
Approximating Extended Answer Sets
Davy Van Nieuwenborgh1 and Stijn Heymans2 and Dirk Vermeir 3

Abstract. We present an approximation theory for the extended an-
swer set semantics, using the concept of an approximation constraint.
Intuitively, an approximation constraint, while satisfiedby a “per-
fect” solution, may be left unsatisfied in an approximate extended
answer set. Approximations improve as the number of unsatisfied
constraints decreases. We show how the framework can also capture
the classical answer set semantics, thus providing an approximative
version of the latter.

1 Introduction

The idea behind the answer set semantics for logic programs is both
intuitive and elegant. Given a programP and a candidate answer set
M , one computes a reduct programPM of a simpler type for which
a semanticsP ⋆

M is known. The reductPM is obtained fromP by
taking into account the consequences of accepting the proposed truth
values of the literals inM . The candidate setM is then an answer
set just whenP ⋆

M = M , i.e.M is “self-producible”.
In [17], the same reduction technique is applied to define theex-

tended answer set semantics for simple logic programs, i.e.programs
containing only classical negation. In contrast with the classical an-
swer set semantics, extended answer sets are able to handle contra-
dictory programs by allowing rules to be defeated, i.e. to leave certain
rules unsatisfied.

The answer set semantics has been implemented in state-of-the-art
solvers such asDLV [11] or SMODELS[14]. While these solvers per-
form well in many cases, they implement an “all or nothing” strat-
egy, i.e. they do not provide the user with “partial” or “approximate”
answer sets if there are insufficient resources for computing an ex-
act solution. Clearly, given the inherent complexity of theproblems
tackled by such solvers, it would be desirable to have such anapprox-
imation facility, e.g. in cases where the available resources are lim-
ited. Furthermore, for many application areas obtaining such a “good
enough” solution within a certain time limit, may be attractive, e.g.
in diagnostic reasoning [18].

In this paper, we propose to provide an approximation theoryfor
the extended answer set semantics, based on so-called approximation
constraints. Intuitively, an approximation constraint isa constraint
that should be satisfied by a perfect solution to a problem, but which
may be left unsatisfied by an approximate solution. The more approx-
imation constraints an approximate extended answer set satisfies, the
“better” it approximates an exact solution. We will show that the pro-
posed framework can also be used to approximate classical answer

1 Supported by the Flemish Fund for Scientific Research (FWO-Vlaanderen).
2 Digital Enterprise Research Institute (DERI), Universityof Innsbruck, Aus-

tria. Email: stijn.heymans@deri.org
3 Departement of Computer Science, Vrije Universiteit Brussel (VUB), Plein-

laan 2, B1050 Brussels, Belgium. Email:{dvnieuwe,dvermeir}@vub.ac.be

sets4, which may lead to the development of “anytime” approximate
answer set solvers.

The computation of extended answer sets for programs without
constraints is very efficient, i.e. it takes quadratic time in the size
of the program to compute an extended answer set for such pro-
grams, which implies that a first approximation can be computed
very quickly. Although grounding adds an exponential5 factor [6]
to the computation in the worst case, the extended answer setse-
mantics should perform much better in the average case. Moreover,
the semantics allows for a “ground when needed” implementation,
in contrast to solvers such asDLV [11] or SMODELS[14] which first
completely ground the program, before computing a solution.

The above mentioned efficiency implies that the basic extended
answer set semantics is not able to handle problems located above
P . However, adding approximation constraints to the semantics lifts
the complexity up to includeNP-complete problems, placing the
proposed semantics at the same level as the classical answerset se-
mantics.

The remainder of the paper is organized as follows: Section 2in-
troduces the extended answer set semantics, while Section 3presents
the framework of approximation constraints. In Section 4 the rela-
tionship with classical answer programming is explored, while we
briefly discuss some related work in Section 5. Finally, we conclude
and give some directions for future research in Section 6. Due to
space restrictions, all proofs are omitted, they can be found in the
technical report [16].

2 Extended Answer Set Semantics

In this section, we introduce the extended answer set semantics for
simple logic programs, i.e. logic programs with only classical nega-
tion, no disjunction in the head of rules and no constraints.

A term is a constant or a variable, where the former will be writ-
ten lower-case and the latter upper-case. Anatom is of the form
p(t1, . . . , tn), 0 ≤ n < ∞, wherep is ann-ary6 predicate name
andti, 1 ≤ i ≤ n, are terms. Aliteral is an atoma or a classically
negated atom¬a.

Definition 1 A simple logic program(SLP) is a countable setP of
rules of the forma ← α where{a} ∪ α is a finite set of literals7.

4 Conversely, Theorem 4 in [17] shows that classical answer set programming
can be used to compute extended answer set semantics.

5 If we restrict the arities of predicates to small numbers, e.g. binary or
ternary, it is shown in [8] that the additional complexity ofgrounding only
adds one level of the polynomial hierarchy in contrast to theexponential
factor in general.

6 We thus allow for0-ary predicates, i.e.,propositions.
7 Note that constraints, i.e. rules with empty heads, are not allowed for the

moment.

A ground atom, literal, rule, or SLP does not contain variables.
Substituting every variable in a SLPP with every possible constant
in P yields the ground SLPgr(P).

Example 1 Grounding the SLP

¬p(c, a)← p(X)←¬q(X , b) q(X)←¬p(X , a)

yields the SLP8.

p(a)←¬q(a, b) p(b)←¬q(b, b) p(c)←¬q(c, b)
q(a)←¬p(a, a) q(b)←¬p(b, a) q(c)←¬p(c, a)

¬p(c, a)←

In the rest of the paper we always assume ground SLPs and ground
literals; to obtain the definitions for ungrounded SLPs, replace every
occurrence of a SLPP by gr(P), e.g., an extended answer set of an
ungrounded SLPP is an extended answer set ofgr(P).

For a set of literalsX, we use¬X to denote the set{¬p | p ∈ X}
where¬¬a ≡ a. Further,X is said to beconsistentif X ∩¬X = ∅,
i.e.X does not contain contradictory literalsa and¬a.

Definition 2 The Herbrand baseBP of a SLPP is the set of all
ground atoms that can be formed using the language ofP . The set of
all literals that can be formed withP , i.e.BP ∪ ¬BP , is denoted by
LP . An interpretationI of P is any consistent subset ofLP .

A rule r = a ← α is satisfiedby an interpretationI , denoted
I |= r, if a ∈ I wheneverα ⊆ I , i.e., ifr is applicable(α ⊆ I) then
it must beapplied(α ∪ {a} ⊆ I). The ruler is defeatedw.r.t. I iff
there exists an appliedcompeting rule¬a ← α′ in P , such a rule is
said todefeatr.

Intuitively, in an extended answer set (see below), a ruler : a ← α

may not be left unsatisfied, unless one accepts the opposite conclu-
sion¬a which must itself be motivated by a competing applied rule
¬a ← α′ that defeatsr.

Example 2 Consider the SLPP1 containing the rules¬a ← ,
¬b ← , a ← ¬b, andb ← ¬a. For the interpretationI = {¬a, b}
we have thatI satisfies all rules inP1 but one:¬a ← andb ← ¬a
are applied whilea ← ¬b is not applicable. The unsatisfied rule
¬b ← is defeated byb ← ¬a .

For a set of rulesP , we useP ⋆ to denote the unique minimal [15]
model of the positive logic program consisting of the rules in P ,
where negative literals¬a are considered as fresh atoms. We can
computeP ⋆ using the immediate consequence operatorTP (X) =
{l ∈ LP | l ← β ∈ P ∧ β ⊆ X}. Clearly, the operatorTP is
monotonic, andT∞

P (∅) = P ⋆.
For the program of Example 2, we have thatP ⋆

1 = {a, b,¬a,¬b}
is inconsistent. The following definition allows us to not apply certain
rules when computing a consistent interpretation for programs such
asP1.

Definition 3 ThereductPI ⊆ P of a SLPP w.r.t. a set of literalsI
contains just the rules satisfied byI , i.e.PI = {r ∈ P | I |= r}.

An interpretationS is an extended answer setof P iff P ⋆

S = S,
i.e.,S is founded, and all rules inP \PS are defeated w.r.t.S.

We useES(P) to denote the set of all extended answer sets ofP .

8 Note that a variableX in a rule should be grounded with the same constant
in that rule (either witha, b or c), while it may be grounded with other
constants in other rules, i.e., the variables in a rule are considered local to
the rule. One can, e.g., replace the above SLP by the equivalent program

¬p(c, a)← p(X)←¬q(X , b) q(Y)←¬p(Y , a)

Thus, the extended answer set semantics deals with inconsisten-
cies in a simple yet intuitive way: when faced with contradictory
applicable rules, just select one for application and ignore (defeat)
the other. In the absence of extra information (e.g., a preference re-
lation for satisfying certain rules at the expense of others[17]; or
the approximation constraints introduced in this paper), this seems
a reasonable strategy for extracting a consistent semantics out of in-
consistent programs.

Reconsidering Example 2, it is easy to verify thatP1 has three
extended answer sets, i.e.M1 = {¬a, b}, M2 = {a,¬b} andM3 =
{¬a,¬b}. Note that e.g.P1M1

= P1 \{¬b ← }, i.e. ¬b ← is
defeated w.r.t.M1.

While Definition 3 allowsPM , with M an extended answer set,
to be a strict subset ofP , it still maximizes the set of satisfied rules
w.r.t. an extended answer set.

Theorem 1 Let P be a SLP and letM be an extended answer set
for P . ThenPM is maximal w.r.t. set inclusion among the reducts of
founded interpretations ofP .

The reverse of the above theorem does not hold in general, as wit-
nessed by the following example.

Example 3 Consider the programP2 containing the following
rules.

¬a ← b← ¬b←¬a

The interpretationN = {b} is founded withP2N = {b ← ,¬b ←
¬a} which is clearly maximal sinceP ⋆

2 is inconsistent. Still,N is
not an extended answer set because¬a ← is not defeated.

The extended answer set semantics is universal.

Theorem 2 Every SLP has extended answer sets.

Moreover, the extended answer sets can be efficiently computed us-
ing an immediate consequence operator:

T
e

P (S) =

S ∪ {l} if r : l ← α ∈ P andα ⊆ S and¬l 6∈ S ,

S otherwise .

Clearly, the above operator is non-deterministic as the result de-
pends on the order in which rules are applied. However, it canbe
shown thatT e

P

∞(∅) always results in an extended answer set ofP .
The non-deterministic behavior ofT e

P greatly influences the com-
plexity of its implementation. In the worst case an algorithm for T e

P

will run in time quadratic9 in the size of the program, but on average,
depending on the order in which rules get applied, the running time
will be much better10.

Finally, note that the above implies that an implementationthat
usesT e

P does not need a fully grounded version of the input program
but may instead operate on a “ground (a rule) as needed” basis, as
illustrated by the following example.

9 Note that, by a well-known result [6], grounding of the program may add an
exponential (worst-case) factor to the total cost of computing an extended
answer set for an ungrounded program. However, if the arities of the predi-
cates are bounded by a small number, [8] shows that this exponential factor
reduces to one level of the polynomial hierarchy.

10 Also in the non-grounded case the average complexity will bemuch better
than the exponential worst-case scenario as, depending on the sequence in
which rules get applied, certain parts of the program need not to be (fully)
grounded.

Example 4 Consider the following non-grounded program.

p(a)← q(a)←
p(b)← q(b)←

¬q(X)← p(X) ¬p(X)← q(X)

A possible computation ofT e

P

∞(∅) could result in the ex-
tended answer set{p(a), p(b),¬q(a),¬q(b)}, e.g. by starting
the computation with applying the fact rulep(a) ← , i.e.
T e

P (∅) = {p(a)}. As a consequence, we can make a ground
instantiation ¬q(a) ← p(a) of the rule ¬q(X) ← p(X),
which an implementation can choose to apply in computing
T e

P ({p(a)}) = {p(a),¬q(a)}. If we now do a similar rea-
soning for the factp(b) ← to obtain T e

P ({p(a),¬q(a)}) =
{p(a),¬q(a), p(b)} and T e

P ({p(a),¬q(a), p(b)}) = T e

P

∞(∅) =
{p(a), p(b),¬q(a),¬q(b)}, it is easy to see that an implementation
does not need any grounded version of the rule¬p(X) ← q(X),
while classical implementations that first ground everything will ob-
tain two grounded versions¬p(a)← q(a) and¬p(b)← q(b).

Note that we do not conjecture that our approach is better in the
worst-case scenario. We only argue that by interleaving theground-
ing and computation process, one can get better results, both in time
and space, in the average case.

3 Approximation Constraints

Because of Theorem 2, checking whether a SLP has an extended
answer set can be done in constant time, and thus the semantics is not
very expressive when compared to e.g. classical answer set semantics
(for which the problem isNP-complete). In this section, we increase
the expressiveness by allowing for constraints to appear inprograms.

Intuitively, anapproximation constraintis like a traditional con-
straint, i.e. a condition that a solution of a program shouldsatisfy.
However, approximation constraints may be left unsatisfied, e.g. due
to lack of computation time. This induces a partial order on such
“approximate” solutions, where better approximations satisfy more
constraints. Combined with the results from Section 2, it then be-
comes possible to devise an incremental extended answer setsolver
that combines both the grounding process and the computation, i.e. a
“ground when needed” computation11.

Definition 4 A simple approximation logic program(SALP) is a tu-
ple (P, C), whereP is a SLP andC is a set ofapproximation con-
straints, i.e. rules of the form← α, with α a finite set of literals12.

For an interpretationI of P , an approximation constraintc ∈ C

is said to besatisfied, denotedI |= c, if α 6⊆ I ; otherwise it is
said to beviolated, denotedI 6|= c. We useIC

v to denote the set of
approximation constraints inC that are violated w.r.t.I , i.e. IC

v =
{c ∈ C | I 6|= c}.

Extended answer sets ofP areapproximate extended answer sets
of (P, C). An approximate extended answer setS of (P, C) is an
extended answer setof (P, C) iff SC

v = ∅, i.e. all approximation
constraints are satisfied w.r.t.S.

In the rest of this paper, we will useESn(P, C), with 0 ≤ n ≤
|C|, to denote the set containing the approximate extended answer

11 Note that current answer set solvers lack this support for “ground when
needed” (see Section 4) and compute first the complete grounding, instead.

12 Note that we allow non-ground constraints. However, grounding a SALP
can be done by computinggr(P ∪ C) and splitting up the result in two
sets, i.e. the ground rules and the ground constraints. Again, we assume
grounded SALPs in the rest of the paper.

sets of(P, C) that violate less thann + 1 approximation constraints
in C, i.e.ESn(P, C) = {S ∈ ES(P) | |SC

v | ≤ n}. Clearly, we have
thatES0(P, C) corresponds to the extended answer sets of(P, C);
andES0(P, C) ⊆ ES1(P, C) ⊆ · · · ⊆ ES|C|(P, C) = ES(P).

Example 5 Consider the following SALP(P, C) with P

¬a← ¬b← ¬c←
b←¬a a←¬b c← a

and the following approximation constraintsC

←¬a,¬b ← a ← c

We have four extended answer sets forP , i.e. ES(P) =
{S1, S2, S3, S4}, with S1 = {¬a,¬b,¬c}, S2 = {¬a, b,¬c},
S3 = {a,¬b,¬c} and S4 = {a,¬b, c}. One can verify that
ES2(P, Q) = {S1, S2, S3, S4}, ES1(P, C) = {S1, S2, S3} and
ES0(P, C) = {S2}. ThusS2 is the only extended answer set of the
above SALP(P, C).

In general, we may consider a partial order� on extended an-
swer set approximations which is such that better approximations are
smaller. i.e.S1 ≺ S2

13 iff S1 is a better approximation of an extended
answer set than isS2. It seems reasonable to demand that any such
preference order satisfiesS1 � S2 ⇒ |S1

C
v | ≤ |S2

C
v |, i.e. better ap-

proximations satisfy more approximation constraints; andthat “full”
extended answer sets correspond to≺-minimal approximations.

Two obvious (others are possible) candidates that satisfy this re-
quirement are:

• cardinality, i.e.S1 � S2 iff |S1
C
v | ≤ |S2

C
v |; and

• subset, i.e.S1 � S2 iff S1
C
v ⊆ S2

C
v

which are also used in other problem areas, such as diagnostic sys-
tems [13], that deal with preference on candidate solutions.

Note that, ifES0(P, C) = ∅, i.e. there are no extended answer
sets, and depending on the preference relation used, a≺-minimal
approximate extended answer setS may be useful, e.g. to provide
insight, via the set of violated constraintsSC

v , about possible prob-
lems with the program. In this way a semantical debugging scheme
for (extended) answer set programming can be defined, a concept
which has already been explored in the context of prolog [3, 7, 12],
but still needs better exploration in the former setting.

The following result sheds some light on the complexity of rea-
soning with approximation constraints. AsES|C|(P, C) = ES(P),
we will only consider the casesESn(P, C) with n < |C| (note that
this implies that|C| ≥ 1).

Theorem 3 Let (P, C) be a grounded SALP and takei such that
0 ≤ i < |C|. Deciding whether there exists an approximate extended
answer setS ∈ ESi(P, C) isNP-complete.

Again an exponential factor [6] or, in case of small bounded predi-
cate arities, an additional level of the polynomial hierarchy [8] has to
be added in the case of non-ground SALPs, i.e. either NEXPTIME-
complete orΣP

2 -complete respectively.
The above theorem implies that the semantics already gets its full

computational complexity with a single constraint, which is not a
surprise as we can replace each constraint← α ∈ C with a rule
inconsistent ← α in P and takeC = { ← inconsistent}. How-
ever, the above complexity result is a worst-case scenario (just as

13 As usual,S1 ≺ S2 iff S1 � S2 and notS2 � S1.

with grounding), i.e. in an implementation we may expect, inthe av-
erage case, that more constraints require more computationtime.

Finally, the framework developed above can be used to implement
an incremental extended answer set solver, i.e. a solver that produces
an approximate solution and then, as long as resources permit, pro-
duces successively better approximations. Given enough resources,
this approach will eventually result in an extended answer set, i.e. an
approximation that satisfies all constraints.

Intuitively, such an implementation will start by computing an ex-
tended answer setS along the lines of the immediate consequence
operator presented in Section 2. Afterwards, a backtracking algo-
rithm will try to improve the approximation by selecting a constraint
to satisfy, while maintaining the partial ordering defined on approxi-
mations.

4 Classical Answer Set Approximation

Theorem 3 indicates that the semantics presented in Section3 is com-
putationally equivalent to the classical answer set semantics [9] for
non-disjunctive programs containing negation as failure in the body
of rules. Here we show how the classical answer set semanticscan
be effectively translated to approximate extended answer sets, thus
making it possible to compute classical answer sets via successive
approximations.

We briefly introduce the answer set semantics for semi-negative
programs. Such programs are build using atoms and naf-atoms, i.e.
for an atoma, we usenot a to denote its negation-as-failure (naf)
version, which intuitively means thatnota is true whena is not true.
A semi-negative logic programP is a countable set of rules of the
form a ← β wherea is an atom andβ is a finite set of (naf-)atoms.
An interpretationI for a semi-negative programP is a subsetI ⊆
BP . An atoma is satisfied w.r.t.I , denotedI |= a if a ∈ I ; while a
naf-atomnot a is satisfied w.r.t.I , i.e.I |= not a, whenI 6|= a. The
answer set semantics for semi-negative programs is defined in two
steps.

First, consider programs without naf-atoms. For such a naf-free
programP , an interpretationI is an answer set iffP ⋆ = I . Next, for
semi-negative programs, we use the Gelfond-Lifschitz transforma-
tion [9]. The idea behind this transformation is, for a givenprogram
P and a candidate solutionS, to remove all naf constructs w.r.t.S

and then check if the candidate solution is supported by the reduct
program. Formally, for a semi-negative programP and a candidate
solutionS, the GL-reduct ofP w.r.t.S, denotedP S , is obtained from
P by (a) removing each rulea ← β with not b ∈ β andb ∈ S, and
(b) remove all naf-atoms from the remaining rules. Clearly,the pro-
gramP S is free from negation as failure. An interpretationS is an
answer set of a semi-negative programP iff S is an answer set of
P S , i.e. P S⋆

= S. We useAS(P) to denote the set containing all
answer sets ofP .

Example 6 Consider the following semi-negative program.

a← not b b← nota
c← a d ← b

Intuitively, the above program represents an exclusive choice be-
tweena or b and depending on this choice, the program derives an
additional atomc or d resp. Indeed, one can verify that the above
program has two answer sets, i.e.S1 = {a, c} and S2 = {b, d}.
E.g., the reductP S1 contains the rules{a ← c ← a d ← b},
for whichP S1

⋆
= {a, c} = S1.

We construct, for a semi-negative logic programP , a SALP
L(P) = (Q, C) such that the extended answer sets ofL(P), i.e.
elements ofES0(Q,C), are in one-to-one correspondence with the
answer sets ofP .

In the following definition we useα′ to denote the set of literals
obtained from a setα where each naf-atomnot a from α is replaced
by¬a. The notation is further extended to rules and programs.

Definition 5 LetP be a semi-negative program. The SALPL(P) =
(Q,C) is defined byQ = P ′ ∪ {¬a ← | a ∈ BP } and C =
{ ← β′,¬a | a ← β ∈ P}.

Intuitively, we simulate negation as failure in two steps. First, we
introduce negation as failure explicitly inQ using classical negation
by introducing a fact¬a for each atoma ∈ BP . Secondly, we assert
approximation constraints inC to enforce the satisfaction of the orig-
inal rules in the programP : a rulea ← β′ ∈ Q (i.e. a ← β ∈ P)
is only satisfied by an interpretation iff the approximationconstraint
← β′,¬a ∈ C is satisfied w.r.t. that interpretation.

Example 7 Reconsider the program from Example 6. Its SALP ver-
sionL(P) = (Q, C) is defined by the SLPQ

¬a← ¬b← ¬c← ¬d ←
a←¬b b←¬a c← a d ← b

and the set of constraintsC

←¬b,¬a ←¬a,¬b ← a,¬c ← b,¬d

Consider the following extended answer sets ofQ, i.e. S′
1 =

{a,¬b, c,¬d}, S′
2 = {¬a, b,¬c, d} andS′

3 = {a,¬b,¬c,¬d}. One
can check thatES0(Q, C) = {S′

1, S
′
2} and clearlyS1 = S′

1 ∩ BP

andS2 = S′
2 ∩ BP . On the other hand,S′

3 ∈ ES1(Q, C), asc ←
a ∈ C is violated. However, one can easily see thatS3 = S′

3 ∩ BP

is an answer set of the programP \{c ← a}.

The behavior outlined in the previous example is confirmed ingen-
eral by the following theorem.

Theorem 4 Let P be a semi-negative logic program and consider
L(P) = (Q,C) as defined in Definition 5. Then, forS ⊆ BP ,

S ∪ {¬l | l ∈ BP \S} ∈ ES0(Q,C)⇐⇒ S ∈ AS(P) ,

i.e. the answer sets ofP are in one-to-one correspondence with the
extended answer sets ofL(P).

Further, for i, with0 < i ≤ |C|, we have, with

S∪{¬l | l ∈ BP\S} ∈ (ESi(Q, C)\ESi−1(Q, C))⇔ S ∈ AS(P\SC

v) ,

where, abusing notation,P \SC
v denotes the subset of rules inP for

which the corresponding approximation constraint inC is satisfied
w.r.t.S.

The above result shows that the approximation framework forex-
tended answer sets is able to handle the classical answer setseman-
tics in the sense that, each time a better approximation forL(P) is
computed, it is also an answer set for a larger subset of the program
P . Interestingly, the algorithm does not rely on negation as failure,
but uses only classical negation and the ability to leave rules unsatis-
fied, i.e. defeated.

Finally, the above results may help to resolve another issuere-
garding current answer set solvers such asDLV [11] andSMODELS

[14]. Indeed, these solvers require that a program first be completely
grounded before the actual answer set computation starts. With ap-
proximations based on extended answer sets, this is probably not nec-
essary, since the computation of an extended answer set may operate
on a “ground (a rule) as needed” basis (Section 2).

5 Related Work

The idea of an approximation theory in logic and logic programming
is not new. A good example of this is the “anytime” family of reason-
ers for propositional logic [4]. Intuitively, such a systemconsists of
a sequence⊢0,⊢1, . . . ,⊢c of inference relations such that each⊢i is
at least as good14 as⊢i−1 and there exists a complete inference rela-
tion ⊢c for the problem. Using such an anytime reasoner, one starts
the computation with the inference relation⊢0 and as long as there is
computation time left, the inference relations⊢1,⊢2, . . . are applied
to obtain better approximations. When the complete reasoner ⊢c is
reached during the computation, one had enough resources available
to compute a completely correct solution.

This idea is e.g. applied in [5] to obtain an anytime reasonerfor
Boolean Constraint Propagation, which is used in [18] to obtain an
approximation theory for diagnostic reasoning.

In [1] a first attempt is made to devise a framework for interactive
answer set programming. The idea is to find which part of a program
needs to be recomputed in order to find a new answer set in case a
single rule is added to the program. Using this framework, one can
obtain a similar approximative version of answer set programming
as the one presented in Section 4 by starting the computationwith
a single rule and then subsequently adding new rules. However, the
framework presented in this paper is more suitable in the sense that
we can start the computation with the whole program, not justa sin-
gle rule, and obtain a first approximation that in the averagecase will
satisfy more than one rule in the program under consideration.

Weak constraints were introduced in [2] as a relaxation of the con-
cept of a constraint. Intuitively, a weak constraint is allowed to be vi-
olated, but only as a last resort, meaning that one tries to minimize the
set of violated constraints (e.g. using either subset minimality or car-
dinality minimality). The main difference of this approachwith ours,
is that we use approximation constraints to find better approxima-
tions, as long as we have resources available, of a final solution that
satisfies all approximation constraints (and which will be reached if
we have enough time); while the weak constraints in [2] serveto
differentiate between the answer sets of the program without weak
constraints, by posing additional conditions on those answer sets that
do not necessarily have to be satisfied. Also note that the weak con-
straints from [2] have a much higher complexity than the framework
presented in this paper, i.e.∆P

2 for non-disjunctive programs, or the
second level of the polynomial hierarchy.

6 Conclusions and Directions for Further Research

We presented a first attempt at an approximation theory, by means
of approximation constraints, for the extended answer set semantics
of programs containing only classical negation. Further, we showed
how classical answer sets can be approximated using the proposed
framework.

In future work, we will implement an approximate extended an-
swer set solver that “grounds when needed”. In our implementation,
we will try to incorporate some of the ideas developed in the Platy-
pus system [10], i.e. a system to compute answer sets in a distributed
environment, to obtain an implementation that can be used ina dis-
tributed setting. One topic for further research in this context is e.g.
how on the fly rule instantiations (which result from the “ground
when needed” process) have to be propagated to the other partici-
pants in the distributed computation process.

14 Note that each⊢i has to be sound and tractable, but not necessarily com-
plete.

Furthermore, we also plan to look into the related problems of pro-
filing (finding out which parts of a program are hard to compute) and
debugging (finding out which parts of a program are wrong) for(ex-
tended) answer set programming. Finally, the present approach could
be generalized to support user-defined preference relations (“hints”)
on approximation constraints which could be used to influence the
approximation process.

REFERENCES
[1] M. Brain, R. Watson, and M. De Vos, ‘An interactive approach to an-

swer set programming’, inProc. of the 3rd Intl. Workshop on ASP: Ad-
vances in Theory and Implementation (ASP05), volume 142 ofCEUR
Workshop Proceedings, pp. 190–202, (2005).

[2] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo, ‘Strong and
weak constraints in disjunctive datalog’, inProc. of the 4th Intl. Con-
ference on Logic Programming (LPNMR ’97), pp. 2–17, (1997).

[3] M. Calejo and L.M. Pereira, ‘Declarative source debugging’, in Proc.
of the 5th Portuguese Conf. on AI (EPIA91), volume 541 ofLNCS, pp.
237–249. Springer, (1991).

[4] Mukesh Dalal, ‘Anytime families of tractable propositional reasoners’,
in Proc. of the 4th Intl. Symp. on Artificial Intelligence and Mathematics
(AI/MATH96), pp. 42–45, (1996).

[5] Mukesh Dalal, ‘Semantics of an anytime family of reasoners’, in Pro-
ceedings of the 12th European Conference on Artificial Intelligence, pp.
360–364. John Wiley and Sons, (1996).

[6] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, ‘Complexity and
Expressive Power of Logic Programming’,ACM Computing Surveys,
33(3), 374–425, (2001).

[7] Mireille Ducassé, ‘A pragmatic survey of automated debugging.’, in
Proc. of the Intl. Workshop on Automated and Algorithmic Debugging
(AADEBUG93), volume 749 ofLNCS, pp. 1–15. Springer, (1993).

[8] Thomas Eiter, Wolfgang Faber, Michael Fink, Gerald Pfeifer, and Ste-
fan Woltran, ‘Complexity of model checking and bounded predicate ar-
ities for non-ground answer set programming’, inPrinciples of Knowl-
edge Representation and Reasoning: Proceedings of the Ninth Interna-
tional Conference (KR2004), pp. 377–387. AAAI Press, (2004).

[9] Michael Gelfond and Vladimir Lifschitz, ‘The stable model seman-
tics for logic programming’, inLogic Programming, Proceedings of the
Fifth International Conference and Symposium, pp. 1070–1080, Seat-
tle, Washington, (August 1988). The MIT Press.

[10] Jean Gressmann, Tomi Janhunen, Robert E. Mercer, Torsten Schaub,
Sven Thiele, and Richard Tichy, ‘Platypus: A platform for distributed
answer set solving.’, inLogic Programming and Nonmonotonic Rea-
soning, 8th International Conference (LPNMR 2005), volume 3662 of
LNCS, pp. 227–239. Springer, (2005).

[11] N. Leone, G. Pfeifer, W. Faber, F. Calimeri, T. Dell’Armi, T. Eiter,
G. Gottlob, G. Ianni, G. Ielpa, C. Koch, S. Perri, and A. Polleres, ‘The
dlv system’, inProc. of the Eur. Conf. on Logics in AI (JELIA2002),
volume 2424 ofLNCS, pp. 537–540. Springer, (2002).

[12] Lee Naish, ‘A declarative debugging scheme’,Journal of Functional
and Logic Programming, 1997(3), (1997).

[13] Raymond Reiter, ‘A theory of diagnosis from first principles’,Artificial
Intelligence, 32(1), 57–95, (1987).

[14] Patrik Simons, Ilkka Niemelä, and Timo Soininen, ‘Extending and im-
plementing the stable model semantics’,Artificial Intelligence, 138(1-
2), 181–234, (2002).

[15] M. H. van Emden and R. A. Kowalski, ‘The semantics of predicate logic
as a programming language’,Journal of the Association for Computing
Machinery, 23(4), 733–742, (1976).

[16] Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Ver-
meir. Approximating extended answer sets. Technical report,
Vrije Universiteit Brussel, Dept. of Computer Science, 2006,
http://tinf2.vub.ac.be/˜dvnieuwe/ecai2006technical.ps.

[17] Davy Van Nieuwenborgh and Dirk Vermeir, ‘Preferred answer sets for
ordered logic programs’, inProc. of the Eur. Conf. on Logics in Ar-
tif. Intell. (JELIA2002), volume 2424 ofLNCS, pp. 432–443. Springer,
(2002).

[18] A. Verberne, F. van Harmelen, and A. ten Teije, ‘Anytimediagnostic
reasoning using approximate boolean constraint propagation’, in Proc.
of the 7th Intl. Conf. on Principles of Knowledge Representation and
Reasoning (KR 2000), pp. 323–332. Kaufman, (2000).

