpation
constraints. Intuitively, an approximation constraintaisonstraint
that should be satisfied by a perfect solution to a problernwhich
may be left unsatisfied by an approximate solution. The mopecx-
imation constraints an approximate extended answer sgfisatthe
“better” it approximates an exact solution. We will showtttiee pro-
posed framework can also be used to approximate classisalean

1 Supported by the Flemish Fund for Scientific Research (FWa@Wleren).

2 Digital Enterprise Research Institute (DERI), Universifynnsbruck, Aus-
tria. Email: stijn.heymans@deri.org

3 Departement of Computer Science, Vrije Universiteit Bel$gUB), Plein-
laan 2, B1050 Brussels, Belgium. Emditivnieuwe,dvermel@vub.ac.be

answer set solvers.

The computation of extended answer sets for programs withou
constraints is very efficient, i.e. it takes quadratic timethe size
of the program to compute an extended answer set for such pro-
grams, which implies that a first approximation can be comgut
very quickly. Although grounding adds an exponentitctor [6]
to the computation in the worst case, the extended answeseset
mantics should perform much better in the average case.dvere
the semantics allows for a “ground when needed” implememtat
in contrast to solvers such asv [11] or SMODELS[14] which first
completely ground the program, before computing a solution

The above mentioned efficiency implies that the basic extend
answer set semantics is not able to handle problems lochtaa a
‘P. However, adding approximation constraints to the serosiifts
the complexity up to includé\V"’P-complete problems, placing the
proposed semantics at the same level as the classical assias-
mantics.

The remainder of the paper is organized as follows: Section 2
troduces the extended answer set semantics, while Seqpi@sénts
the framework of approximation constraints. In Section € rtéla-
tionship with classical answer programming is exploredilevive
briefly discuss some related work in Section 5. Finally, weocbade
and give some directions for future research in Section & fu
space restrictions, all proofs are omitted, they can beddarthe
technical report [16].

2 Extended Answer Set Semantics

In this section, we introduce the extended answer set s@radot
simple logic programs, i.e. logic programs with only classhega-
tion, no disjunction in the head of rules and no constraints.

A termis a constant or a variable, where the former will be writ-
ten lower-case and the latter upper-case. a&omis of the form
p(ti,...,ts), 0 < n < oo, wherep is ann-ary predicate name
andt;, 1 < i < n, are terms. Aiteral is an atonu or a classically
negated atorma.

Definition 1 A simple logic program(SLP) is a countable s&? of
rules of the formz «— o where{a} U « is a finite set of literals

4 Conversely, Theorem 4 in [17] shows that classical ansvigregramming
can be used to compute extended answer set semantics.

5 If we restrict the arities of predicates to small numberg, &inary or
ternary, it is shown in [8] that the additional complexitygrbunding only
adds one level of the polynomial hierarchy in contrast toekgonential
factor in general.

6 We thus allow for0-ary predicates, i.epropositions

7 Note that constraints, i.e. rules with empty heads, are lhmved for the
moment.

A ground atom, literal, rule, or SLP does not contain variables.
Substituting every variable in a SLP with every possible constant
in P yields the ground SLRr(P).
Example 1 Grounding the SLP
p(X) — —q(X,b)

—p(c; a) — 9(X) —-p(X,a)

yields the SLE

p(b) ——q(b, b)
q(b) —=p(b, a)

p(e) ——q(c, b)
q(¢) = —p(c, a)

p(a) < —q(a, b)
q(a) ——p(a,a)
—\p(c7 a) —

Thus, the extended answer set semantics deals with intemsis
cies in a simple yet intuitive way: when faced with contraclig
applicable rules, just select one for application and igrnolefeat)
the other. In the absence of extra information (e.g., a peafe re-
lation for satisfying certain rules at the expense of oth&rg; or
the approximation constraints introduced in this papéiy seems
a reasonable strategy for extracting a consistent sersamiicof in-
consistent programs.

Reconsidering Example 2, it is easy to verify that has three
extended answer sets, i®; = {—a, b}, M = {a, b} and M3 =
{—a,-b}. Note that e.gP1y;, = Pi\{-b « },ie.=b « s
defeated w.r.tM; .

In the rest of the paper we always assume ground SLPs anddyroun While Definition 3 allowsP,,, with M an extended answer set,

literals; to obtain the definitions for ungrounded SLPs|aep every
occurrence of a SLP by gr(P), e.g., an extended answer set of an
ungrounded SLFP is an extended answer set@f(P).

For a set of literalsY, we use-X to denote the set—p | p € X'}
where——a = a. Further,X is said to beconsistentf X N —-X = 0,
i.e. X does not contain contradictory literalsand—a.

Definition 2 The Herbrand baseBp of a SLPP is the set of all
ground atoms that can be formed using the language.dfhe set of
all literals that can be formed witl#®, i.e. Bp U —=Bp, is denoted by
Lp. Aninterpretation I of P is any consistent subset 6.

Aruler = a « « is satisfiedby an interpretation/, denoted
I Er,ifa e Iwhenever C I, i.e., ifrisapplicable(ac C I) then
it must beapplied(a U {a} C I). The ruler is defeatedw.r.t. I iff
there exists an appliecompeting rule—a + «’ in P, such arule is
said todefeatr.

Intuitively, in an extended answer set (see below), aifule «— «
may not be left unsatisfied, unless one accepts the oppasitdus
sion —a which must itself be motivated by a competing applied rule
—a « o that defeats.

Example 2 Consider the SLPP; containing the rules-a «
=b «— , a «— —b,andb — —a. For the interpretation/ = {—a, b}
we have thaf satisfies all rules inP; but one:—a <« andb «— —a
are applied whilea «— —b is not applicable. The unsatisfied rule
—b « is defeated by «— —a.

For a set of ruleg®, we useP* to denote the unique minimal [15]
model of the positive logic program consisting of the rulesH,
where negative literals:.a are considered as fresh atoms. We can
computeP* using the immediate consequence operdte(X) =
{leLp |l B PApBC X} Clearly, the operatoi'p is
monotonic, and's°(0) = P*.

For the program of Example 2, we have tligt = {a, b, ~a, —b}
is inconsistent. The following definition allows us to nopgpcertain
rules when computing a consistent interpretation for pogr such
ash;.

Definition 3 ThereductP; C P of a SLPP w.r.t. a set of literals/
contains just the rules satisfied Byi.e. Py = {r € P | I = r}.

An interpretationS is an extended answer seff P iff P5 = S,
i.e., S isfounded and all rules inP\ Py are defeated w.r.tS.

We use€ S(P) to denote the set of all extended answer set3.of

8 Note that a variableX in a rule should be grounded with the same constant
in that rule (either witha, b or ¢), while it may be grounded with other
constants in other rules, i.e., the variables in a rule ansidered local to
the rule. One can, e.g., replace the above SLP by the equiyaiegram

—p(e, a) p(X) ——q(X,b) q(Y) —-p(Y,a)

to be a strict subset @, it still maximizes the set of satisfied rules
w.r.t. an extended answer set.

Theorem 1 Let P be a SLP and lef\/ be an extended answer set
for P. ThenPy, is maximal w.r.t. set inclusion among the reducts of
founded interpretations aP.

The reverse of the above theorem does not hold in generaitas w
nessed by the following example.

Example 3 Consider the programP, containing the following
rules.
—|b<——|a

—q — b «—

The interpretationV = {b} is founded withP ;y = {b «— ,—b «—
—a} which is clearly maximal sinc&s is inconsistent. Still NV is
not an extended answer set because«— is not defeated.

The extended answer set semantics is universal.
Theorem 2 Every SLP has extended answer sets.

Moreover, the extended answer sets can be efficiently cadpsg-
ing an immediate consequence operator:

73(5) = {

Clearly, the above operator is non-deterministic as theltre®-
pends on the order in which rules are applied. However, itlman
shown thatl's>° () always results in an extended answer sePof
The non-deterministic behavior @y greatly influences the com-
plexity of its implementation. In the worst case an algaritfor 75
will run in time quadrati in the size of the program, but on average,
depending on the order in which rules get applied, the runtime
will be much bettel?.

Finally, note that the above implies that an implementattoat
usesT'p does not need a fully grounded version of the input program
but may instead operate on a “ground (a rule) as needed”, tzasis
illustrated by the following example.

SU{l}
S

ifr:l«—acPandaC Sand-l &S ,
otherwise.

9 Note that, by a well-known result [6], grounding of the pragrmay add an
exponential (worst-case) factor to the total cost of conmguan extended
answer set for an ungrounded program. However, if the aritiehe predi-
cates are bounded by a small number, [8] shows that this expiahfactor
reduces to one level of the polynomial hierarchy.

10 Also in the non-grounded case the average complexity withbieh better
than the exponential worst-case scenario as, dependirtge@etuence in
which rules get applied, certain parts of the program neédorioe (fully)
grounded.

Example 4 Consider the following non-grounded program. sets of(P, C') that violate less than + 1 approximation constraints
inC,i.e.£8,(P,C) = {S € £5(P) | |SY| < n}. Clearly, we have

p(a) — q(a) — that £So(P, C) corresponds to the extended answer setgdt>);
p(b) — q(b) — andESy (P, C) C E81(P,C) C -+ C £8/¢|(P,C) = ES(P).
—q(X) — p(X) “p(X) — q(X)

Example 5 Consider the following SALPP, C') with P
A possible computation of 5°° (@) could result in the ex-

tended answer sef{p(a),p(b), —q(a),~q(b)}, e.g. by starting na e —b nee

the computation with applying the fact rulp(a) « , i.e. be—a a+=b c—a

;I‘ﬁ((l)) - {p(a)}. As a consequence, we can make a ground and the following approximation constraints

instantiation —¢(a) <« p(a) of the rule =¢(X) «— p(X),

which an implementation can choose to apply in computing — —a, b —a —c
Te({p(a)}) = {p(a),—q(a)}. If we now do a similar rea-

soning for the factp(b) « to obtain T5({p(a),~q(a)}) = We have four extended answer sets fBr i.e. ES(P) =
{p(a),~q(a),p(b)} and Th({p(a), ~q(a),p(b)}) = Tp>(0) = {S1,52 55, 54}, with Sy = {-a,=b,~c}, S2 = {-a,b, ~c},

{p(a),p(b), ~q(a),~q(b)}, itis easy to see that an implementation S3 = {a,—b,~c} and Su = {a,—-b,c}. One can verify that
does not need any grounded version of the rafg X) — ¢(X), E£S2(P,Q) = {Si1,852,853,54}, ES1(P,C) = {S1,52,8:} and

while classical implementations that first ground evenyghwill ob- ~ £So(P, C) = {S2}. ThusS: is the only extended answer set of the
tain two grounded versionsp(a) < ¢(a) and—p(b) < q(b). above SALRP,C).

Note that we do not conjecture that our approach is bettehin t))
worst-case scenario. We only argue that by interleavinggtiogind- In general, we may consider a partial orderon extended an-
ing and computation process, one can get better results, indtme swer set approximations which is such that better appraiamsare
and space, in the average case. smaller.i.eS; < S.*2iff S is a better approximation of an extended

answer set than iS-. It seems reasonable to demand that any such
preference order satisfi€s < S = [S:15] < |S27], i.e. better ap-

3 Approximation Constraints proximations satisfy more approximation constraints; tad “full”
Because of Theorem 2, checking whether a SLP has an extend&¥tended answer sets Correspon_d<tm|n|ma_| approximations.
answer set can be done in constant time, and thus the sesnantist Two obvious (others are possible) candidates that satisyre-

very expressive when compared to e.g. classical answesrseigics ~ duirement are:
(for which the problem is\/P-pompIete). Inthis section,wgincrease o cardinality, i..51 < Ss iff [S,| < |S2¢]; and
the expressiveness by allowing for constraints to appganoigrams. . . c c
. e subset, i.eS; =< S5 iff 511, - SQU

Intuitively, an approximation constrainis like a traditional con-
straint, i.e. a condition that a solution of a program shadtisfy. which are also used in other problem areas, such as diagrsysti
However, approximation constraints may be left unsatistegl due tems [13], that deal with preference on candidate solutions
to lack of computation time. This induces a partial order aohs Note that, ifESo(P,C) = 0, i.e. there are no extended answer
“approximate” solutions, where better approximationssfaimore sets, and depending on the preference relation usedanimal
constraints. Combined with the results from Section 2, éntlbe- approximate extended answer semay be useful, e.g. to provide
comes possible to devise an incremental extended answsolset insight, via the set of violated constrain§’, about possible prob-
that combines both the grounding process and the compufatoa lems with the program. In this way a semantical debuggingseh
“ground when needed” computatidn for (extended) answer set programming can be defined, a pbnce

which has already been explored in the context of prolog [3.2],

Definition 4 A simple approximation logic progranSALP)is atu- pyt still needs better exploration in the former setting.
ple (P, '), whereP is a SLP and”' is a set ofapproximation con- The following result sheds some light on the complexity af-re
straints, i.e. rules of .the form«— «, with aa flnllte set of Iltgraléz. soning with approximation constraints. &sS(P, C) = £S(P),

For an Intel’pl’etatlonf of P, an appI’OXImatlon constraint € C we will only consider the Casﬁsn(P’ C’) with n < |C| (note that
is said to besatisfied denoted! |= ¢, if a Z I; otherwise itis this implies thatC| > 1).
said to beviolated denoted! = c. We usel$ to denote the set of
approximation constraints i’ that are violated w.rt/, i.e. IS = Theorem 3 Let (P, C') be a grounded SALP and takesuch that
{ce C|Ic}. 0 < < |C|. Deciding whether there exists an approximate extended

Extended answer sets Bfare approximate extended answer sets answer sefS € £S,(P, C) is N'P-complete.
of (P,C). An approximate extended answer seof (P, C) is an
extended answer saf (P,C) iff SS = 0, i.e. all approximation Again an exponential factor [6] or, in case of small boundestip
constraints are satisfied w.r$. cate arities, an additional level of the polynomial hiehgr{8] has to

be added in the case of non-ground SALPs, i.e. either NEXFEFIM

In the rest of this paper, we will usgS,, (P, C), with 0 < n < complete o2 -complete respectively.

|C|, to denote the set containing the approximate extendedesnsw The above theorem implies that the semantics already gditdlit

- computational complexity with a single constraint, whichniot a
11 Note that current answer set solvers lack this support fasiigd when

needed” (see Section 4) and compute first the complete giryndstead. §urpr|s¢ as we Can replace each COﬂStraIﬂt @€ ‘C with a rule
12 Note that we allow non-ground constraints. However, grinme SALP inconsistent «— o in P and takeC' = { « inconsistent}. How-
can be done by computingr(P U C) and splitting up the result in two ever, the above complexity result is a worst-case scenprib s
sets, i.e. the ground rules and the ground constraints.nAga assume
grounded SALPs in the rest of the paper. 13 As usual,S1 < Ss iff S1 < So and notSe < Si.

with grounding), i.e. in an implementation we may expecthimav- We construct, for a semi-negative logic prograf) a SALP
erage case, that more constraints require more computatien L(P) = (Q,C) such that the extended answer setd.¢P), i.e.
Finally, the framework developed above can be used to imgfiém elements o€ Sy (Q, C), are in one-to-one correspondence with the
an incremental extended answer set solver, i.e. a solveptbduces answer sets oP.
an approximate solution and then, as long as resources tp@noi In the following definition we us@’ to denote the set of literals
duces successively better approximations. Given enowggfurees, obtained from a set where each naf-atomot a from « is replaced
this approach will eventually result in an extended answeri®. an by —a. The notation is further extended to rules and programs.
approximation that satisfies all constraints.
Intuitively, such an implementation will start by compwgian ex-
tended answer se&f along the lines of the immediate consequence
operator presented in Section 2. Afterwards, a backtrgckigo-

Definition 5 Let P be a semi-negative program. The SALFP) =
(Q,C) is defined byQ = P U{-a « | a € Bp}andC =
{<pB,ma|a—peP}

rithm will try to improve the approximation by selecting anstraint ~ Intuitively, we simulate negation as failure in two stepsst; we
to satisfy, while maintaining the partial ordering definedapproxi- introduce negation as failure explicitly @ using classical negation
mations. by introducing a fact-a for each atonz € Bp. Secondly, we assert

approximation constraints iff to enforce the satisfaction of the orig-
]]) inal rules in the progran®: arulea <+ 8’ € Q (i.e.a «— 8 € P)
4 Classical Answer Set Approximation is only satisfied by an interpretation iff the approximatwmstraint

- .) . — (', —a € Cis satisfied w.r.t. that interpretation.
Theorem 3 indicates that the semantics presented in S&dsaom-

putationally equivalent to the classical answer set seicmf@] for ~ Example 7 Reconsider the program from Example 6. Its SALP ver-
non-disjunctive programs containing negation as failarthe body ~ SIonL(P) = (@, C) is defined by the SL®

of rules. Here we show how the classical answer set semaraits g — b e —d —

be effectively translated to approximate extended ansefs:, thus @ —b b —a
making it possible to compute classical answer sets viaesisoe
approximations.

We briefly introduce the answer set semantics for semi-iegat — =b,—a — —a, b —a,-c —b,~d
programs. Such programs are build using atoms and naf-at@ns
for an atoma, we usenot a to denote its negation-as-failure (naf)
version, which intuitively means thabta is true wheru is not true.

A semi-negative logic progran® is a countable set of rules of the
form a «+ (8 wherea is an atom and’ is a finite set of (naf-)atoms.
An interpretationl for a semi-negative program® is a subsetf C
Bp. An atoma is satisfied w.r.t, denoted! = a if a € I; while a

c+—a d«—b

and the set of constraints

Consider the following extended answer sets(hfi.e. S =
{a, =b, c, ﬁd}, Sé = {ﬁa, b, —c, d} andSé = {a, b, —c, ﬁd}. One
can check that Sy (Q, C) = {S1, S5} and clearlyS: = S N Bp
and S; = S5 N Bp. On the other handS; € £5:1(Q,C), asc —
a € C is violated. However, one can easily see that= S5 N Bp
is an answer set of the prograf\ {¢ < a}.

naf-atomnota is satisfied w.r.tZ, i.e. I }= nota, whenI }~ a. The The behavior outlined in the previous example is confirmegkim
answer set semantics for semi-negative programs is definetioi eral by the following theorem.
steps.

First, consider programs without naf-atoms. For such affeaf- Theorem 4 Let P be a semi-negative logic program and consider

programP, an interpretatiod is an answer set ifP* = I. Next, for L(P) = (,C) as defined in Definition 5. Then, f6r € B,
semi-negative programs, we use the Gelfond-Lifschitzsfiemma- SU{=l|leBp\S} €&S(Q,C) < S e AS(P) ,
tion [9]. The idea behind this transformation is, for a giy@ogram
P and a candidate solutiafi, to remove all naf constructs w.r.$.
and then check if the candidate solution is supported by édaat
program. Formally, for a semi-negative progrdfmand a candidate
solutions, the GL-reduct o w.r.t. S, denotedP®, is obtained from ~ SU{~l | L € BA\S} € (£8:(Q, C)ESi-1(Q,C)) < S € AS(P\SY) |

b by (a) removing each rule — §withnotb € fandb € S,and \yhere, abusing notatior?\ S denotes the subset of rulesinfor

(b) remove all naf-atoms from the remaining rules. Cleahg, pro- \yhich the corresponding approximation constraintéhis satisfied
gram P~ is free from negation as failure. An interpretatiSnis an ¢ g.

answer set of a semi-negative prograniff S is an answer set of
P9 i.e. PS" = 5. We useAS(P) to denote the set containing all The above result shows that the approximation frameworlkexer

i.e. the answer sets @ are in one-to-one correspondence with the
extended answer sets bfP).
Further, fors, with0 < ¢ < |C], we have, with

answer sets oP. tended answer sets is able to handle the classical answsgraan-
tics in the sense that, each time a better approximatiod. {ét) is
Example 6 Consider the following semi-negative program. computed, it is also an answer set for a larger subset of thgram
P. Interestingly, the algorithm does not rely on negationailsirfe,
a — notbh b« nota but uses only classical negation and the ability to leav@sruhsatis-
c—a d—b fied, i.e. defeated.

Finally, the above results may help to resolve another issue
Intuitively, the above program represents an exclusivdaghbe- garding current answer set solvers suctpag [11] and SMODELS
tweena or b and depending on this choice, the program derives an[14]. Indeed, these solvers require that a program first bepbetely
additional atome or d resp. Indeed, one can verify that the above grounded before the actual answer set computation staitis. -
program has two answer sets, i& = {a,c} and Sy = {b,d}. proximations based on extended answer sets, this is prgobabhec-
E.g., the reducP”* contains the rule§a «— ¢« a d — b}, essary, since the computation of an extended answer setpesgte
for which P51 = {a,c} = 5. on a “ground (a rule) as needed” basis (Section 2).

5 Related Work

The idea of an approximation theory in logic and logic prognsng
is not new. A good example of this is the “anytime” family o&s&n-
ers for propositional logic [4]. Intuitively, such a systemnsists of
asequenceo,t1,...,H. of inference relations such that eachis

Furthermore, we also plan to look into the related problefs@
filing (finding out which parts of a program are hard to compated
debugging (finding out which parts of a program are wrong)éar
tended) answer set programming. Finally, the present approould
be generalized to support user-defined preference retatibmts”)
on approximation constraints which could be used to infleeihe

at least as godfl ask;_; and there exists a complete inference rela-
tion . for the problem. Using such an anytime reasoner, one starts
the computation with the inference relation and as long as there is
computation time left, the inference relatidns -, ... are applied
to obtain better approximations. When the complete readonés [1]
reached during the computation, one had enough resouragstde

to compute a completely correct solution.

This idea is e.g. applied in [5] to obtain an anytime reasdoer 2]
Boolean Constraint Propagation, which is used in [18] t@ioban
approximation theory for diagnostic reasoning.

In [1] a first attempt is made to devise a framework for intévac (3]
answer set programming. The idea is to find which part of anarog
needs to be recomputed in order to find a new answer set in case g;
single rule is added to the program. Using this frameworle can
obtain a similar approximative version of answer set pnogning
as the one presented in Section 4 by starting the computaiitin 5]
a single rule and then subsequently adding new rules. Hoywihee
framework presented in this paper is more suitable in thees#mat [6]
we can start the computation with the whole program, notgush-
gle rule, and obtain a first approximation that in the avege will
satisfy more than one rule in the program under consideratio

Weak constraints were introduced in [2] as a relaxation efttn-
cept of a constraint. Intuitively, a weak constraint is a#al to be vi- [8]
olated, but only as a last resort, meaning that one triesrionmee the
set of violated constraints (e.g. using either subset nafitynor car-
dinality minimality). The main difference of this approagith ours,
is that we use approximation constraints to find better appra- 9]
tions, as long as we have resources available, of a finalisoltitat
satisfies all approximation constraints (and which will baahed if
we have enough time); while the weak constraints in [2] séove

[7]

differentiate between the answer sets of the program witheak ol
constraints, by posing additional conditions on those ansets that
do not necessarily have to be satisfied. Also note that th& wea
straints from [2] have a much higher complexity than the famrk
presented in this paper, i.AL" for non-disjunctive programs, or the (11
second level of the polynomial hierarchy.

[12]
6 Conclusions and Directions for Further Research

13
We presented a first attempt at an approximation theory, gnse 13l
of approximation constraints, for the extended answeresegstics [14]
of programs containing only classical negation. Further,sivowed
how classical answer sets can be approximated using thegedp [15]
framework.

In future work, we will implement an approximate extended an
swer set solver that “grounds when needed”. In our impleatant, [16]
we will try to incorporate some of the ideas developed in tlagyP
pus system [10], i.e. a system to compute answer sets inrdodisd
environment, to obtain an implementation that can be useddis- [17]

tributed setting. One topic for further research in thisteghis e.g.

how on the fly rule instantiations (which result from the “gnal

when needed” process) have to be propagated to the othéipart 18]
pants in the distributed computation process.

14 Note that eaclr; has to be sound and tractable, but not necessarily com-
plete.

approximation process.

REFERENCES

M. Brain, R. Watson, and M. De Vos, ‘An interactive appechato an-
swer set programming’, iRroc. of the 3rd Intl. Workshop on ASP: Ad-
vances in Theory and Implementation (ASR@8Jume 142 ofCEUR
Workshop Proceedinggp. 190-202, (2005).

Francesco Buccafurri, Nicola Leone, and Pasquale Rt#iwong and
weak constraints in disjunctive datalog’, Rroc. of the 4th Intl. Con-
ference on Logic Programming (LPNMR '9Pp. 2-17, (1997).

M. Calejo and L.M. Pereira, ‘Declarative source debuggi in Proc.
of the 5th Portuguese Conf. on Al (EPIA9%plume 541 oLNCS pp.
237-249. Springer, (1991).

Mukesh Dalal, ‘Anytime families of tractable propositial reasoners’,
in Proc. of the 4th Intl. Symp. on Artificial Intelligence and tllematics
(AI/MATH96) pp. 42—45, (1996).

Mukesh Dalal, ‘Semantics of an anytime family of reasehen Pro-
ceedings of the 12th European Conference on Artificial ligeice pp.
360-364. John Wiley and Sons, (1996).

E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, ‘Coneglty and
Expressive Power of Logic Programming®CM Computing Surveys
33(3), 374-425, (2001).

Mireille Ducassé, ‘A pragmatic survey of automated deing.’, in
Proc. of the Intl. Workshop on Automated and Algorithmic @gging
(AADEBUG93) volume 749 olLNCS pp. 1-15. Springer, (1993).
Thomas Eiter, Wolfgang Faber, Michael Fink, Gerald féfigiand Ste-
fan Woltran, ‘Complexity of model checking and bounded jwatt ar-
ities for non-ground answer set programming’Pninciples of Knowl-
edge Representation and Reasoning: Proceedings of thh Niterna-
tional Conference (KR2004pp. 377—-387. AAAI Press, (2004).
Michael Gelfond and Vladimir Lifschitz, ‘The stable meldseman-
tics for logic programming’, inLogic Programming, Proceedings of the
Fifth International Conference and Symposjyop. 1070-1080, Seat-
tle, Washington, (August 1988). The MIT Press.

Jean Gressmann, Tomi Janhunen, Robert E. Mercer,efofthaub,
Sven Thiele, and Richard Tichy, ‘Platypus: A platform fostdbuted
answer set solving.’, inogic Programming and Nonmonotonic Rea-
soning, 8th International Conference (LPNMR 2Q0&)lume 3662 of
LNCS pp. 227-239. Springer, (2005).

N. Leone, G. Pfeifer, W. Faber, F. Calimeri, T. Dell’AinT. Eiter,
G. Gottlob, G. lanni, G. lelpa, C. Koch, S. Perri, and A. Pele ‘The
div system’, inProc. of the Eur. Conf. on Logics in Al (JELIA2002)
volume 2424 oLLNCS pp. 537-540. Springer, (2002).

Lee Naish, ‘A declarative debugging schemaurnal of Functional
and Logic Programmingl9973), (1997).

Raymond Reiter, ‘A theory of diagnosis from first priplgs’, Artificial
Intelligence 32(1), 57-95, (1987).

Patrik Simons, llkka Niemela, and Timo Soininen, ‘Entling and im-
plementing the stable model semantidsttificial Intelligence 13§1-
2), 181-234, (2002).

M. H.van Emden and R. A. Kowalski, ‘The semantics of icatk logic
as a programming languaggburnal of the Association for Computing
Machinery 23(4), 733-742, (1976).

Davy Van Nieuwenborgh, Stijn Heymans,
meir. Approximating extended answer sets. Technical tepor
Vrije Universiteit Brussel, Dept. of Computer Science, &00
http://tinf2.vub.ac.be/"dvnieuwe/ecai2006technjzsl.

Davy Van Nieuwenborgh and Dirk Vermeir, ‘Preferred aes sets for
ordered logic programs’, ifProc. of the Eur. Conf. on Logics in Ar-
tif. Intell. (JELIA2002) volume 2424 of NCS pp. 432-443. Springer,
(2002).

A. Verberne, F. van Harmelen, and A. ten Teije, ‘Anytimli@gnostic
reasoning using approximate boolean constraint propagatn Proc.
of the 7th Intl. Conf. on Principles of Knowledge Represtmaand
Reasoning (KR 2000pp. 323-332. Kaufman, (2000).

and Dirk Ver-

