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Abstract. Open Answer Set Programming (OASP) is a knowledge rep-
resentation paradigm that allows for a tight integration of Logic Pro-
gramming rules and Description Logic ontologies. Although several de-
cidable fragments of OASP exist, no reasoning procedures for such ex-
pressive fragments were identified so far. We provide an algorithm that
checks satisfiability in nexptime for the fragment of exptime-complete
simple conceptual logic programs.

1 Introduction

Integrating Description Logics (DLs) with rules for the Semantic Web has re-
ceived considerable attention over the past years with approaches such as De-
scription Logic Programs [10], DL-safe rules [16], DL+log [17], dl-programs [5],
and Open Answer Set Programming (OASP) [13]. OASP combines attractive
features from both the DL and the Logic Programming (LP) world: an open do-
main semantics from the DL side allows for stating generic knowledge, without
mentioning actual constants, and a rule-based syntax from the LP side supports
nonmonotonic reasoning via negation as failure.

Decidable fragments for OASP satisfiability checking were identified as syn-
tactically restricted programs, that are still expressive enough for integrating
rule- and ontology-based knowledge, see, e.g., Conceptual Logic Programs [12]
or g-hybrid knowledge bases [11]. A shortcoming of those decidable fragments
of OASP is the lack of effective reasoning procedures. In this paper, we take
a first step in mending this by providing a sound and complete algorithm for
satisfiability checking in a particular fragment of Conceptual Logic Programs.

The major contributions of the paper can be summarized as follows:

– We identify a fragment of Conceptual Logic Programs (CoLPs), called sim-
ple CoLPs, that disallow for inverse predicates, inequality, and have some
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restrictions concerning the dependencies between different predicate sym-
bols which appear in rules, compared to CoLPs, but are expressive enough
to simulate the DL ALCH. We show that satisfiability checking w.r.t. simple
CoLPs is exptime-complete (i.e., it has the same complexity as CoLPs).

– We define a nondeterministic algorithm for deciding satisfiability, inspired
by tableaux-based methods from DLs, that constructs a finite representation
of an open answer set. We show that this algorithm is terminating, sound,
complete, and runs in nexptime.

The algorithm is non-trivial from two perspectives: both the minimal model
semantics of OASP, compared to the model semantics of DLs, as well as the
open domain assumption, compared to the closed domain assumption of ASP,
pose specific challenges in constructing a finite representation that corresponds
to an open answer set. Detailed proofs can be found in [6].

2 Preliminaries

We recall the open answer set semantics from [13]. Constants a, b, c, . . ., variables
x, y, . . ., terms s, t, . . ., and atoms p(t1, . . . , tn) are defined as usual. A literal is
an atom p(t1, . . . , tn) or a naf-atom not p(t1, . . . , tn). For a set α of literals
or (possibly negated) predicates, α+ = {l | l ∈ α, l an atom or a predicate}
and α− = {l | not l ∈ α, l an atom or a predicate}. For a set X of atoms,
not X = {not l | l ∈ X}. For a set of (possibly negated) predicates α, we will
often write α(x) for {a(x) | a ∈ α} and α(x, y) for {a(x, y) | a ∈ α}.

A program is a countable set of rules α ← β, where α and β are finite sets
of literals. The set α is the head of the rule and represents a disjunction, while
β is called the body and represents a conjunction. If α = ∅, the rule is called a
constraint. Free rules are rules q(x1, . . . , xn) ∨ not q(x1, . . . , xn) ← for variables
x1, . . . , xn; they enable a choice for the inclusion of atoms. We call a predicate q
free in a program if there is a free rule q(x1, . . . , xn) ∨ not q(x1, . . . , xn) ← in the
program. Atoms, literals, rules, and programs that do not contain variables are
ground. For a rule or a program X, let cts(X) be the constants in X, vars(X) its
variables, and preds(X) its predicates with upreds(X) the unary and bpreds(X)
the binary predicates. A universe U for a program P is a non-empty countable
superset of the constants in P : cts(P ) ⊆ U . We call PU the ground program
obtained from P by substituting every variable in P by every possible constant
in U . Let BP (LP ) be the set of atoms (literals) that can be formed from a
ground program P .

An interpretation I of a ground P is any subset of BP . We write I |=
p(t1, . . . , tn) if p(t1, . . . , tn) ∈ I and I |= not p(t1, . . . , tn) if I 6|= p(t1, . . . , tn).
For a set of ground literals X, I |= X if I |= l for every l ∈ X. A ground rule
r : α ← β is satisfied w.r.t. I, denoted I |= r, if I |= l for some l ∈ α whenever
I |= β. A ground constraint ← β is satisfied w.r.t. I if I 6|= β. For a ground
program P without not , an interpretation I of P is a model of P if I satisfies
every rule in P ; it is an answer set of P if it is a subset minimal model of P .



For ground programs P containing not , the GL-reduct [7] w.r.t. I is defined as
P I , where P I contains α+ ← β+ for α ← β in P , I |= not β− and I |= α−. I is
an answer set of a ground P if I is an answer set of P I .

In the following, a program is assumed to be a finite set of rules; infinite
programs only appear as byproducts of grounding a finite program with an
infinite universe. An open interpretation of a program P is a pair (U,M) where
U is a universe for P and M is an interpretation of PU . An open answer set of
P is an open interpretation (U,M) of P with M an answer set of PU . An n-ary
predicate p in P is satisfiable if there is an open answer set (U,M) of P and a
(x1, . . . , xn) ∈ Un such that p(x1, . . . , xn) ∈ M .

We introduce some notations for trees as in [19]. For an x ∈ N∗0 1 we denote
the concatenation of a number c ∈ N0 to x as x · c, or, abbreviated, as xc.
Formally, a (finite) tree T is a (finite) subset of N∗0 such that if x · c ∈ T for
x ∈ N∗0 and c ∈ N0, then x ∈ T . Elements of T are called nodes and the empty
word ε is the root of T . For a node x ∈ T we call succT (x) = {x ·c ∈ T | c ∈ N0},
successors of x. The arity of a tree is the maximum amount of successors any
node has in the tree. The set AT = {(x, y) | x, y ∈ T,∃c ∈ N0 : y = x · c} denotes
the set of edges of a tree T . We define a partial order ≤ on a tree T such that for
x, y ∈ T , x ≤ y iff x is a prefix of y. As usual, x < y if x ≤ y and y 6≤ x. A (finite)
path P in a tree T is a prefix-closed subset of T such that ∀x 6= y ∈ P : |x| 6= |y|.

For programs containing only unary and binary predicates it makes sense to
define a tree model property : for a program P containing only unary and binary
predicates, if a unary predicate p ∈ preds(P ) is satisfiable w.r.t. P then p is tree
satisfiable w.r.t. P . A predicate p is tree satisfiable w.r.t. P if there exists

– an open answer set (U,M) of P such that U is a tree of bounded arity, and
– a labeling function t : U → 2preds(P ) such that

• p ∈ t(ε) and t(ε) does not contain binary predicates, and
• z · i ∈ U , i > 0, iff there is some f(z, z · i) ∈ M , and
• for y ∈ U , q ∈ upreds(P ), f ∈ bpreds(P ),

∗ q(y) ∈ M iff q ∈ t(y), and
∗ f(x, y) ∈ M iff y = x · i ∧ f ∈ t(y).

We call such a (U,M) a tree model for p w.r.t. P .

3 Simple Conceptual Logic Programs

In [12], we defined Conceptual Logic Programs (CoLPs), a syntactical fragment
of logic programs for which satisfiability checking under the open answer set
semantics is decidable. We restrict this fragment by disallowing the occurrence of
inequalities and inverse predicates, and by restricting the dependencies between
predicate symbols which appear in the program. The resulting fragment is called
in Simple Conceptual Logic Programs.

1 By N0 we denote the set of natural numbers excluding 0, and by N∗0 the set of finite
sequences over N0.



Definition 1. A simple conceptual logic program (simple CoLP) is a program
with only unary and binary predicates, without constants, and such that any rule
is a free rule, a unary rule

a(x ) ← β(x ),
(
γm(x , ym), δm(ym)

)
1≤m≤k

(1)

where for all m, γ+
m 6= ∅, or a binary rule

f (x , y) ← β(x ), γ(x , y), δ(y) (2)

with γ+ 6= ∅.
Furthermore, let D(P ) be the marked predicate dependency graph of a pro-

gram P as defined above, where D(P ) has as vertices the predicates from P and
as arcs tuples (p, q), where there is either a rule (1) or a rule (2) with a head
predicate p and a positive body predicate q; we call an arc (p, q) marked if q is a
predicate in δm or δ for rules (1), respectively rules (2). P is a simple CoLP iff
its marked predicate dependency graph D(P ) does not contain any cycle with a
marked edge.

Intuitively, the free rules allow for a free introduction of atoms (in a first-order
way) in answer sets, unary rules consist of a root atom a(x) that is motivated by
a syntactically tree-shaped body, and binary rules motivate a f(x, y) for a x and
its ‘successor’ y by a body that only considers literals involving x and y. The
restriction concerning the marked dependency graph can be translated in the
following terms: there is no path from a p(x) to a p(y) in the literal dependency
graph of PU , where p is a unary predicate from P , U is an arbitrary universe,
and x and y are two distinct elements from U .

Simple CoLPs can simulate constraints ← β(x),
(
γm(x, ym), δm(ym)

)
1≤m≤k

,
where for all m, γ+

m 6= ∅, i.e., constraints have a body that has the same form
as a body of a unary rule. Indeed, such constraints ← body can be replaced
by simple CoLP rules of the form constr(x ) ← not constr(x ), body , for a new
predicate constr .

As simple CoLPs are CoLPs and the latter have the tree model property [12],
simple CoLPs have the tree model property as well.

Proposition 1. Simple CoLPs have the tree model property.

For CoLPs this tree model property was important to ensure that a tree
automaton [19] could be constructed that accepts tree models in order to show
decidability. The presented algorithm for simple CoLPs relies as well heavily on
this tree model property.

As satisfiability checking of CoLPs is exptime-complete [12], checking satis-
fiability of simple CoLPs is in exptime.

In [12], it was shown that CoLPs are expressive enough to simulate satisfia-
bility checking w.r.t to SHIQ knowledge bases, where SHIQ is the Description
Logic (DL) extending ALC with transitive roles (S), support for role hierarchies
(H), inverse roles (I), and qualified number restrictions (Q). For an overview of
DLs, we refer the reader to [1].



Using a restriction of this simulation, one can show that satisfiability checking
of ALCH concepts (i.e., SHIQ without inverse roles and quantified number
restrictions) w.r.t. a ALCH TBox can be reduced to satisfiability checking of a
unary predicate w.r.t. a simple CoLP. Intuitively, simple CoLPs cannot handle
inverse roles (as they do not allow for inverse predicates) neither can they handle
number restrictions (as they do not allow for inequality) or transitive roles (due
to the fact that they do not allow for positive literals in the successor part of a
rule). As satisfiability checking of ALC concepts w.r.t. an ALC TBox (note that
ALC is a fragment of ALCH) is exptime-complete ([1, Chapter 3]), we have
exptime-hardness for simple CoLPs as well.

Proposition 2. Satisfiability checking w.r.t. simple CoLPs is exptime-complete.

4 An Algorithm for Simple Conceptual Logic Programs

In this section, we define a sound, complete, and terminating algorithm for sat-
isfiability checking w.r.t. simple CoLPs.

For every non-free predicate q and a simple CoLP P , let Pq be the rules of
P that have q as a head predicate. For a predicate p, ±p denotes p or not p,
whereby multiple occurrences of ±p in the same context will refer to the same
symbol (either p or not p). The negation of ±p is ∓p, that is, ∓p = not p if
±p = p and ∓p = p if ±p = not p.

For a unary rule r of the form (1), we define degree(r) = |{m | γm 6= ∅}|.
For every non-free rule r : α ← β ∈ P , we assume that there exists an injective
function ir : β → {0, . . . , |β|} which defines a total order over the literals in β and
an inverse function lr : {0, . . . , |β|} → β which returns the literal with the given
index in β. For a rule r which has body variables x, y1, . . . , yk we introduce a
function varsetr : {x, y1, . . . , yk, (x, y1), . . . , (x, yk)} → 2{0,...,|β|} which for every
variable or pair of variables which appears in at least one literal in a rule returns
the set of indices of the literals formed with the corresponding variable(s).

The basic data structure for our algorithm is a completion structure.

Definition 2 (completion structure). A completion structure for a simple
CoLP P is a tuple 〈T, G, ct, st, rl, sg, nju, njb〉, where T is a tree which
together with the labeling functions ct, st, rl, sg, nju, and njb, represents a
tentative tree model and G = 〈V,E〉 is a directed graph with nodes V ⊆ BPT and
edges E ⊆ BPT × BPT which is used to keep track of dependencies between ele-
ments of the constructed model. The labeling functions are defined as following:

– The content function ct : T ∪AT → 2preds(P )∪not (preds(P )) maps a node of
the tree to a set of (possibly negated) unary predicates and an edge of the tree
to a set of (possibly negated) binary predicates such that ct(x) ⊆ upreds(P )∪
not(upreds(P )) if x ∈ T , and ct(x) ⊆ bpreds(P )∪not(bpreds(P )) if x ∈ AT .

– The status function st : {(x,±q) | ±q ∈ ct(x), x ∈ T ∪AT } → {exp, unexp}
attaches to every (possibly negated) predicate which appears in the content
of a node/edge x a status value which indicates whether the predicate has
already been expanded in that node/edge.



– The rule function rl : {(x, q) | x ∈ T ∪AT , q ∈ ct(x)} → P associates with
every node/edge x of T and every positive predicate q ∈ ct(x) a rule which
has q as a head predicate: rl(x, q) ∈ Pq.

– The segment function sg : {(x, q, r) | x ∈ T,not q ∈ ct(x), r ∈ Pq} → N
indicates which part of r justifies having not q in ct(x).

– The negative justification for unary predicates function nju : {(x, q, r) | x ∈
T,not q ∈ ct(x), r ∈ Pq} → 2N×T indicates by means of tuples (n, z) ∈ N×T
which literal lr(n) from r is used to justify not q in ct(x) in a node z ∈ T ,
or edge (x, z) ∈ AT .

– The negative justification for binary predicates function njb : {(x, q, r) | x ∈
AT ,not q ∈ ct(x), r ∈ Pq} → N gives the index of the literal from r that is
used to justify not q ∈ ct(x).

An initial completion structure for checking the satisfiability of a unary
predicate p w.r.t. a simple CoLP P is a completion structure with T = {ε},
V = {p(ε)}, E = ∅, and ct(ε) = {p}, st(ε, p) = unexp, and the other labeling
functions undefined for every input.

We clarify the definition of a completion structure by means of an example.
Take the program P :

r1 : f (X ,Y ) ∨ not f (X ,Y ) ←
r2 : a(X ) ← f (X ,Y1 ),not b(Y1 ), f (x ,Y2 )
r3 : b(X ) ← not a(X )

A possible completion structure for this program P is as follows. Take a tree
T = {ε, ε1}, i.e., a tree with root ε and successor ε1, and take ct(ε) = {b,not a},
ct(ε, ε1) = {f}, and ct(ε1) = {not a, b}. Intuitively, we lay out the structure
of our tree model.

We take rl(ε, b) = r3 indicating that r3 is responsible for motivating the
occurrence of b in ε, set st(ε, b) = exp, and keep the status undefined for all
other nodes and edges in T .

In general, justifying a negative unary literal not q ∈ ct(x) (or in other
words, the absence of q(x) in the corresponding open interpretation) implies
that every rule which defines q has to be refuted (otherwise q would have to be
present), thus at least one body literal from every rule in Pq has to be refuted.
The body of a certain rule r ∈ Pq can either be locally refuted (via a literal
which can be formed using x and some ±a ∈ ct(x)) or it has to be refuted
in every successor of x. In the latter case, if x has more than one successor, it
can be shown that the same segment of the rule has to be refuted in all the
successors, whereby a segment of a rule is one of {β, (γm ∪ δm)1≤m≤k} for unary
rules (1). In the example, in order to have not a ∈ ct(ε), we need that for all
successors of ε, just ε1 in this case, either f ∈ ct(ε, ε1),not b ∈ ct(ε1) (the first
segment) does not hold, or f ∈ ct(ε, ε1) (the second segment) does not hold.
As f ∈ ct(ε, ε1) and b ∈ ct(ε1), in this case the body of rule r2 was refuted by
showing that the first segment of the rule does not hold when grounded with any
of the successors of ε: sg(x, a, r2) = 1 (the function sg picks up such a segment



to be refuted, where segments are referred to by the numbers 0 for β, and m for
γm ∪ δm,1 ≤ m ≤ k).

After picking a segment to refute a negative unary predicate, we need means
to indicate which literal in the segment, per successor, can be used to justify this
negative unary predicate. This can be per successor a different literal from the
segment such that nju(x, q, r) is a set of tuples (n, z) where z is the particular
successor (or x itself in case the negative unary predicate can be justified locally)
and n the position of the literal in the rule r. In the example, nju(x, a, r2) =
{(2, ε1)}, i.e., the literal not b(ε1) as b ∈ ct(ε1). Note that if z = x the set
nju(x, q, r) would be a singleton set as no successors are needed to justify not q.

Negated binary literals are always locally justified in the sense that to justify
a not q ∈ ct(x) for x ∈ AT , one only needs to consider x.

In the following, we will show how to expand the initial completion structure
in order to prove satisfiability of a predicate, how to determine when no more
expansion is needed (blocking), and under what circumstances a clash occurs.
In particular, expansion rules will expand an initial completion structure to a
complete clash-free structure that corresponds to a finite representation of an
open answer set; applicability rules state the necessary conditions such that those
expansion rules can be applied.

4.1 Expansion Rules

The expansion rules will need to update the completion structure whenever in
the process of justifying a literal l in the current model a new literal ±p(z) has
to be considered. This means that ±p has to be inserted in the content of z in
case it is not already there and marked as unexpanded, and in case ±p(z) is
an atom, it has to be ensured that it is a node in G and furthermore, in case
l is also an atom, a new arc from l to ±p(z) should be created to capture the
dependencies between the two elements of the model. More formally:

– if ±p /∈ ct(z), then ct(z) = ct(z) ∪ {±p} and st(z,±p) = unexp,
– if ±p = p and ±p(z) /∈ V , then V = V ∪ {±p(x)},
– if l ∈ BPT

and ±p = p, then E = E ∪ {(l,±p(z))}.
As a shorthand, we denote this sequence of operations as update(l,±p, z); more
general, update(l, β, z) for a set of (possibly negated) predicates β, denotes ∀±a ∈
β, update(l,±a, z).

In the following, let x ∈ T and (x, y) ∈ AT be the node, respectively edge,
under consideration.

(i) Expand unary positive. For a unary positive predicate (non-free) p ∈
ct(x) such that st(x, p) = unexp,

– nondeterministically choose a rule r ∈ Pp of the form (1) that will motivate
this predicate: set rl(x, p) = r,

– for the β in the body of this r, update(p(x), β, x),



– for each γm, 1 ≤ m ≤ k, from r, nondeterministically choose a y ∈ succT (x)
or let y = x · s, where s ∈ N∗0 s.t. x · s /∈ succT (x) already. In the latter case,
add y as a new successor of x in T : T = T∪{y}. Next, update(p(x), γm, (x, y))
and update(p(x), δm, y).

– set st(x, p) = exp.

(ii) Expand unary negative. For a unary negative predicate (non-free) not p ∈
ct(x) and either

1. st(x,not p) = unexp, then for every rule r ∈ Pp of the form (1) nondeter-
ministically choose a segment m, 0 ≤ m ≤ k: sg(x, p, r) = m.

– If m = 0, choose a ±a ∈ β, and update(not p(x),∓a, x), nju(x, p, r) =
{(ir(±a(X)), x)}.

– If m > 0, for every y ∈ succT (x), (†) choose a ±ay ∈ γm ∪ δm, and set
nju(x, p, r) = {(ir(±ay(X, Ym)), y) | ±ay ∈ γm} ∪ {(ir(±ay(Ym)), y) |
±ay ∈ δm}. Next, update(not p(x),∓ay, (x, y)) if ±ay ∈ γm, and
update(∓p(x), ay, y) if ±ay ∈ δm.

After every rule has been processed set st(x,not p) = exp.
2. st(x,not p) = exp and for some r ∈ Pp, sg(x, p, r) 6= 0, and nju(x, p, r) = S

with |S| < |succT (x)|, i.e., not p has already been expanded, but for some
rule r it did not receive a local justification (at x), and meanwhile new
successors of x have been introduced. Then, one has to justify not p in the
new successors as well.
For every r ∈ Pp of the form (1) such that sg(x, p, r) = m 6= 0 and for
every y ∈ succT (x) which has not been considered previously, repeat the
operations in (†) as above.

(iii) Expand binary positive. For a binary positive predicate symbol (non-
free) p in ct(x, y) such that st((x, y), p) = unexp: nondeterministically choose
a rule r ∈ Pp of the form (2) that motivates p by setting rl((x, y), p) = r, and
update(p(x, y), β, x), update(p(x, y), γ, (x, y)), and update(p(x, y), δ, y). Finally,
set st((x, y), p) = exp.

(iv) Expand binary negative. For a binary negative predicate symbol (non-
free) not p in ct(x, y) such that st((x, y),not p) = unexp, nondeterministically
choose for every rule r ∈ Pp of the form (2) an s from varsetr(X), varsetr(X,Y )
or varsetr(Y ) and let njb((x, y), p, r) = s.

– If s ∈ varset(X) and ±a(X) = lr(s), update(not p(x, y),∓a, x),
– If s ∈ varset(X, Y ) and ±f(X, Y ) = lr(s), update(not p(x, y),∓f, (x, y)),
– If s ∈ varset(Y ) and ±a(Y ) = lr(s), update(not p(x, y),∓a, y)).

Finally, set st((x, y),not p) = exp.



(v) Choose a unary predicate. There is an x ∈ T for which none of ±a ∈
ct(x) can be expanded with rules (i-ii), and for all (x, y) ∈ AT , none of ±f ∈
ct(x, y) can be expanded with rules (iii-iv), and there is a p ∈ upreds(P ) such
that p /∈ ct(x) and not p /∈ ct(x). Then, add p to ct(x) with st(x, p) = unexp
or add not p to ct(x) with st(x,not p) = unexp.

(vi) Choose a binary predicate. There is an x ∈ T for which none of
±a ∈ ct(x) can be expanded with rules (i-ii), and for all (x, y) ∈ AT none of
±f ∈ ct(x, y) can be expanded with rules (iii-iv), and there is a (x, y) ∈ AT

and a p ∈ bpreds(P ) such that p /∈ ct(x, y) and not p /∈ ct(x, y). Then,
add p to ct(x, y) with st((x, y), p) = unexp or add not p to ct(x, y) with
st((x, y),not p) = unexp.

4.2 Applicability Rules

A second set of rules is not updating the completion structure under considera-
tion, but restricts the use of the expansion rules:

(vii) Saturation We will call a node x ∈ T saturated if

– for all p ∈ upreds(P ) we have p ∈ ct(x) or not p ∈ ct(x) and none of
±a ∈ ct(x) can be expanded according to the rules (i-ii) or (v),

– for all (x, y) ∈ AT and p ∈ bpreds(P ), p ∈ ct(x, y) or not p ∈ ct(x, y) and
none of ±f ∈ ct(x, y) can be expanded according to the rules (iii-iv) or (vi).

We impose that no expansions (i-vi) can be performed on a node from T until
its predecessor is saturated.

(viii) Blocking We call a node x ∈ T blocked if

– its predecessor is saturated, and
– there is an ancestor y of x, y < x, such that ct(x) ⊂ ct(y).

The rule says that if there is an ancestor node whose content includes the
content of the current node, the current node can be blocked: intuitively, one
can show that provided that the content of the ancestor is justified, the content
of the current node can also be justified in a similar way (this is possible due
to the fact that every positive literal formed with the ancestor node is justified
in a finite number of steps as a consequence of the restriction on the marked
dependency graph of a simple CoLP; for more details consult the soundness
proof). We call (y, x) a blocking pair and say that y blocks x; we will also refer
to x as a blocked node and to y as the blocking node for a blocking pair (y, x).
We impose that no expansions (i-vi) can be performed on a blocked node from
T .



(ix) Caching We call a node x ∈ T cached if

– its predecessor is saturated,
– there is a node y which is not an ancestor of x, y < x, such that ct(x) ⊂

ct(y).

We impose that no expansions can be performed on a cached node from T .
Intuitively, x is not further expanded, as one can reuse the (cached) justification
for y when dealing with x. We call (y, x) a caching pair and say that y caches
x; we will also refer to x as a cached node and to y as the caching node for a
caching pair (y, x).

4.3 Termination, Soundness, and Completion

We call a completion structure contradictory, if for some x ∈ T and a ∈ upreds(P ),
{a,not a} ⊆ ct(x) or for some (x, y) ∈ AT and f ∈ bpreds(P ), {f,not f} ⊆
ct(x, y). A complete completion structure for a simple CoLP P and a p ∈
upreds(P ), is a completion structure that results from applying the expansion
rules to the initial completion structure for p and P , taking into account the
applicability rules, such that no expansion rules can be further applied. Further-
more, a complete completion structure CS = 〈T, G, ct, st, rl, sg, nju, njb〉 is
clash-free if CS is not contradictory, and G does not contain cycles.

We show that an initial completion structure for a unary predicate p and
a simple CoLP P can always be expanded to a complete completion structure
(termination), that, if p is satisfiable w.r.t. P , there is a clash-free complete com-
pletion structure (soundness), and, finally, that, if there is a clash-free complete
completion structure, p is satisfiable w.r.t. P (completeness).

Proposition 3 (termination). Let P be a simple CoLP and p ∈ upreds(P ).
Then, one can construct a finite complete completion structure by a finite number
of applications of the expansion rules to the initial completion structure for p and
P , taking into account the applicability rules.

Proof Sketch. Assume one cannot construct a complete completion structure
by a finite number of applications of the expansion rules, taking into account the
applicability rules. Clearly, if one has a finite completion structure that is not
complete, a finite application of expansion rules would complete it unless succes-
sors are introduced. However, one cannot introduce infinitely many successors:
every path in the tree will eventually contain two nodes which fulfill the blocking
condition, such that no expansion rules can be applied to successor nodes of the
blocked node in the pair. Furthermore, the arity of the tree in the completion
structure is bound by the predicates in P and the degrees of the rules. ut

Proposition 4 (soundness). Let P be a simple CoLP and p ∈ upreds(P ). If
there exists a clash-free complete completion structure for p w.r.t. P , then p is
satisfiable w.r.t. P .



Proof Sketch. From a complete clash-free completion structure for p and
P we can construct an open answer set of P that satisfies p by unfolding the
completion structure. Intuitively, blocking pairs represent a state where the open
answer set contains some infinitely repeating pattern that contains a finite mo-
tivation for the literals in the blocking node and all of its successors : this state
is achieved by replacing the motivation for the blocked node (i.e., the subtree
containing only this node) by the subtree that motivates the blocking node in
the pair. As the subtree containing only the blocked node is a subtree of the
subtree of the blocking node, we need to repeat such a replacement infinitely.
Furthermore, cached nodes represent the situation where the motivation for a
node is being repeated elsewhere, such that also such pairs will trigger a substi-
tution of subtrees. One can show that such a construction results in a tree model
for the program. ut

Proposition 5 (completeness). Let P be a simple CoLP and p ∈ upreds(P ).
If p is satisfiable w.r.t. P , then there exists a clash-free complete completion
structure for p w.r.t. P .

Proof Sketch. If p is satisfiable w.r.t. P then p is tree satisfiable w.r.t. P
(Proposition 1), such that there must be a tree model (U,M) for p w.r.t. P .

One can construct a clash-free complete completion structure for p w.r.t. P ,
by guiding the nondeterministic application of the expansion rules by (U,M)
and taking into account the constraints imposed by the saturation, blocking,
caching, and clash rules.

ut

4.4 Complexity Results

Let CS = 〈T, G, ct, st, rl, sg, nju, njb〉 be a completion structure and CS ’
the completion structure constructed from CS by removing from T all nodes y
where (x, y) is some blocked, or caching pair. There are at most mk such nodes,
where k is bound by the amount n of unary predicates q in P and the degrees
of the rules Pq and m is the amount of nodes in CS ′. Assume CS ′ has more
than 2n nodes, then there must be two nodes x 6= y such that ct(x) = ct(y).
If x < y or y < x, either (x, y) or (y, x) is a blocked pair, which contradicts
the construction of CS ′. If x 6< y and y 6< x, (x, y) or (y, x) is a caching pair,
again a contradiction. Thus, CS ′ contains at most 2n nodes, so m ≤ 2n. Since
CS ′ resulted from CS by removing at most mk nodes, the maximum amount
of nodes in CS is (k + 1)2n, i.e., exponential in the size of P , such that the
algorithm has to visit a number of nodes that is exponential in the size of P .

The graph G has as well a number of nodes that is exponential in the size of
P . Since checking for cycles in a directed graph can be done in linear time, the
algorithm runs in nexptime, a nondeterministic level higher than the worst-case
complexity characterization (Proposition 2).

Note that such an increase in complexity is expected. For example, although
satisfiability checking in SHIQ is exptime-complete, practical algorithms run



in 2-nexptime [18]. Thanks to caching, however, we only have an increase to
nexptime.

5 Related Work

Description Logic Programs [10] represent the common subset of OWL-DL on-
tologies and Horn logic programs (programs without negation as failure or dis-
junction). As such, reasoning can be reduced to normal LP reasoning.

In [16], a clever translation of SHIQ(D) (SHIQ with data types) combined
with DL-safe rules (a rule is DL-safe if each variable in the rule appears in a
non-DL-atom, where a DL-atom is an atom with the predicate corresponding
to a DL-concept or DL-role) to disjunctive Datalog is provided. The translation
relies on a translation to clauses and subsequently applying techniques from
basic superposition theory.

Reasoning in DL+log [17] does not use a translation to other approaches,
but defines a specific algorithm based on a partial grounding of the program
and a test for containment of conjunctive queries over the DL knowledge bases.
Note that [17] has a standard names assumption as well as a unique names
assumption - all interpretations are over some fixed, countably infinite domain,
different constants are interpreted as different elements in that domain, and
constants are in one-to-one correspondence with that domain.

dl-programs [5] have a more loosely coupled take on integrating DL knowledge
bases and logic programs by allowing the program to query the DL knowledge
base while as well having the possibility to send (controlled) input to the DL
knowledge base. Reasoning is done via a stable model computation of the logic
program, interwoven with queries that are oracles to the DL part.

Description Logic Rules[14] are defined as decidable fragments of SWRL. The
rules have a tree-like structure similar to the structure of simple CoLPs rules.
Depending on the underlying DL, one can distinguish between SROIQ rules
(these do not actually extend SROIQ, they are just syntactic sugar on top of
the language), EL++ rules, DLP rules, and ELP rules [15]. The latter can be
seen as an extension of both EL++ rules and DLP rules, hence their name.

The algorithm presented in Section 4 can be seen as a procedure that con-
structs a tableau (as is common in most DL reasoning procedures), representing
the possibly infinite open answer set by a finite structure. There are several
DL-based approaches which adopt a minimal-style semantics. Among this are
autoepistemic[4], default[2] and circumscriptive extensions of DL[3][9]. The first
two extensions are restricted to reasoning with explicitly named individuals only,
while [9] allows for defeats to be based on the existence of unknown individuals.
A tableau-based method for reasoning with the DL ALCO in the circumscriptive
case has been introduced in [8]. A special preference clash condition is introduced
there to distinguish between minimal and non-minimal models which is based on
constructing a new classical DL knowledge base and checking its satisfiability. It
would be interesting to explore the connections between our algorithm and the
algorithm described there.



6 Conclusions and Outlook

We identified a decidable class of programs, simple CoLPs, and provided a non-
deterministic algorithm for checking satisfiability under the open answer set
semantics that runs in nexptime.

The presented algorithm is the first step in reasoning under an open answer
set semantics. We intend to extend the algorithm such that it can handle the
whole fragment of CoLPs, as well as the presence of constants. The latter would
enable combined reasoning with the DL SHOIQ (closely related to OWL-DL)
and expressive rules.
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