
Query Answering in Object Oriented Knowledge
Bases in Logic Programming: Description and

Challenge for ASP

Vinay K. Chaudhri1, Stijn Heymans1, Michael Wessel1, and Tran Cao Son2

1 Artificial Intelligence Center, SRI International, Menlo Park, CA 94025, USA
2 Computer Science Department, New Mexico State University, NM 88003, USA

Abstract. Research on developing efficient and scalable ASP solvers
can substantially benefit by the availability of data sets to experiment
with. KB Bio 101 contains knowledge from a biology textbook, has been
developed as part of Project Halo, and has recently become available for
research use. This is one of the largest KBs available in ASP and the
reasoning with this KB is undecidable in general. We give a description
of this data set and give ASP programs for a suite of queries that have
been of practical interest. We explain why these queries pose significant
practical challenges for the current ASP solvers.

1 Introduction
The KB Bio 101 represents knowledge from a textbook used for advanced high
school and introductory college biology courses [15]. The KB was developed by
SRI as part of their work for Project Halo3 and contains a concept taxonomy
for the whole textbook and detailed rules for 20 chapters of the textbook. SRI
has tested the educational usefulness of this knowledge base in the context of an
intelligent textbook called Inquire as it is used by students for learning material
from one chapter4.
The KB Bio 101 was originally developed using a knowledge representation and
reasoning system called Knowledge Machine (KM) [7]. In recent work, we have
added a conceptual modeling layer to Answer Set Programming (ASP), called
Object Oriented Knowledge Base (OOKB), that is sufficient to capture the knowl-
edge in KB Bio 101. OOKB supports conceptual modeling primitives that are
commonly found in description logic family of languages such as a facility to
define classes and organize them into a hierarchy, define partitions, ability to de-
fine relations (also known as slots) and organize them into a relation hierarchy,
support for domain, range and qualified number constraints, support for defining
sufficient conditions of a class, and support for descriptive rules. The features in
OOKB overlap with the features languages such as FDNC [8], Datalog± [4], and
ASPfs [1] in its support for function symbols. It differs in that the functions can
be used to specify graph-structured objects which cannot be done in previous
languages. The reasoning with OOKBs has been proven to be undecidable.

3 http://www.projecthalo.com/
4 http://www.aaaivideos.org/2012/inquire_intelligent_textbook/



In this paper, we propose to consider four queries of practical interest on KB Bio 101.
These queries have been found extremely useful in the context of Inquire and
provide motivating drivers for the ASP solvers. This dataset presents an excellent
opportunity for further development of ASP solvers for the following reasons.

• The recent developments in ASP suggest that ASP could potentially provide
an ideal tool for large scale KBs. Yet, most of the KBs described in the
literature are fairly small. KB Bio 101 provides a real-world ASP program
that fits this bill.

• We note that KB Bio 101 contains rules with functions symbols and thus
requires some tailoring or re-writing of rules of this type since the grounding
is infinite. A simple example, that requires the encoding of object oriented
knowledge bases with function symbols, is a KB consisting of a single class
person, and a single relation has-parent, and a statement of the form “for
each person there exists an instance of the has-parent relation between
this person with another individual who is also a person”.

• Several rules in an OOKB have variables and even though rules in KB Bio 101

follow a small number of axiom templates, the size of this knowlege base in-
dicates that this could be a non-trivial task for new grounders.

• The KB Bio 101 cannot be expressed in commonly available decidable de-
scription logics because it contains graph structured descriptions. Efficient
reasonign with graph structures is an area of active recent research [12, 13],
and since there exists an export of KB Bio 101 for description logic systems
also [?], this dataset provides an ideal usecase to explore the boundaries of
decidable reasoning.

• The reasoning tasks of computing differences between two concepts and
finding relationships between two individuals are computationally intensive
tasks. The implementations of these tasks in Inquire rely on graph algorithms
and trade completeness for efficiency. These tasks will present a tough chal-
lenges to ASP solvers.

• Last but not least, we believe that the KB could entice the development
and/or experimentation with new solvers for extended classes of logic pro-
grams (e.g., language with existential quantifiers or function symbols).

In addition to the challenges listed above, it will be possible to define multi-
ple new challenges of increasing difficulty that can be used to motivate further
research and development of ASP solvers.

2 Background: Logic Programming and OOKB
2.1 Logic Programming

A logic program Π is a set of rules of the form

c← a1, . . . , am, not am+1, . . . , not an (1)

where 0≤m≤n, each ai is a literal of a first order language and not aj , m<j≤n,
is called a negation as failure literal (or naf-literal). c can be a literal or omitted.
A rule (program) is non-ground if it contains some variable; otherwise, it is a
ground rule (program). When n = 0, the rule is called a fact. When c is omitted,



the rule is a constraint. Well-known notions such as substitution, the Herbrand
universe UΠ , and Herbrand base BΠ of a program Π are defined as usual.
The semantics of a program is defined over ground programs. For a ground rule
r of the form (1), let pos(r)={a1, . . . , am} and neg(r)={am+1, . . . , an}. A set of
ground literals X is consistent if there exists no atom a s.t. {a,¬a}⊆X. A ground
rule r is satisfied by X if (i) neg(r)∩X 6=∅; (ii) pos(r)\X 6=∅; or (iii) c ∈ X.
Let Π be a ground program. For a consistent set of ground literals S, the reduct
of Π w.r.t. S, denoted by ΠS , is the program obtained from the set of all rules
of Π by deleting (i) each rule that has a naf-literal not a in its body with a ∈ S,
and (ii) all naf-literals in the bodies of the remaining rules. S is an answer set
of Π [10] if it satisfies the following conditions: (i) If Π does not contain any
naf-literal then S is the minimal set of ground literals satisfying all rules in Π;
and (ii) If Π contains some naf-literal then S is an answer set of Π if S is the
answer set of ΠS .
For a non-ground program Π, a set of literals in BΠ is an answer set of Π if it is
an answer set of ground(Π) that is the set of all possible ground rules obtained
from instantiating variables with terms in UΠ . Π is consistent if it has an answer
set. Π entails a ground literal a, Π |= a, if a belongs to every answer set of Π.
For convenience in notation, we will make use of choice atoms as defined in [16]
that can occur in a rule wherever a literal can. Answer sets of logic programs
can be computed using answer set solvers (e.g., Clasp [9], dlv [6]).

2.2 Object-Oriented Knowledge Bases

We will now review the notion of an OOKB [5]. We note that an OOKB could
be viewed as a logic program with function symbols and the language of OOKBs
contains features that cannot be represented in previous investigated classes of
function symbols such as FDNC [8], Datalog± [4], or ASPfs [1]. In essense, an
OOKBs is a logic programming consisting of the following components:

• Taxonomic Knowledge: This group of facts encodes the class hierarchy, the
relation hierarchy, individual constants and their class membership. It con-
tains ASP-atoms of the following form:

class(c) (2)

individual(i) (3)

subclass of(c1, c2) (4)

disjoint(c1, c2) (5)

instance of(i, c) (6)

relation(r) (7)

range(r, c) (8)

domain(r, c) (9)

subrelation of(r1, r2) (10)

compose(r1, r2, r3) (11)

inverse(r1, r2) (12)

The predicate names are self-explanatory.
• Descriptive statements: Relationships between individuals are encoded in

OOKB by descriptive statements of the form:

value(r, f(X), g(X)) ← instance of(X, c) (13)

value(r,X, g(X)) ← instance of(X, c) (14)

where f and g are unary functions, called Skolem functions, such that
f 6= g and c is a class. (13) (or (14)) describes a relation value of indi-



viduals belonging to class c, encoded by the atom value(r, f(X), g(X)) (or
value(r,X, f(X)). It states that for each individual X in c, f(X) (or X) is
related to g(X) via the relation r. It is required that if f (or g) appears in
(13) or (14), then the OOKB also contains the following rule

instance of(f(X), cf ) ← instance of(X, c) or (15)

instance of(g(X), cg) ← instance of(X, c) (16)

which specify the class of which f(X) (resp. g(X)) is a member.
• Cardinality constraints on relations: OOKB allows cardinality constraints on

relations to be specified by statements of the following form:

constraint(t, f(X), r, d, n)← instance of(X, c) (17)

where r is a relation, n is a non-negative integer, d and c are classes, and t
can either be min, max, or exact. This constraint states that for each instance
X of the class c, the set of values of relation r restricted on f(X)—which
must occur in a relation value literal value(r, f(X), g(X)) of c—has minimal
(resp. maximal, exactly) n values belonging to the class d. The head of (17)
is called a constraint literal of c.

• Sufficient conditions: A sufficient condition of a class c defines sufficient
conditions for membership of that class based on the relation values and
constraints applicable to an instance:

instance of(X, c)← Body(X) (18)

whereBody(X) is a conjunction of relation value literals, instance-of literals,
constraint-literals of c, and X is a variable occurring in the body of the rule.
• (In)Equality between individual terms: The rules in this group specify in/equality

between terms, which are constructable from Skolem functions and the vari-
able X (t1 and t2), and have the followimg form:

eq(t1, t2)← instance of(X, c) (19)

neq(t1, t2)← instance of(X, c) (20)

• Domain-independent axioms: An OOKB also contains a set of domain-independent
axioms ΠR for inheritance reasoning, reasoning about the relation values of
individuals (rules (25)—(27)), in/equality between terms (rules (28)—(40)),
and enforcing constraints (rules (42)—(47)).

subclass of(C,B) ← subclass of(C,A), subclass of(A,B). (21)

instance of(X,C) ← instance of(X,D), subclass of(D,C). (22)

disjoint(C,D) ← disjoint(D,C). (23)

¬instance of(X,C) ← instance of(X,D), disjoint(D,C). (24)

value(U,X,Z) ← compose(S, T, U), value(S,X, Y ), value(T, Y, Z). (25)

value(T,X, Y ) ← subrelation of(S, T ), value(S,X, Y ). (26)

value(T, Y,X) ← inverse(S, T ), value(S,X, Y ). (27)

eq(X,Y ) ← eq(Y,X) (28)



eq(X,Z) ← eq(X,Y ), eq(Y,Z), X 6= Z (29)

← eq(X,Y ), neq(X,Y ) (30)

{substitute(X,Y )} ← eq(X,Y ). (31)

← eq(X,Y ), {substitute(X,Z) : eq(X,Z)}0, (32)

{substitute(Y,Z) : eq(Y,Z)}0.
← substitute(X,Y ), substitute(X,Z), (33)

X 6= Y,X 6= Z, Y 6= Z. (34)

← substitute(X,Y ), X 6= Y, neq(X,Y ). (35)

substitute(Y,Z) ← substitute(X,Z), X 6= Z, eq(X,Y ). (36)

is substituted(X) ← substitute(X,Y ), X 6= Y. (37)

substitute(X,X) ← term(X), not is substituted(X). (38)

term(X) ← value(S,X, Y ). (39)

term(Y ) ← value(S,X, Y ). (40)

valuee(S, P,Q) ← value(S,X, Y ), substitute(X,P ), substitute(Y,Q). (41)

← value(S,X, Y ), domain(S,C), not instance of(X,C).(42)

← value(S,X, Y ), range(S,C), not instance of(Y,C). (43)

← constraint(min, Y, S,D,M), (44)

{valuee(S, Y, Z) : instance of(Z,D)}M − 1.

← constraint(max, Y, S,D,M), (45)

M + 1{valuee(S, Y, Z) : instance of(Z,D)}.
← constraint(exact, Y, S,D,M), (46)

{valuee(S, Y, Z) : instance of(Z,D)}M − 1.

← constraint(exact, Y, S,D,M), (47)

M + 1{valuee(S, Y, Z) : instance of(Z,D)}.

An OO-domain is a collection of rules of the form (2)—(20). From now on,
whenever we refer to an OOKB, we mean the prorgram D ∪ ΠR, denoted by
KB(D), where D is the OO-domain of the OOKB5.

2.3 KB Bio 101: An OOKB Usage and Some Key Characteristics

The KB Bio 101 is available in OOKB format and access can be granted to it on
request. The KB is based on an upper ontology called the Component Library
[3]. The biologists used a knowledge authoring system called AURA to represent
knowledge from a biology textbook. As an example, in Figure 1, we show an
AURA graph corresponding to the example considered earlier in the paper. The
white node labeled as Eukaryotic-Cell is the root node and represents the uni-
versally quantified variable X, whereas the other nodes shown in gray represent
existentials, or the Skolem functions fn(X). The nodes labeled as has part and
is inside represent the relation names. The authoring process in AURA can be
abstractly characterized as involving three steps: inherit, specialize and extend.

5 In [5], general OOKBs, that can contain arbitrary logic programming rules, were
defined. The discussion in this paper is applicable to general OOKBs as well.



Fig. 1. Example graph for “Eukaryotic-Cell”

For example, the biologist creates the class Eukaryotic-Cell as a subclass of Cell.
While doing so, the system would first inherit the relation values defined for Cell
which in this case is a Chromosome, and show it in the graphical editor. The biol-
ogist then uses a gesture in the editor to specialize the inherited Chromosome to a
Eukaryotic-Chromosome, and then introduces a new Nucleus and relates it to the
Eukaryotic-Chromosome, via an is-inside relationship. The inherited Chromosome

value for the has-part relationship, is thus, specialized to Eukaryotic-Chromosome

and extended by connecting it to the Nucleus by using an is-inside relationship.
The statistics about the size of the exported OOKB are summarized in Table
1. In total KB Bio 101 has more than 300,000 non-ground rules. It contains 746
individuals which are member of classes which represent constants of measure-
ments, colors, shapes, quantity, priority, etc. The KB does not contain individu-
als of biology classes such as cell, ribosome, etc. For computing properties of an
individual or comparing individuals, the input needs to specify the individuals.

classes 6430 domain constraints 449
individuals 746 range constraints 447
relations 455 inverse relation statements 442
subclass of statements 6993 compose statements 431
subrelation of statements 297 qualified number constraints 936
instance of statements 714 sufficient conditions 198
disjoint-ness statements 18616 descriptive rules 6430
avg. number of Skolem functions 24 equality statements 108755
in each descriptive rule

Table 1. Statistics on KB Bio 101

3 Basic Queries in OOKBs
We will now describe the basic queries given an OOKB, say KB(D). These
basic queries play a central role in the educational application Inquire [14] which
employs the knowledge encoded in KB Bio 101. We divide these queries in four
groups. The first type of queries focuses on the taxonomical hierarchy described
by the KB. The second type of queries asks about the description of individuals
of a class. The third type requests is about the fundamental distinctions and
similarities between individuals from different classes. The fourth type of queries
looks for specific ways that an individual in one class can affect an individual



from another class. These types of queries are sufficiently expressive to represent
frequently occurred questions in AP-biology exams. For example,
• is eukaryotic cell a subclass of cell?
• what is a eukaryotic cell?
• describe the differences and similarities between mitochondrions and chloroplasts;
• what process provides raw materials for the citric acic cycle during cellu-

lar respiration?
• in the absence of oxygen, yeast cells can obtain energy by which process?

Let Z be a set of literals of KB(D), r be a relation, and i be an individual from
a class c. T (i) denotes the set of terms constructable from Skolem functions and
the individual i. We characterize the set of pairs in the relation r w.r.t. Z in
KB(D) by the set V (r, i, c, Z) = {(r, x, y) | value(r, x, y) ∈ Z, x, y ∈ T (i)} if
instance of(i, c) ∈ Z; otherwise, V (r, i, c, Z)=∅.

Definition 1 (Value set of an individual). Let KB(D) be an OOKB. For
an answer set M of KB(D), the value set of an individual i at a class c w.r.t.
M , Σ(i, c,M), is defined by Σ(i, c,M) =

⋃
relation(r)∈M V (i, c, r,M).

Observe that the rules (29)—(41) indicate that KB(D) can have multiple answer
sets. Nevertheless, the structure of KB(D) allows us to prove the following
important property of answer sets of KB(D).

Proposition 1. Let KB(D) be an OOKB. For every two answer sets M1 and
M2 of KB(D), every literal in M1 \ M2 has one of the following forms: (i)
substitute(x, y); (ii) is substituted(x, y); or (iii) valuee(r, x, y).

The above proposition indicates that Σ(i, c,M1) = Σ(i, c,M2) for arbitrary
individual i and class c and answer sets M1 and M2 of KB(D). The relationship
between atoms of the form value(r, x, y) and valuee(r, x, y) is as follows.

Proposition 2. Let KB(D) be an OOKB, i an individual, and c a class. For
every answer sets M of KB(D), we have that valuee(r, x, y) ∈ M iff there
exists x′, y′ such that (i) M contains the following atoms eq(x′, x), eq(y′, y),
substitute(x′, x), and substitute(y′, y); and (ii) (r, x′, y′) ∈ Σ(i, c,M).

The significance of these two propositions is that cautious reasoning about values
of individuals at classes can be accomplished by computing one answer set of
KB(D). As we will see, the majority of queries is related to this type of reasoning.
We next describe, for each query Q, an input program I(Q) and a set R(Q) of
rules for computing the answer of Q. Throughout the section, KB denotes an
arbitrary but fixed OOKB KB(D) and KB(Q) = KB(D) ∪ I(Q) ∪R(Q).

3.1 Subsumption Between Classes (Q1)

Subsumption requires us to compute whether a class c1 is subsumed by a class c2,
i.e., whether for each answer setM ofKB(Q1), we have for each instance of(x, c1) ∈
M also instance of(x, c2) ∈M . We can answer this question by introducing in-
troducing a fresh constant i in the OOKB and set I(Q1) = {instance of(i, c1)}.
R(Q1) consists of a rule:

subclass of(c1, c2)← instance of(i, c2) (48)



Indeed, we then have that a class c1 is subsumbed by c2 iff for each answer
set M of KB(Q1), subclass of(c1, c2) ∈ M . This conclusion comes from the
following observations: (a) if subclass of(c1, c2) is given as a fact (via (4)) then
the subsumption is trivial; (b) if subclass of(c1, c2) is not given as a fact then
(48) is the only rule for deriving subclass of(c1, c2) and for subclass of(c1, c2) ∈
M , it requires that instance of(i, c2) ∈ M , i.e., each instance i of c1 is also an
instance of c2. Proposition 1 can be extended to KB(Q1) and thus we only
need to compute one answer set of KB(Q1). Note that this shows how, as in
description logics, subsumption can be reduced to entailment in the OOKB
framework. We can show that

Proposition 3. If KB(Q1) has an answer set M and subclass of(c1, c2) ∈M
then c1 is subsumed by c2.

We note that computing answer sets of KB(Q1) is not a simple task (see [5]).
In particular, the problem for KB Bio 101 is quite challenging due to its size and
the potential infiniteness of the grounding program of KB(Q1).

3.2 Description of an Individual (Q2)

Queries about the description of an individual ask for a description of an individ-
ual of a class c, represented by a fresh constant i in the language of KB(D). This
query can be represented by the program I(Q2) = {get value(i, c).instance of(i, c).}
where get value(i, c) encodes the query of “inquiring about values of i at the
class c.” We will now discuss the answer to this query. Intuitively, a complete
description of i should contain the following information:
• C(c)={d | KB(D)|=subclass of(c, d)}, the classes from which i inherits its

relation values; and
• its relation values, i.e., the triples in Σ(i, c,M) where M is a given answer

set of R(Q2).
Computing a complete description of i could be achieved by the following rules:

out member of(Y ) ← get value(I, C), instance of(I, C), instance of(I, Y ). (49)

out value(R,X, Y ) ← get value(I, C), value(R,X, Y ), relation(R), (50)

term of(X, I), term of(Y, I).

where term of(X, I) defines a term (X) that is constructable from Skolem
functions and an individual (I), out member of(d) indicates that i is an in-
stance of the class d (i.e., d ∈ C(c)), and out value(r, x, y) says that KB(D) |=
value(r, x, y). This answer is correct but may contain too much information for
users of an OOKB who have knowledge about the class hierarchy. This is be-
cause the above description could also include values that i can inherit from the
superclasses of c. This can be seen in the next example.

Example 1. Let us consider the class Eukaryotic cell. The description of this
class contains 88 statements of the form (13)—(14) that involve 167 classes
and 150 equality specifications. A first-level answer6 computed using (49)–(50)

6 Current solvers can only approximate the answer due to the infiniteness of the
grounding program. We computed the answer by limiting the maximum nesting
level for complex terms of the term to be 1 (e.g., the option maxnesting in dlv).



contains 9 atoms of the form out member of(x) which indicate that a eukaryotic

cell is also a cell, a living entity, a physical object, etc. In addition, there
are 643 atoms of the form out value(r, x, y) which contains inverse, composition,
sub-relation, and the relation value defined in statements of the form (13)—(14)
and those that are obtained by the rules (25)–(27).

The example highlights two challenges in computing the description of an in-
dividual. On the one hand, the perennial challenge lies in the infiniteness of
the grounding program. On the other hand, for practical query answering ap-
plications, that use KB Bio 101, deciding what to present to the user is another
challenge. This topic is outside the scope of this paper and is one of our main cur-
rent interests. It should be noted that because of the infiniteness of the ground
KB, current ASP solvers can be used to approximate the answers. Whether this
will result in acceptable performance, both in terms of the quality of the answers
and the efficiency, remains a topic of research that we would like to study in the
near future.

3.3 Comparing between Classes (Q3)

A comparison query takes the general form of “What are the differences/similarities
between c1 and c2?” (e.g., “what are the differences between chromosome and
ribosome?”). More specific versions of the query may ask for specific kinds of
differences, e.g., structural differences.
The query can be represented and answered by (i) introducing two new constants
i1 and i2 which are instances of c1 and c2, respectively; and (ii) identifying the
differences and similarities presented in the descriptions of i1 and i2. We therefore
encode I(Q3) using the following program:

instance of(i1, c1). instance of(i2, c2). comparison(i1, c1, i2, c2). (51)

Let us first discuss the features that can be used in comparing individuals of
two classes. Individuals from two classes can be distinguished from each other
using different dimensions, either by their superclass relationship or by the re-
lations defined for each class. More specifically, they can be differentiated from
each other by the generalitation and/or specialitation between classes; or the
properties of instances belonging to them. We will refer to these two dimensions
as class-dimension and instance-dimension, respectively. We therefore define the
following notions, given an answer set M of KB(Q3):
• The set of similar classes between c1 and c2: is the intersection between the

set of superclasses of c1 and of c2

U(c1, c2) = C(c1) ∩ C(c2) (52)

• The set of different classes between c1 and c2: is the set difference between
the set of superclasses of c1 and of c2

D(c1, c2) = (C(c1) \ C(c2)) ∪ (C(c2) \ C(c1)) (53)

where C(c) denotes the set of superclasses of c.



We next discuss the question of what should be considered as a similar and/or
different property between individuals of two different classes. Our formalization
is motivated from the typical answers to this type of question such as an answer
“a chromosome has a part as protein but a ribosome does not” to the query
“what is the different between a chromosome and a ribosome?” This answer
indicates that for each chromosome x there exists a part of x, say f(x), which
is a protein, i.e., value(has part, x, f(x)) and instance of(f(x), protein) hold;
furthermore, no part of a ribosome, say y, is a protein, i.e., there exists no g
such that value(has part, y, g(y)) and instance of(g(y), protein) hold.
For a set of literals M of KB(Q3) and a class c with instance of(i, c) ∈M , let
T (i, c) be the set of triples (r, p, q) such that (r, x, y) ∈ Σ(i, c,M), instance of(x, p) ∈
M , and instance of(y, q) ∈ M . p (q) is called the domain (range) of r if
(r, p, q) ∈ T (i, c). We define
• The set of similar relations between c1 and c2: is the set Rs(c1, c2) of relations
s such that (i) c1 and c2 are domain of s; (ii) c1 and c2 are range of s; or
(iii) there exist (p, q) such that (s, p, q) ∈ T (i1, c1) ∩ T (i2, c2).

• The set of different relations between c1 and c2: is the set Rd(c1, c2) of rela-
tions s such that (i) c1 is and c2 is not a domain of s or vice versa; (ii) c1
is and c2 is not a range of s vice versa; or (iii) there exist (p, q) such that
(s, p, q) ∈ (T (i1, c1) \ T (i2, c2)) ∪ (T (i2, c2) \ T (i1, c1)).

An answer to Q3 must contain information from U(c1, c2), D(c1, c2), Rs(c1, c2),
and Rd(c1, c2). Computing U(c1, c2) and D(c1, c2) rely on the rules for deter-
mining the most specific classes among a group of classes which can easily be
implemented using the naf-operator.
We now describe the set of rules R(Q3), dividing it into different groups. First,
the set of rules for computing U(c1, c2) is as follows:

shared(C,P,Q) ← comparison(X,P, Y,Q), (54)

subclass of(P,C), subclass of(Q,C).

The rule identifies the classes that are superclass of both c1 and c2. We can
show that KB(Q3) |= shared(c, c1, c2) iff c ∈ U(c1, c2).
The next set of rules is for computing D(c1, c2).

dist(C,P,Q) ← comparison(X,P, Y,Q), (55)

subclass of(P,C), not subclass of(Q,C).

dist(C,P,Q) ← comparison(X,P, Y,Q), (56)

not subclass of(P,C), subclass of(Q,C).

The two rules identify the classes that are superclass of c1 but not c2 and vice
versa. Again, we can show that KB(Q3) |= dist(c, c1, c2) iff c ∈ D(c1, c2).
For computing Rs(c1, c2) and Rd(c1, c2), we need to compute the sets T (i1, c1)
and T (i2, c2). For this purpose, we define two predicates t1 and t2 such that
for every answer set M of KB(Q3), tk(s, p, q) ∈ M iff (s, p, q) ∈ T (ik, ck) for
k = 1, 2. Before we present the rules, let us denote a predicate msc of , called
the most specific class of an individual, by the following rules.

not msc of(X,P ) ← subclass of(Q,P ), instance of(X,P ), instance of(X,Q). (57)



msc of(X,P ) ← instance of(X,P ), not not msc of(X,P ). (58)

These rules state that the class p is the most specific class of an individual x
if x is a member of p and x is not an instance of any subclass q of p. This will
allow us to define the set T (i1, c1) and T (i2, c2) as follows.

3{t1(R,P,Q), ← comparison(X1, C1, Y1, C2), value(R,X, Y ), (59)

q d(R,P ), term of(Y,X1), term of(X,X1),

q r(R,Q)} msc of(X,P ),msc of(Y,Q).

3{t2(R,P,Q), ← comparison(X1, C1, Y1, C2), value(R,X, Y ), (60)

q d(R,P ), term of(X,Y1), term of(Y, Y1), (61)

q r(R,Q)} msc of(X,P ),msc of(Y,Q).

The following rules identify relations that are similar between c1 and c2:

shared property(R) ← comparison(X1, C1, Y1, C2), t1(R,C1, Q1), t2(R,C2, Q2).(62)

shared property(S) ← comparison(X1, C1, Y1, C2), t1(R,P1, C1), t2(R,P2, C2). (63)

shared property(S) ← comparison(X1, C1, Y1, C2), t1(R,P,Q), t2(R,P,Q). (64)

The rules say that individuals i1 and i2 from class c1 and c2 respectively share
a relation r. The first rule says that ik (k = 1, 2) is a source in the relation r
(i.e., there exists some tk such that (r, ik, tk) ∈ Σ(ik, ck,M)); The second rule
says that ik is a destination in the relation r (i.e., the first rule: there exists
some tk such that (r, tk, ik) ∈ Σ(ik, ck,M)). The third rule says that there
exist some pair t1k, t

2
k such that t1k and t2k are instances of the same class and

(r, t1k, t
2
k) ∈ Σ(ik, ck,M).

dist domain(S,C1, C2) ← comparison(X1, C1, Y1, C2), q d(S,C1), not q d(S,C2). (65)

dist domain(S,C2, C1) ← comparison(X1, C1, Y1, C2), q d(S,C2), not q d(S,C1). (66)

dist range(S,C1, C2) ← comparison(X1, C1, Y1, C2), q r(S,C1), not q r(S,C2). (67)

dist range(S,C2, C1) ← comparison(X1, C1, Y1, C2), q r(S,C2), not q r(S,C1). (68)

dist property(S, P,Q,C1, C2) ← comparison(X1, C1, Y1, C2), t1(S, P,Q), not t2(S, P,Q).(69)

dist property(S, P,Q,C2, C1) ← comparison(X1, C1, Y1, C2), not t1(S, P,Q), t2(S, P,Q).(70)

The three predicates dist domain, dist range, and dist property record the
differences in the use of instances of c1 and c2 with respect to a relation r as its
domain, range, or a property, similar to the three cases of similarities.
The key challenge in computing the differences/similarities between classes in
KB Bio 101 is again the infiniteness of the grounding program.

3.4 Relationship between Individuals (Q4)

A relationship query takes the general form of “What is the relationship be-
tween individual i1 and individual i2?”, e.g., “what is the relationship between
a biomembrane and a carbohydrate”? Since this type of query refers to a path
between two individuals, it can involve significant search in the KB making it
especially suitable for solution by ASP solvers. In more specific forms of this
query, the choice of relationships can be limited to a specific subset of relation-
ships in the KB. For example, “What is the structural or functional relationship
between individual i1 and individual i2?” We can formulate this query as follows.



Given a set of literals M of an OOKB and a set of relations S, a sequence of
classes alternated with relation ω = (c1, s1, c2, s2, . . . , sn−1, cn) is called a path be-
tween q1 and qn with restrictive relations S inM if there exists instance of(t, c1) ∈
M and Skolem functions f1 = id, f2, . . . , fn−1 such that value(si, fi(t), fi+1(t)) ∈
M for i = 1, . . . , n − 1 and instance of(fi(t), ci) ∈ M for i ≥ 2 and si ∈ S for
1 ≤ i < n. A query of type Q4 asks for a path between c1 and c2 with restrictive
relations in S and is encoded by the program I(Q4):

instance of(i1, c1). instance of(i2, c2). p relation(c1, c2). include(r). (r ∈ S)

The answer to the query should indicate paths between c1 and c2 with restrictive
relations in S. Observe that an answer can be generated by (i) selecting some
atoms of the form value(s, x, y) such that s ∈ S; and (ii) checking whether these
atoms create a path from c1 to c2. We next present the set of rules R(Q4),
dividing them into two groups that implement the steps (i) and (ii) as follows.

p segment(R,E,C, F,D) ← include(R), value(R,E, F ), instance of(E,C), (71)

instance of(F,D).

{seg(S,E,C, F,D)} ← p segment(S,E,C, F,D). (72)

← p relation(C1, C2), {seg( , , C1, , )}0. (73)

← p relation(C1, C2), 2{seg( , , C1, , )}. (74)

← p relation(C1, C2), {seg( , , , , C2)}0. (75)

← p relation(C1, C2), 2{seg( , , , , C2)}. (76)

The first rule defines possible segments of the path. The second rule, a choice
rule, picks some arbitrary segments to create the path. A segment is represented
by the atom seg(s, e, c, e′, c′) that encodes a relation s between e (an instance
of class c) and e′ (an instance of class c′). The rest of the rules eliminate com-
binations that do not create a path from c1 to c2. For example, the first two
constraints make sure that there must be exactly one segment starting from c1;
the next two ensure that there must be exactly one segment that ends at c2.
The next four constraints make sure that the segments create a path.

← p relation(C1, C2), seg(S,E,C,E1, D), D 6= C2, {seg( , E1, D, , )}0. (77)

← p relation(C1, C2), seg(S,E,C,E1, D), D 6= C2, 2{seg( , E1, D, , )}. (78)

← p relation(C1, C2), seg(S,E,C,E1, D), D 6= C2, C 6= C1, {seg( , , , E, C)}0. (79)

← p relation(C1, C2), seg(S,E,C,E1, D), D 6= C2, C 6= C1, 2{seg( , , , E, C)}. (80)

As with other queries, the computation of an answer set of KB(Q4) using
current ASP solvers might not be feasible.

4 Conclusions and Future Work
In this paper, we formulate the basic queries in OOKB and present ASP pro-
grams for answering these queries. We also present a practical OOKB, KB Bio 101,
whose size and nesserary features make the computation of the answers to these
queries almost impossible using contemporary ASP solvers. Being a concrete
OOKB, KB Bio 101 presents a real challenge for the development of ASP-solvers.
This also calls for the development of novel query answering methods with huge
programs in ASP.



As we have mentioned in our discussion, except for (Q1), the answer to (Q2)—
(Q3) can contain too much information that might or might not be of interested
to the users. In this paper, we propose to consider only most specific classes or
relation values in the answers. Our experience in the development of the system
Inquire indicates that this might not always be a good solution. As such, it
might be necessary to enrich the queries with users’ preferences. This will be
one of our focuses in the immediate near future.

References
1. M. Alviano, W. Faber, and N. Leone. Disjunctive asp with functions: Decidable

queries and effective computation. TPLP, 10(4-6):497–512, 2010.
2. F. Baader, I. Horrocks, and U. Sattler. Description Logics. In Handbook of Knowl-

edge Representation. Elsevier.
3. K. Barker, B. Porter, and P. Clark. A library of generic concepts for composing

knowledge bases. In Proc. 1st Int Conf on Knowledge Capture. 14–21.
4. A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. Datalog±: a unified approach to ontologies

and integrity constraints. In Database Theory - ICDT 2009. ACM.
5. V. Chaudhri, S. Heymans, M. Wessel, and T. C. Son. Object Oriented Knowledge

Bases in Logic Programming . Tech report, SRI International, 2013.
6. S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis,

G. Pfeifer, and F. Scarcello. The dlv system: Model generator and application
frontends. WLP, 128–137, 1997.

7. P. Clark and B. Porter. KM (v2.0 and later): Users Manual, 2011.
8. T. Eiter and M. Simkus. FDNC: Decidable nonmonotonic disjunctive logic pro-

grams with function symbols. ACM TOCL, 11(2), 2010.
9. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven

answer set solver. LPNMR’07, LNAI 4483, 260–265. Springer-Verlag, 2007.
10. M. Gelfond and V. Lifschitz. Logic programs with classical negation. ICLP, 579–

597, 1990.
11. D. Gunning, V. K. Chaudhri, P. Clark, K. Barker, S-Y. Chaw, M. Greaves,

B. Grosof, A. Leung, D. McDonald, S. Mishra, J. Pacheco, B. Porter, A. Spaulding,
D. Tecuci, and J. Tien. Project Halo Update—Progress Toward Digital Aristotle.
AI Magazine, pages 33–58, 2010.

12. D. Magka, B. Motik, B., and I. Horrocks. Modeling Structured Domains using
Description Graphs and Logic Programming. In DL 2012.

13. B. Motik, B. C. Grau, I. Horrocks, and U. Sattler. Representing ontologies using
description logics, description graphs, and rules. AIJ, 173:1275-1309, 2009.

14. A. Overholtzer, A. Spaulding, V. K. Chaudhri, and D. Gunning. Inquire: An
Intelligent Textbook. In Proceedings of AAAI Video Competition Track, 2012.
http://www.aaaivideos.org/2012/inquire_intelligent_textbook/.

15. J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky, and R. B.
Jackson. Campbell Biology, 9/E. Benjamin Cummings, 2011.

16. P. Simons, N. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1–2):181–234, 2002.

17. M. Wessel, V. Chaudhri, and S. Hyemans. Automatic Strengthening of Graph-
Structured Knowledge Bases. Technical report, SRI International, 2013.


